1
|
Soppina P, Patel N, Shewale DJ, Rai A, Sivaramakrishnan S, Naik PK, Soppina V. Kinesin-3 motors are fine-tuned at the molecular level to endow distinct mechanical outputs. BMC Biol 2022; 20:177. [PMID: 35948971 PMCID: PMC9364601 DOI: 10.1186/s12915-022-01370-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kinesin-3 family motors drive diverse cellular processes and have significant clinical importance. The ATPase cycle is integral to the processive motility of kinesin motors to drive long-distance intracellular transport. Our previous work has demonstrated that kinesin-3 motors are fast and superprocessive with high microtubule affinity. However, chemomechanics of these motors remain poorly understood. RESULTS We purified kinesin-3 motors using the Sf9-baculovirus expression system and demonstrated that their motility properties are on par with the motors expressed in mammalian cells. Using biochemical analysis, we show for the first time that kinesin-3 motors exhibited high ATP turnover rates, which is 1.3- to threefold higher compared to the well-studied kinesin-1 motor. Remarkably, these ATPase rates correlate to their stepping rate, suggesting a tight coupling between chemical and mechanical cycles. Intriguingly, kinesin-3 velocities (KIF1A > KIF13A > KIF13B > KIF16B) show an inverse correlation with their microtubule-binding affinities (KIF1A < KIF13A < KIF13B < KIF16B). We demonstrate that this differential microtubule-binding affinity is largely contributed by the positively charged residues in loop8 of the kinesin-3 motor domain. Furthermore, microtubule gliding and cellular expression studies displayed significant microtubule bending that is influenced by the positively charged insert in the motor domain, K-loop, a hallmark of kinesin-3 family. CONCLUSIONS Together, we propose that a fine balance between the rate of ATP hydrolysis and microtubule affinity endows kinesin-3 motors with distinct mechanical outputs. The K-loop, a positively charged insert in the loop12 of the kinesin-3 motor domain promotes microtubule bending, an interesting phenomenon often observed in cells, which requires further investigation to understand its cellular and physiological significance.
Collapse
Affiliation(s)
- Pushpanjali Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.,Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa, 768019, India
| | - Nishaben Patel
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, 55455, USA
| | - Dipeshwari J Shewale
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Ashim Rai
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, 55455, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, 55455, USA
| | - Pradeep K Naik
- Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa, 768019, India
| | - Virupakshi Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|