1
|
Terrinoni A, Micheloni G, Moretti V, Caporali S, Bernardini S, Minieri M, Pieri M, Giaroni C, Acquati F, Costantino L, Ferrara F, Valli R, Porta G. OTX Genes in Adult Tissues. Int J Mol Sci 2023; 24:16962. [PMID: 38069286 PMCID: PMC10707059 DOI: 10.3390/ijms242316962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
OTX homeobox genes have been extensively studied for their role in development, especially in neuroectoderm formation. Recently, their expression has also been reported in adult physiological and pathological tissues, including retina, mammary and pituitary glands, sinonasal mucosa, in several types of cancer, and in response to inflammatory, ischemic, and hypoxic stimuli. Reactivation of OTX genes in adult tissues supports the notion of the evolutionary amplification of functions of genes by varying their temporal expression, with the selection of homeobox genes from the "toolbox" to drive or contribute to different processes at different stages of life. OTX involvement in pathologies points toward these genes as potential diagnostic and/or prognostic markers as well as possible therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giovanni Micheloni
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Vittoria Moretti
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Sabrina Caporali
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Cristina Giaroni
- Department of Medicina e Innovazione Tecnologica, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Francesco Acquati
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
- Department of Biotechnology and Life Science, University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Lucy Costantino
- Department of Molecular Genetics, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milano, Italy
| | - Fulvio Ferrara
- Department of Molecular Genetics, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milano, Italy
| | - Roberto Valli
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| | - Giovanni Porta
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5, 21100 Varese, Italy
| |
Collapse
|
2
|
Wang J, Xue Y, He Y, Quan H, Zhang J, Gao YQ. Characterization of network hierarchy reflects cell state specificity in genome organization. Genome Res 2023; 33:247-260. [PMID: 36828586 PMCID: PMC10069467 DOI: 10.1101/gr.277206.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Dynamic chromatin structure acts as the regulator of transcription program in crucial processes including cancer and cell development, but a unified framework for characterizing chromatin structural evolution remains to be established. Here, we performed graph inferences on Hi-C data sets and derived the chromatin contact networks. We discovered significant decreases in information transmission efficiencies in chromatin of colorectal cancer (CRC) and T-cell acute lymphoblastic leukemia (T-ALL) compared to corresponding normal controls through graph statistics. Using network embedding in the Poincaré disk, the hierarchy depths of chromatin from CRC and T-ALL patients were found to be significantly shallower compared to their normal controls. A reverse trend of change in chromatin structure was observed during early embryo development. We found tissue-specific conservation of hierarchy order in chromatin contact networks. Our findings reveal the top-down hierarchy of chromatin organization, which is significantly attenuated in cancer.
Collapse
Affiliation(s)
- Jingyao Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yueying He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hui Quan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jun Zhang
- Changping Laboratory, Beijing, 102206, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; .,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.,Changping Laboratory, Beijing, 102206, China
| |
Collapse
|
3
|
Zhang Z, Butler R, Koestler DC, Bell-Glenn S, Warrier G, Molinaro AM, Christensen BC, Wiencke JK, Kelsey KT, Salas LA. Comparative analysis of the DNA methylation landscape in CD4, CD8, and B memory lineages. Clin Epigenetics 2022; 14:173. [PMID: 36522672 PMCID: PMC9753273 DOI: 10.1186/s13148-022-01399-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND There is considerable evidence that epigenetic mechanisms and DNA methylation are critical drivers of immune cell lineage differentiation and activation. However, there has been limited coordinated investigation of common epigenetic pathways among cell lineages. Further, it remains unclear if long-lived memory cell subtypes differentiate distinctly by cell lineages. RESULTS We used the Illumina EPIC array to investigate the consistency of DNA methylation in B cell, CD4 T, and CD8 T naïve and memory cells states. In the process of naïve to memory activation across the three lineages, we identify considerable shared epigenetic regulation at the DNA level for immune memory generation. Further, in central to effector memory differentiation, our analyses revealed specific CpG dinucleotides and genes in CD4 T and CD8 T cells with DNA methylation changes. Finally, we identified unique DNA methylation patterns in terminally differentiated effector memory (TEMRA) CD8 T cells compared to other CD8 T memory cell subtypes. CONCLUSIONS Our data suggest that epigenetic alterations are widespread and essential in generating human lymphocyte memory. Unique profiles are involved in methylation changes that accompany memory genesis in the three subtypes of lymphocytes.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Rondi Butler
- Department of Epidemiology, Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Shelby Bell-Glenn
- Department of Biostatistics and Data Science, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Gayathri Warrier
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - John K Wiencke
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Karl T Kelsey
- Department of Epidemiology, Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
4
|
Zacharias AL, Murray JI. Combinatorial decoding of the invariant C. elegans embryonic lineage in space and time. Genesis 2016; 54:182-97. [PMID: 26915329 PMCID: PMC4840027 DOI: 10.1002/dvg.22928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022]
Abstract
Understanding how a single cell, the zygote, can divide and differentiate to produce the diverse animal cell types is a central goal of developmental biology research. The model organism Caenorhabditis elegans provides a system that enables a truly comprehensive understanding of this process across all cells. Its invariant cell lineage makes it possible to identify all of the cells in each individual and compare them across organisms. Recently developed methods automate the process of cell identification, allowing high-throughput gene expression characterization and phenotyping at single cell resolution. In this Review, we summarize the sequences of events that pattern the lineage including establishment of founder cell identity, the signaling pathways that diversify embryonic fate, and the regulators involved in patterning within these founder lineages before cells adopt their terminal fates. We focus on insights that have emerged from automated approaches to lineage tracking, including insights into mechanisms of robustness, context-specific regulation of gene expression, and temporal coordination of differentiation. We suggest a model by which lineage history produces a combinatorial code of transcription factors that act, often redundantly, to ensure terminal fate.
Collapse
Affiliation(s)
- Amanda L. Zacharias
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
5
|
Abstract
The p53 transcription factor has a critical role in cell stress response and in tumor suppression. Wild-type p53 protein is a growth modulator and its inactivation is a critical event in malignant transformation. It has been recently demonstrated that wild-type p53 has developmental and differentiation functions. Indeed an over-expression of p53 in tumor cells induces asymmetrical division avoiding self-renewal of cancer stem cells (CSCs) and instead promoting their differentiation. In this study, 28 human breast carcinomas have been analyzed for expression of wild-type p53 and of a pool of non-clustered homeobox genes. We demonstrated that orthodenticle homolog 1 gene (OTX1) is transcribed in breast cancer. We established that the p53 protein directly induces OTX1 expression by acting on its promoter. OTX1 has been described as a critical molecule for axon refinement in the developing cerebral cortex of mice, and its activity in breast cancer suggests a synergistic function with p53 in CSC differentiation. Wild-type p53 may regulate cellular differentiation by an alternative pathway controlling OTX1 signaling only in breast cancer cells and not in physiological conditions.
Collapse
|
6
|
Pagani IS, Terrinoni A, Marenghi L, Zucchi I, Chiaravalli AM, Serra V, Rovera F, Sirchia S, Dionigi G, Miozzo M, Mozzo M, Frattini A, Ferrari A, Capella C, Pasquali F, Lo Curto F, Curto FL, Albertini A, Melino G, Porta G. The mammary gland and the homeobox gene Otx1. Breast J 2011; 16 Suppl 1:S53-6. [PMID: 21050313 DOI: 10.1111/j.1524-4741.2010.01006.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mammary gland, the unique organ that primarily form at puberty, is an ideal model to study the functions of homeobox (HB) genes in both development and tumorigenesis. HB genes comprise a large family of developmental regulators that have a critical role in cell growth and differentiation. In the normal mammary gland, homeobox genes are involved in ductal formation, epithelial branching, and lobulo-alveolar development by regulating epithelial proliferation and differentiation. The HB genes are controlled in a spatial and temporal manner in both stromal and epithelial cells. They are coordinately regulated by hormones and extracellular matrix, suggesting that many signaling pathways are involved in homeobox gene functions. When homeobox genes are misexpressed in animal models, different defects are displayed in mammary gland development. Aberrant expression of homeobox genes, overexpressed or downregulated, is found in primary carcinomas and in breast cancer. The Otx1 HB gene is a classic regulatory of nervous system development during embryogenesis. Postnatally Otx1 is transcribed in the anterior pituitary gland, where activates transcription of the pituitary hormones, and plays a role in hematopoiesis, enhancing pluripotent cells, and erythroid differentiation. Otx1 can still be detected in mature cells of the erythroid and megacaryocytic lineage. During cyclical development of mammary gland, the Otx1 gene is overexpressed in lactation, confirming a role of this transcription factor in cell differentiation. Recent studies report that Otx1 is overexpressed in breast cancer. Otx1 is expressed during embryogenesis, and it is expressed again during carcinogenesis, implying its possible function in differentiation of neoplastic cells.
Collapse
Affiliation(s)
- Ilaria S Pagani
- Department of Experimental and Clinical Biomedical Sciences, University of Insubria, Varese, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Omodei D, Acampora D, Russo F, De Filippi R, Severino V, Di Francia R, Frigeri F, Mancuso P, De Chiara A, Pinto A, Casola S, Simeone A. Expression of the brain transcription factor OTX1 occurs in a subset of normal germinal-center B cells and in aggressive Non-Hodgkin Lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2609-17. [PMID: 19893048 DOI: 10.2353/ajpath.2009.090542] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The roles in brain development. Previous studies have shown the association between OTX2 and OTX1 with anaplastic and desmoplastic medulloblastomas, respectively. Here, we investigated OTX1 and OTX2 expression in Non-Hodgkin Lymphoma (NHL) and multiple myeloma. A combination of semiquantitative RT-PCR, Western blot, and immunohistochemical analyses was used to measure OTX1 and OTX2 levels in normal lymphoid tissues and in 184 tumor specimens representative of various forms of NHL and multiple myeloma. OTX1 expression was activated in 94% of diffuse large B-cell lymphomas, in all Burkitt lymphomas, and in 90% of high-grade follicular lymphomas. OTX1 was undetectable in precursor-B lymphoblastic lymphoma, chronic lymphocytic leukemia, and in most marginal zone and mantle cell lymphomas and multiple myeloma. OTX2 was undetectable in all analyzed malignancies. Analysis of OTX1 expression in normal lymphoid tissues identified a subset of resting germinal center (GC) B cells lacking PAX5 and BCL6 and expressing cytoplasmic IgG and syndecan. About 50% of OTX1(+) GC B cells co-expressed CD10 and CD20. This study identifies OTX1 as a molecular marker for high-grade GC-derived NHL and suggests an involvement of this transcription factor in B-cell lymphomagenesis. Furthermore, OTX1 expression in a subset of normal GC B cells carrying plasma cell markers suggests its possible contribution to terminal B-cell differentiation.
Collapse
Affiliation(s)
- Daniela Omodei
- Centro di Ingegneria Genetica (CEINGE) Biotecnologie Avanzate, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bradley CK, Takano EA, Hall MA, Göthert JR, Harvey AR, Begley CG, van Eekelen JAM. The essential haematopoietic transcription factor Scl is also critical for neuronal development. Eur J Neurosci 2006; 23:1677-89. [PMID: 16623824 DOI: 10.1111/j.1460-9568.2006.04712.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract The basic helix-loop-helix (bHLH) transcription factor Scl displays tissue-restricted expression and is critical for the establishment of the haematopoietic system; loss of Scl results in embryonic death due to absolute anaemia. Scl is also expressed in neurons of the mouse diencephalon, mesencephalon and metencephalon; however, its requirement in those sites remains to be determined. Here we report conditional deletion of Scl in neuronal precursor cells using the Cre/LoxP system. Neuronal-Scl deleted mice died prematurely, were growth retarded and exhibited an altered motor phenotype characterized by hyperactivity and circling. Moreover, ablation of Scl in the nervous system affected brain morphology with abnormal neuronal development in brain regions known to express Scl under normal circumstances; there was an almost complete absence of Scl-null neurons in the hindbrain and partial loss of Scl-null neurons in the thalamus and midbrain from early neurogenesis onwards. Our results demonstrate a crucial role for Scl in the development of Scl-expressing neurons, including gamma-aminobutyric acid (GABA)ergic interneurons. Our study represents one of the first demonstrations of functional overlap of a single bHLH protein that regulates neural and haematopoietic cell development. This finding underlines Scl's critical function in cell fate determination of mesodermal as well as neuroectodermal tissues.
Collapse
Affiliation(s)
- Cara K Bradley
- Telethon Institute for Child Health Research and Centre for Child Health Research at the University of Western Australia, Subiaco WA 6008, Australia
| | | | | | | | | | | | | |
Collapse
|