1
|
Zhao S, Lin Y, Wang J, Li D, Wang F, Shoji O, Xu J. Regioselective aromatic O-demethylation with an artificial P450BM3/sugar alcohol oxidase peroxygenase system. Int J Biol Macromol 2025; 309:142768. [PMID: 40180086 DOI: 10.1016/j.ijbiomac.2025.142768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
The enzymatic demethylation of aromatic compounds presents a major challenge in the valorization of lignin. The main goal was to develop an efficient artificial peroxygenase system combining engineered P450BM3 with AldO (sugar alcohol oxidase) and DFSM (dual function small molecule) for the regioselective O-demethylation of lignin-derived aromatic ethers. P450BM3 serves as a versatile biocatalyst, and its engineered variants demonstrate expanded substrate promiscuity toward non-native substrates. AldO, served as the H2O2 in situ generation system. The DFSM, a rationally designed catalytic auxiliary, facilitates precise control of enzymatic reactions and enhances the efficiency of O-demethylation. We hypothesize that by combining P450BM3 with AldO and DFSM, we can better control the generation of H2O2 and direct the enzymatic system toward efficient O-demethylation. The engineered P450BM3 F87A/V78A/T268D/A328F mutant achieved a TON of 1895 ± 4 for guaiacol, more than double that of the native P450BM3/H2O2 system (TON = 872 ± 7). Moreover, the F87A/T268D mutant efficiently catalyzed double-demethylation of syringol, achieving the highest turnover number (TON) of 483 ± 7. This DFSM-assisted P450BM3/AldO system represents a significant advancement in the biocatalytic degradation of lignin and offers a cost-effective and scalable alternative to traditional NADPH-dependent P450 monooxygenases. Our findings open new pathways for sustainable biotechnological applications in lignin valorization and aromatic compound catabolism.
Collapse
Affiliation(s)
- Sijia Zhao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences), Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yingwu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jinghan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences), Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Dong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences), Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Fang Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences), Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Jiakun Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods (Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences), Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China.
| |
Collapse
|
2
|
Wolf ME, Eltis LD. Recent advances in enzymes active on lignin-derived aromatic compounds. Trends Biochem Sci 2025; 50:322-331. [PMID: 39952881 DOI: 10.1016/j.tibs.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Lignin is an attractive alternative to fossil fuels as a feedstock for the sustainable manufacture of chemicals. Emergent strategies for lignin valorization include tandem processes whereby thermochemical fractionation of the biomass yields a mixture of lignin-derived aromatic compounds (LDACs), which are then transformed into target compounds by a microbial cell factory. Identifying LDAC-degrading pathways is critical to optimize carbon yield from diverse depolymerization mixtures. Characterizing enzymes - especially those that catalyze the rate-limiting steps of O-demethylation, hydroxylation, and decarboxylation - informs and enables biocatalyst design. Rational, structure-based engineering of key enzymes, as well as untargeted, evolution-based approaches, further optimize biocatalysis. In this review we outline recent advances in these fields which are critical in developing biocatalysts to efficiently synthesize lignin-based bioproducts.
Collapse
Affiliation(s)
- Megan E Wolf
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Vasudhevan P, Ruoyu Z, Ma H, Singh S, Varshney D, Pu S. Biocatalytic enzymes in food packaging, biomedical, and biotechnological applications: A comprehensive review. Int J Biol Macromol 2025; 300:140069. [PMID: 39832587 DOI: 10.1016/j.ijbiomac.2025.140069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
The increasing environmental concerns and health risks associated with synthetic chemicals have driven the demand for sustainable and eco-friendly solutions. Biocatalysis, employing enzymes or whole cells as biocatalysts, has emerged as a powerful alternative. This review provides a comprehensive analysis of the applications of biocatalytic enzymes in food packaging, biomedical sciences, and biotechnology. We highlight the potential of enzymes like laccase, glucose oxidase, lysozyme, protease, lipase, cellulase, and asparaginase to replace traditional chemical methods, driving innovation and sustainability. The global enzyme market is also analyzed, including current trends, emerging demands, and the impact of the COVID-19 pandemic. This review aims to bridge knowledge gaps, emphasize recent technological breakthroughs, and showcase the potential of biocatalytic enzymes to address critical industrial challenges while supporting environmental sustainability and economic growth.
Collapse
Affiliation(s)
- Palanisamy Vasudhevan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| | - Zhang Ruoyu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Subhav Singh
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Division of research and development, Lovely Professional University, Phagwara, Punjab, India
| | - Deekshant Varshney
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Division of Research & innovation, Uttaranchal University, Dehradun, India
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
4
|
Harlington AC, Das T, Shearwin KE, Bell SG, Whelan F. Structural insights into S-lignin O-demethylation via a rare class of heme peroxygenase enzymes. Nat Commun 2025; 16:1815. [PMID: 39979323 PMCID: PMC11842817 DOI: 10.1038/s41467-025-57129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
The O-demethylation of lignin aromatics is a rate-limiting step in their bioconversion to higher-value compounds. A recently discovered cytochrome P450, SyoA, demethylates the S-lignin aromatic syringol. In this work, we solve high-resolution X-ray crystal structures of substrate-free and substrate-bound SyoA and evaluate demethylation of para-substituted S-lignin aromatics via monooxygenase and peroxide shunt pathways. We find that SyoA demethylates S-lignin aromatics exclusively using the peroxide shunt pathway. The atomic-resolution structures reveal the position of non-canonical residues in the I-helix (Gln252, Glu253). Mutagenesis of this amide-acid pair in SyoA shows they are critical for catalytic activity. This work expands the enzymatic toolkit for improving the capacity to funnel lignin derived aromatics towards higher value compounds and defines the chemistry within the active site of the enzyme that enables peroxygenase activity. These insights provide a framework for engineering peroxygenase activity in other heme enzymes to generate easier to use biocatalysts.
Collapse
Affiliation(s)
- Alix C Harlington
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Tuhin Das
- Department of Chemistry, University of Adelaide, Adelaide, SA, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, Australia.
| | - Fiona Whelan
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia.
- Adelaide Microscopy, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
5
|
Zhao Y, Xue L, Huang Z, Lei Z, Xie S, Cai Z, Rao X, Zheng Z, Xiao N, Zhang X, Ma F, Yu H, Xie S. Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system. Nat Commun 2024; 15:9288. [PMID: 39468081 PMCID: PMC11519575 DOI: 10.1038/s41467-024-53609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Exploring microorganisms with downstream synthetic advantages in lignin valorization is an effective strategy to increase target product diversity and yield. This study ingeniously engineers the non-lignin-degrading bacterium Ralstonia eutropha H16 (also known as Cupriavidus necator H16) to convert lignin, a typically underutilized by-product of biorefinery, into valuable bioplastic polyhydroxybutyrate (PHB). The aromatic metabolism capacities of R. eutropha H16 for different lignin-derived aromatics (LDAs) are systematically characterized and complemented by integrating robust functional modules including O-demethylation, aromatic aldehyde metabolism and the mitigation of by-product inhibition. A pivotal discovery is the regulatory element PcaQ, which is highly responsive to the aromatic hub metabolite protocatechuic acid during lignin degradation. Based on the computer-aided design of PcaQ, we develop a hub metabolite-based autoregulation (HMA) system. This system can control the functional genes expression in response to heterologous LDAs and enhance metabolism efficiency. Multi-module genome integration and directed evolution further fortify the strain's stability and lignin conversion capacities, leading to PHB production titer of 2.38 g/L using heterologous LDAs as sole carbon source. This work not only marks a leap in bioplastic production from lignin components but also provides a strategy to redesign the non-LDAs-degrading microbes for efficient lignin valorization.
Collapse
Affiliation(s)
- Yiquan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Xue
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyi Huang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zixian Lei
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiyu Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenzhen Cai
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Rao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze Zheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Xiao
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
6
|
Dias AHS, Cao Y, Skaf MS, de Visser SP. Machine learning-aided engineering of a cytochrome P450 for optimal bioconversion of lignin fragments. Phys Chem Chem Phys 2024; 26:17577-17587. [PMID: 38884162 DOI: 10.1039/d4cp01282h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Using machine learning, molecular dynamics simulations, and density functional theory calculations we gain insight into the selectivity patterns of substrate activation by the cytochromes P450. In nature, the reactions catalyzed by the P450s lead to the biodegradation of xenobiotics, but recent work has shown that fungi utilize P450s for the activation of lignin fragments, such as monomer and dimer units. These fragments often are the building blocks of valuable materials, including drug molecules and fragrances, hence a highly selective biocatalyst that can produce these compounds in good yield with high selectivity would be an important step in biotechnology. In this work a detailed computational study is reported on two reaction channels of two P450 isozymes, namely the O-deethylation of guaethol by CYP255A and the O-demethylation versus aromatic hydroxylation of p-anisic acid by CYP199A4. The studies show that the second-coordination sphere plays a major role in substrate binding and positioning, heme access, and in the selectivity patterns. Moreover, the local environment affects the kinetics of the reaction through lowering or raising barrier heights. Furthermore, we predict a site-selective mutation for highly specific reaction channels for CYP199A4.
Collapse
Affiliation(s)
- Artur Hermano Sampaio Dias
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Yuanxin Cao
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Munir S Skaf
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
7
|
Khan RJ, Guan J, Lau CY, Zhuang H, Rehman S, Leu SY. Monolignol Potential and Insights into Direct Depolymerization of Fruit and Nutshell Remains for High Value Sustainable Aromatics. CHEMSUSCHEM 2024; 17:e202301306. [PMID: 38078500 DOI: 10.1002/cssc.202301306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
The inedible parts of nuts and stone fruits are low-cost and lignin-rich feedstock for more sustainable production of aromatic chemicals in comparison with the agricultural and forestry residues. However, the depolymerization performances on food-related biomass remains unclear, owing to the broad physicochemical variations from the edible parts of the fruits and plant species. In this study, the monomer production potentials of ten major fruit and nutshell biomass were investigated with comprehensive numerical information derived from instrumental analysis, such as plant cell wall chemical compositions, syringyl/guaiacyl (S/G ratios, and contents of lignin substructure linkages (β-O-4, β-β, β-5). A standardized one-pot reductive catalytic fractionation (RCF) process was applied to benchmark the monomer yields, and the results were statistically analyzed. Among all the tested biomass, mango endocarp provided the highest monolignol yields of 37.1 % per dry substrates. Positive S-lignin (70-84 %) resulted in higher monomer yield mainly due to more cleavable β-O-4 linkages and less condensed C-C linkages. Strong positive relationships were identified between β-O-4 and S-lignin and between β-5 and G-lignin. The analytical, numerical, and experimental results of this study shed lights to process design of lignin-first biorefinery in food-processing industries and waste management works.
Collapse
Affiliation(s)
- Rabia J Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chun Y Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shazia Rehman
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hong Kong
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong, 3400-8322
| |
Collapse
|
8
|
Wolf ME, Lalande AT, Newman BL, Bleem AC, Palumbo CT, Beckham GT, Eltis LD. The catabolism of lignin-derived p-methoxylated aromatic compounds by Rhodococcus jostii RHA1. Appl Environ Microbiol 2024; 90:e0215523. [PMID: 38380926 PMCID: PMC10952524 DOI: 10.1128/aem.02155-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Emergent strategies to valorize lignin, an abundant but underutilized aromatic biopolymer, include tandem processes that integrate chemical depolymerization and biological catalysis. To date, aromatic monomers from C-O bond cleavage of lignin have been converted to bioproducts, but the presence of recalcitrant C-C bonds in lignin limits the product yield. A promising chemocatalytic strategy that overcomes this limitation involves phenol methyl protection and autoxidation. Incorporating this into a tandem process requires microbial cell factories able to transform the p-methoxylated products in the resulting methylated lignin stream. In this study, we assessed the ability of Rhodococcus jostii RHA1 to catabolize the major aromatic products in a methylated lignin stream and elucidated the pathways responsible for this catabolism. RHA1 grew on a methylated pine lignin stream, catabolizing the major aromatic monomers: p-methoxybenzoate (p-MBA), veratrate, and veratraldehyde. Bioinformatic analyses suggested that a cytochrome P450, PbdA, and its cognate reductase, PbdB, are involved in p-MBA catabolism. Gene deletion studies established that both pbdA and pbdB are essential for growth on p-MBA and several derivatives. Furthermore, a deletion mutant of a candidate p-hydroxybenzoate (p-HBA) hydroxylase, ΔpobA, did not grow on p-HBA. Veratraldehyde and veratrate catabolism required both vanillin dehydrogenase (Vdh) and vanillate O-demethylase (VanAB), revealing previously unknown roles of these enzymes. Finally, a ΔpcaL strain grew on neither p-MBA nor veratrate, indicating they are catabolized through the β-ketoadipate pathway. This study expands our understanding of the bacterial catabolism of aromatic compounds and facilitates the development of biocatalysts for lignin valorization.IMPORTANCELignin, an abundant aromatic polymer found in plant biomass, is a promising renewable replacement for fossil fuels as a feedstock for the chemical industry. Strategies for upgrading lignin include processes that couple the catalytic fractionation of biomass and biocatalytic transformation of the resulting aromatic compounds with a microbial cell factory. Engineering microbial cell factories for this biocatalysis requires characterization of bacterial pathways involved in catabolizing lignin-derived aromatic compounds. This study identifies new pathways for lignin-derived aromatic degradation in Rhodococcus, a genus of bacteria well suited for biocatalysis. Additionally, we describe previously unknown activities of characterized enzymes on lignin-derived compounds, expanding their utility. This work advances the development of strategies to replace fossil fuel-based feedstocks with sustainable alternatives.
Collapse
Affiliation(s)
- Megan E. Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Anne T. Lalande
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Brianne L. Newman
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Alissa C. Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Chad T. Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Santos SFG, Bommareddy RR, Black GW, Singh W. Impact of the T296S mutation in P450 GcoA for aryl-O-demethylation: a QM/MM study. Front Chem 2024; 11:1327398. [PMID: 38283898 PMCID: PMC10811788 DOI: 10.3389/fchem.2023.1327398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Lignin, a complex plant cell wall component, holds promise as a renewable aromatic carbon feedstock. p-Vanillin is a key product of lignin depolymerization and a precursor of protocatechuic acid (PCA) that has tremendous potential for biofuel production. While the GcoAB enzyme, native to Amycolatopsis sp., naturally catalyzes aryl-O-demethylation toward guaiacol, recent research introduced a single mutation, T296S, into the GcoAP450 enzyme, enabling it to catalyze aryl-O-demethylation of p-vanillin. This structural modification increases the efficiency of GcoAP450 for the natural substrate while being active for p-vanillin. This study reveals the increased flexibility of p-vanillin and its ability to adapt a favorable conformation by aligning the methoxy group in close proximity to Fe(IV) = O of Cpd I in the active site of the T296S variant. The QM/MM calculations in accordance with the experimental data validated that the rate-limiting step for the oxidation of p-vanillin is hydrogen atom abstraction and provided a detailed geometric structure of stationary and saddle points for the oxidation of p-vanillin.
Collapse
Affiliation(s)
- Sonia F. G. Santos
- Hub for Biotechnology in Build Environment, Newcastle upon Tyne, United Kingdom
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Rajesh Reddy Bommareddy
- Hub for Biotechnology in Build Environment, Newcastle upon Tyne, United Kingdom
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Gary W. Black
- Hub for Biotechnology in Build Environment, Newcastle upon Tyne, United Kingdom
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Warispreet Singh
- Hub for Biotechnology in Build Environment, Newcastle upon Tyne, United Kingdom
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
10
|
Zhao ZM, Liu ZH, Zhang T, Meng R, Gong Z, Li Y, Hu J, Ragauskas AJ, Li BZ, Yuan YJ. Unleashing the capacity of Rhodococcus for converting lignin into lipids. Biotechnol Adv 2024; 70:108274. [PMID: 37913947 DOI: 10.1016/j.biotechadv.2023.108274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Bioconversion of bioresources/wastes (e.g., lignin, chemical pulping byproducts) represents a promising approach for developing a bioeconomy to help address growing energy and materials demands. Rhodococcus, a promising microbial strain, utilizes numerous carbon sources to produce lipids, which are precursors for synthesizing biodiesel and aviation fuels. However, compared to chemical conversion, bioconversion involves living cells, which is a more complex system that needs further understanding and upgrading. Various wastes amenable to bioconversion are reviewed herein to highlight the potential of Rhodococci for producing lipid-derived bioproducts. In light of the abundant availability of these substrates, Rhodococcus' metabolic pathways converting them to lipids are analyzed from a "beginning-to-end" view. Based on an in-depth understanding of microbial metabolic routes, genetic modifications of Rhodococcus by employing emerging tools (e.g., multiplex genome editing, biosensors, and genome-scale metabolic models) are presented for promoting the bioconversion. Co-solvent enhanced lignocellulose fractionation (CELF) strategy facilitates the generation of a lignin-derived aromatic stream suitable for the Rhodococcus' utilization. Novel alkali sterilization (AS) and elimination of thermal sterilization (ETS) approaches can significantly enhance the bioaccessibility of lignin and its derived aromatics in aqueous fermentation media, which promotes lipid titer significantly. In order to achieve value-added utilization of lignin, biodiesel and aviation fuel synthesis from lignin and lipids are further discussed. The possible directions for unleashing the capacity of Rhodococcus through synergistically modifying microbial strains, substrates, and fermentation processes are proposed toward a sustainable biological lignin valorization.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tongtong Zhang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Rongqian Meng
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhiqun Gong
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yibing Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jing Hu
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau (Ministry of Education), School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, United States; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Peng T, Zhang W, Liang B, Lian G, Zhang Y, Zhao W. Electrocatalytic valorization of lignocellulose-derived aromatics at industrial-scale current densities. Nat Commun 2023; 14:7229. [PMID: 37945615 PMCID: PMC10636212 DOI: 10.1038/s41467-023-43136-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Electrocatalytic hydrogenation of lignocellulosic bio-oil to value-added chemicals offers an attractive avenue to use the increasing intermittent renewable electricity and biomass-derived feedstocks. However, to date the partial current densities to target products of these reactions are lower than those needed for industrial-scale productivity, which limits its prospects. Here we report a flow-cell system equipped with a Rh diffusion electrode to hydrogenate lignocellulose-derived aromatic monomers, such as furans and lignin monomers, to value-added chemicals. We achieve high faradaic efficiencies up to 64% at industrial-scale current densities of 300-500 mA cm-2, representing high productivities to target products. A screening of electrocatalysts indicates that only by highly-electrolyte-permeable Rh diffusion electrodes are we able to unite current density with faradaic efficiency. We apply in-situ infrared reflection-absorption spectroscopy to investigate the electrode-potential-dependent reaction pathways and intermediates, confirming a wide potential window for efficient electrocatalytic hydrogenation of lignocellulose-derived aromatics to target products.
Collapse
Affiliation(s)
- Tao Peng
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Wenbin Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Baiyao Liang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Guanwu Lian
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yun Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Xue L, Zhao Y, Li L, Rao X, Chen X, Ma F, Yu H, Xie S. A key O-demethylase in the degradation of guaiacol by Rhodococcus opacus PD630. Appl Environ Microbiol 2023; 89:e0052223. [PMID: 37800939 PMCID: PMC10617553 DOI: 10.1128/aem.00522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 10/07/2023] Open
Abstract
Rhodococcus opacus PD630 is a high oil-producing strain with the ability to convert lignin-derived aromatics to high values, but limited research has been done to elucidate its conversion pathway, especially the upper pathways. In this study, we focused on the upper pathways and demethylation mechanism of lignin-derived aromatics metabolism by R. opacus PD630. The results of the aromatic carbon resource utilization screening showed that R. opacus PD630 had a strong degradation capacity to the lignin-derived methoxy-containing aromatics, such as guaiacol, 3,4-veratric acid, anisic acid, isovanillic acid, and vanillic acid. The gene of gcoAR, which encodes cytochrome P450, showed significant up-regulation when R. opacus PD630 grew on diverse aromatics. Deletion mutants of gcoAR and its partner protein gcoBR resulted in the strain losing the ability to grow on guaiacol, but no significant difference to the other aromatics. Only co-complementation alone of gcoAR and gcoBR restored the strain's ability to utilize guaiacol, demonstrating that both genes were equally important in the utilization of guaiacol. In vitro assays further revealed that GcoAR could convert guaiacol and anisole to catechol and phenol, respectively, with the production of formaldehyde as a by-product. The study provided robust evidence to reveal the molecular mechanism of R. opacus PD630 on guaiacol metabolism and offered a promising study model for dissecting the demethylation process of lignin-derived aromatics in microbes.IMPORTANCEAryl-O-demethylation is believed to be the key rate-limiting step in the catabolism of heterogeneous lignin-derived aromatics in both native and engineered microbes. However, the mechanisms of O-demethylation in lignin-derived aromatic catabolism remain unclear. Notably, guaiacol, the primary component unit of lignin, lacks in situ demonstration and illustration of the molecular mechanism of guaiacol O-demethylation in lignin-degrading bacteria. This is the first study to illustrate the mechanism of guaiacol metabolism by R. opacus PD630 in situ as well as characterize the purified key O-demethylase in vitro. This study provided further insight into the lignin metabolic pathway of R. opacus PD630 and could guide the design of an efficient biocatalytic system for lignin valorization.
Collapse
Affiliation(s)
- Le Xue
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiquan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Rao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinjie Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Draft Genome Assembly of Stutzerimonas sp. Strain S1 and Achromobacter spanius Strain S4, Two Syringol-Metabolizing Bacteria Isolated from Compost Soil. Microbiol Resour Announc 2023; 12:e0115022. [PMID: 36815768 PMCID: PMC10019166 DOI: 10.1128/mra.01150-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Two bacterial strains able to use syringol as a sole carbon source were isolated from compost. The isolates, named S1 and S4, were sequenced using the Illumina platform. The final assemblies contained 4.2 Mbp, 63% GC, and 3,912 genes for S1 and 6.2 Mbp, 64% GC, and 5,503 genes for S4.
Collapse
|
14
|
de Menezes FF, Martim DB, Ling LY, Mulato ATN, Crespim E, de Castro Oliveira JV, Driemeier CE, de Giuseppe PO, de Moraes Rocha GJ. Exploring the compatibility between hydrothermal depolymerization of alkaline lignin from sugarcane bagasse and metabolization of the aromatics by bacteria. Int J Biol Macromol 2022; 223:223-230. [PMID: 36336156 DOI: 10.1016/j.ijbiomac.2022.10.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Although hydrothermal treatments for biomass fractionation have been vastly studied, their effect on the depolymerization of isolated lignins in terms of yield, composition, and compatibility of the produced lignin bio-oils with bioconversion is still poorly investigated. In this study, we evaluated the hydrothermal depolymerization of an β-O-4'-rich lignin extracted from sugarcane bagasse by alkaline fractionation, investigating the influence of temperature (200-350 °C), time (30-90 min), and solid-liquid ratio (1:10-1:50 m.v-1) on yield of bio-oils (up to 31 wt%) rich in monomers (light bio-oils). Principal Components Analysis showed that the defunctionalization of the aromatic monomers was more pronounced in the most severe reaction conditions and that the abundance of more hydrophobic monomers increased in more diluted reactions. While the high-molecular-weight (heavy) bio-oil generated at 350 °C, 90 min, and 1:50 m.v-1 failed to support bacterial growth, the corresponding light bio-oil rich in aromatic monomers promoted the growth of bacteria from 9 distinct species. The isolates Pseudomonas sp. LIM05 and Burkholderia sp. LIM09 showed the best growth performance and tolerance to lignin-derived aromatics, being the most promising for the future development of biological upgrading strategies tailored for this lignin stream.
Collapse
Affiliation(s)
- Fabrícia Farias de Menezes
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Damaris Batistão Martim
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil; Graduate Program in Genetics and Molecular Biology, Biology Institute, State University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Liu Yi Ling
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Aline Tieppo Nogueira Mulato
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Elaine Crespim
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in Agriculture at the University of São Paulo (CENA/USP), 13416-000 Piracibaba, SP, Brazil
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Carlos Eduardo Driemeier
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Priscila Oliveira de Giuseppe
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil.
| | - George Jackson de Moraes Rocha
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil.
| |
Collapse
|
15
|
Li F, Zhao Y, Xue L, Ma F, Dai SY, Xie S. Microbial lignin valorization through depolymerization to aromatics conversion. Trends Biotechnol 2022; 40:1469-1487. [PMID: 36307230 DOI: 10.1016/j.tibtech.2022.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Lignin is the most abundant source of renewable aromatic biopolymers and its valorization presents significant value for biorefinery sustainability, which promotes the utilization of renewable resources. However, it is challenging to fully convert the structurally complex, heterogeneous, and recalcitrant lignin into high-value products. The in-depth research on the lignin degradation mechanism, microbial metabolic pathways, and rational design of new systems using synthetic biology have significantly accelerated the development of lignin valorization. This review summarizes the key enzymes involved in lignin depolymerization, the mechanisms of microbial lignin conversion, and the lignin valorization application with integrated systems and synthetic biology. Current challenges and future strategies to further study lignin biodegradation and the trends of lignin valorization are also discussed.
Collapse
Affiliation(s)
- Fei Li
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiquan Zhao
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Le Xue
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuying Ma
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Susie Y Dai
- Department of Plant Pathology and Microbiology, Texas A&M University, College station, TX 77843, USA.
| | - Shangxian Xie
- Department of Biotechnology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
16
|
Liu ZH, Li BZ, Yuan JS, Yuan YJ. Creative biological lignin conversion routes toward lignin valorization. Trends Biotechnol 2022; 40:1550-1566. [PMID: 36270902 DOI: 10.1016/j.tibtech.2022.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Lignin, the largest renewable aromatic resource, is a promising alternative feedstock for the sustainable production of various chemicals, fuels, and materials. Despite this potential, lignin is characterized by heterogeneous and macromolecular structures that must be addressed. In this review, we present biological lignin conversion routes (BLCRs) that offer opportunities for overcoming these challenges, making lignin valorization feasible. Funneling heterogeneous aromatics via a 'biological funnel' offers a high-specificity bioconversion route for aromatic platform chemicals. The inherent aromaticity of lignin drives atom-economic functionalization routes toward aromatic natural product generation. By harnessing the ligninolytic capacities of specific microbial systems, powerful aromatic ring-opening routes can be developed to generate various value-added products. Thus, BLCRs hold the promise to make lignin valorization feasible and enable a lignocellulose-based bioeconomy.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Joshua S Yuan
- Department of Energy, Environmental, and Chemical Engineering, The McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
17
|
Meng S, Ji Y, Zhu L, Dhoke GV, Davari MD, Schwaneberg U. The molecular basis and enzyme engineering strategies for improvement of coupling efficiency in cytochrome P450s. Biotechnol Adv 2022; 61:108051. [DOI: 10.1016/j.biotechadv.2022.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
|
18
|
Abstract
Coabalamin-dependent O-demethylase in Blautia sp. strain MRG-PMF1 was found to catalyze the unprecedented allyl aryl ether cleavage reaction. To expand the potential biotechnological applications, the reaction mechanism of the allyl aryl ether C-O bond cleavage, proposed to utilize the reactive Co(I) supernucleophile species, was studied further from the anaerobic whole-cell biotransformation. Various allyl naphthyl ether derivatives were reacted with Blautia sp. MRG-PMF1 O-demethylase, and stereoisomers of allyl naphthyl ethers, including prenyl and but-2-enyl naphthyl ethers, were converted to the corresponding naphthol in a stereoselective manner. The allyl aryl ether cleavage reaction was regioselective, and 2-naphthyl ethers were converted faster than the corresponding 1-naphthyl ethers. However, MRG-PMF1 cocorrinoid O-demethylase was not able to convert (2-methylallyl) naphthyl ether substrates, and the conversion of propargyl naphthyl ether was extremely slow. From the results, it was proposed that the allyl ether cleavage reaction follows the nucleophilic conjugate substitution (SN2') mechanism. The reactivity and mechanism of the new allyl ether cleavage reaction by cobalamin-dependent O-demethylase would facilitate the application of Blautia sp. MRG-PMF1 O-demethylase in the area of green biotechnology. IMPORTANCE Biodegradation of environmental pollutants and valorization of biomaterials in a greener way is of great interest. Cobalamin-dependent O-demethylase in Blautia sp. MRG-PMF1 exclusively involves anaerobic C1 metabolism by cleaving the C-O bond of aromatic methoxy group and also produces various aryl alcohols by metabolizing allyl aryl ether compounds. Whereas methyl ether cleavage reaction is known to follow the SN2' mechanism, the reaction pattern and mechanism of the new allyl ether cleavage reaction by cobalamin-dependent O-demethylase have never been studied. For the first time, stereoselectivity and the SN2' mechanism of allyl aryl ether cleavage reaction by Blautia sp. MRG-PMF1 O-demethylase is reported, and the results would facilitate the application of Blautia sp. MRG-PMF1 O-demethylase in the area of green biotechnology.
Collapse
|
19
|
Singh W, Santos SF, James P, Black GW, Huang M, Dubey KD. Single-Site Mutation Induces Water-Mediated Promiscuity in Lignin Breaking Cytochrome P450 GcoA. ACS OMEGA 2022; 7:21109-21118. [PMID: 35755387 PMCID: PMC9219061 DOI: 10.1021/acsomega.2c00524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 05/10/2023]
Abstract
Cytochrome P450GcoA is an enzyme that catalyzes the guaiacol unit of lignin during the lignin breakdown via an aryl-O-demethylation reaction. This reaction is intriguing and is of commercial importance for its potential applications in the production of biofuel and plastic from biomass feedstock. Recently, the F169A mutation in P450GcoA elicits a promiscuous activity for syringol while maintaining the native activity for guaiacol. Using comprehensive MD simulations and hybrid QM/MM calculations, we address, herein, the origin of promiscuity in P450GcoA and its relevance to the specific activity toward lignin-derived substrates. Our study shows a crucial role of an aromatic dyad of F169 and F395 by regulating the water access to the catalytic center. The F169A mutation opens a water aqueduct and hence increases the native activity for G-lignin. We show that syringol binds very tightly to the WT enzyme, which blocks the conformational rearrangement needed for the second step of O-demethylation. The F169A creates an extra room favoring the conformational rearrangement in the 3-methoxycatechol (3MC) and second dose of the dioxygen insertion. Therefore, using MD simulations and complemented by thorough QM/MM calculations, our study shows how a single-site mutation rearchitects active site engineering for promiscuous syringol activity.
Collapse
Affiliation(s)
- Warispreet Singh
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, United Kingdom
- Hub
for Biotechnology in Build Environment, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Sónia F.
G. Santos
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, United Kingdom
- Hub
for Biotechnology in Build Environment, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Paul James
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, United Kingdom
- Hub
for Biotechnology in Build Environment, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Gary W. Black
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, United Kingdom
- Hub
for Biotechnology in Build Environment, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Meilan Huang
- Department
of Chemistry & Chemical Engineering, Queen’s University, Belfast BT9 5AG, United Kingdom
| | - Kshatresh Dutta Dubey
- Department
of Chemistry and Centre for Informatics, Shiv Nadar University Delhi NCR, Gautam Buddha Nagar, U.P. 201314, India
| |
Collapse
|
20
|
Jiang W, Gao H, Sun J, Yang X, Jiang Y, Zhang W, Jiang M, Xin F. Current status, challenges and prospects for lignin valorization by using Rhodococcus sp. Biotechnol Adv 2022; 60:108004. [PMID: 35690272 DOI: 10.1016/j.biotechadv.2022.108004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
Lignin represents the most abundant renewable aromatics in nature, which has complicated and heterogeneous structure. The rapid development of biotransformation technology has brought new opportunities to achieve the complete lignin valorization. Especially, Rhodococcus sp. possesses excellent capabilities to metabolize aromatic hydrocarbons degraded from lignin. Furthermore, it can convert these toxic compounds into high value added bioproducts, such as microbial lipids, polyhydroxyalkanoate and carotenoid et al. Accordingly, this review will discuss the potentials of Rhodococcus sp. as a cell factory for lignin biotransformation, including phenol tolerance, lignin depolymerization and lignin-derived aromatic hydrocarbon metabolism. The detailed metabolic mechanism for lignin biotransformation and bioproducts spectrum of Rhodococcus sp. will be comprehensively discussed. The available molecular tools for the conversion of lignin by Rhodococcus sp. will be reviewed, and the possible direction for lignin biotransformation in the future will also be proposed.
Collapse
Affiliation(s)
- Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Haiyan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Xinyi Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
21
|
Li M, Miao H, Li Y, Wang F, Xu J. Protein Engineering of an Artificial P450BM3 Peroxygenase System Enables Highly Selective O-Demethylation of Lignin Monomers. Molecules 2022; 27:molecules27103120. [PMID: 35630597 PMCID: PMC9143554 DOI: 10.3390/molecules27103120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
The O-demethylation of lignin monomers, which has drawn substantial attention recently, is critical for the formation of phenols from aromatic ethers. The P450BM3 peroxygenase system was recently found to enable the O-demethylation of different aromatic ethers with the assistance of dual-functional small molecules (DFSM), but these prepared mutants only have either moderate O-demethylation activity or moderate selectivity, which hinders their further application. In this study, we improve the system by introducing different amino acids into the active site of P450BM3, and these amino acids with different side chains impacted the catalytic ability of enzymes due to their differences in size, polarity, and hydrophobicity. Among the prepared mutants, the combination of V78A/F87A/T268I/A264G and Im-C6-Phe efficiently catalyzed the O-demethylation of guaiacol (TON = 839) with 100% selectivity. Compared with NADPH-dependent systems, we offer an economical and practical bioconversion avenue.
Collapse
Affiliation(s)
- Maosheng Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
| | - Hengmin Miao
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
| | - Yanqing Li
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
| | - Fang Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China; (H.M.); (Y.L.); (F.W.)
- Correspondence: ; Tel.: +86-13869828530
| |
Collapse
|
22
|
Di S, Fan S, Jiang F, Cong Z. A Unique P450 Peroxygenase System Facilitated by a Dual-Functional Small Molecule: Concept, Application, and Perspective. Antioxidants (Basel) 2022; 11:antiox11030529. [PMID: 35326179 PMCID: PMC8944620 DOI: 10.3390/antiox11030529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are promising versatile oxidative biocatalysts. However, the practical use of P450s in vitro is limited by their dependence on the co-enzyme NAD(P)H and the complex electron transport system. Using H2O2 simplifies the catalytic cycle of P450s; however, most P450s are inactive in the presence of H2O2. By mimicking the molecular structure and catalytic mechanism of natural peroxygenases and peroxidases, an artificial P450 peroxygenase system has been designed with the assistance of a dual-functional small molecule (DFSM). DFSMs, such as N-(ω-imidazolyl fatty acyl)-l-amino acids, use an acyl amino acid as an anchoring group to bind the enzyme, and the imidazolyl group at the other end functions as a general acid-base catalyst in the activation of H2O2. In combination with protein engineering, the DFSM-facilitated P450 peroxygenase system has been used in various oxidation reactions of non-native substrates, such as alkene epoxidation, thioanisole sulfoxidation, and alkanes and aromatic hydroxylation, which showed unique activities and selectivity. Moreover, the DFSM-facilitated P450 peroxygenase system can switch to the peroxidase mode by mechanism-guided protein engineering. In this short review, the design, mechanism, evolution, application, and perspective of these novel non-natural P450 peroxygenases for the oxidation of non-native substrates are discussed.
Collapse
Affiliation(s)
- Siyu Di
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxian Fan
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjie Jiang
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-80662758
| |
Collapse
|
23
|
|
24
|
Abstract
Small molecule adjuvants that enhance the activity of established antibiotics represent promising agents in the battle against antibiotic resistance. Adjuvants generally act by inhibiting antibiotic resistance processes, and specifying the process acted on is a critical step in defining an adjuvant's mechanism of action. This step is typically carried out biochemically by identifying molecules that bind adjuvants and then inferring their roles in resistance. Here, we present a complementary genetic strategy based on identifying mutations that both sensitize cells to antibiotic and make them "adjuvant blind." We tested the approach in Acinetobacter baumannii AB5075 using two adjuvants: a well-characterized β-lactamase inhibitor (avibactam) and a compound enhancing outer membrane permeability (aryl 2-aminoimidazole AI-1). The avibactam studies showed that the adjuvant potentiated one β-lactam (ceftazidime) through action on a single β-lactamase (GES-14) and a second (meropenem) by targeting two different enzymes (GES-14 and OXA-23). Mutations impairing disulfide bond formation (DsbAB) also reduced potentiation, possibly by impairing β-lactamase folding. Mutations reducing AI-1 potentiation of canonical Gram-positive antibiotics (vancomycin and clarithromycin) blocked lipooligosaccharide (LOS/LPS) synthesis or its acyl modification. The results indicate that LOS-mediated outer membrane impermeability is targeted by the adjuvant and show the importance of acylation in the resistance. As part of the study, we employed Acinetobacter baylyi as a model to verify the generality of the A. baumannii results and identified the principal resistance genes for ceftazidime, meropenem, vancomycin, and clarithromycin in A. baumannii AB5075. Overall, the work provides a foundation for analyzing adjuvant action using a comprehensive genetic approach. IMPORTANCE One strategy to confront the antibiotic resistance crisis is through the development of adjuvant compounds that increase the efficacy of established drugs. A key step in the development of a natural product adjuvant as a drug is identifying the resistance process it undermines to enhance antibiotic activity. Previous procedures designed to accomplish this have relied on biochemical identification of cell components that bind adjuvant. Here, we present a complementary strategy based on identifying mutations that eliminate adjuvant activity.
Collapse
|
25
|
Harlington AC, Shearwin KE, Bell SG, Whelan F. Efficient O-demethylation of lignin monoaromatics using the peroxygenase activity of cytochrome P450 enzymes. Chem Commun (Camb) 2022; 58:13321-13324. [DOI: 10.1039/d2cc04698a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Selective O-demethylation of the lignin monoaromatics, syringol and guaiacol, using the peroxygenase activity of two distinct cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Alix C. Harlington
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Keith E. Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Fiona Whelan
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
26
|
Weiland F, Kohlstedt M, Wittmann C. Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. Metab Eng 2021; 71:13-41. [PMID: 34864214 DOI: 10.1016/j.ymben.2021.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Lignin is an important structural component of terrestrial plants and is readily generated during biomass fractionation in lignocellulose processing facilities. Due to lacking alternatives the majority of technical lignins is industrially simply burned into heat and energy. However, regarding its vast abundance and a chemically interesting richness in aromatics, lignin is presently regarded as the most under-utilized and promising feedstock for value-added applications. Notably, microbes have evolved powerful enzymes and pathways that break down lignin and metabolize its various aromatic components. This natural pathway atlas meanwhile serves as a guiding star for metabolic engineers to breed designed cell factories and efficiently upgrade this global waste stream. The metabolism of aromatic compounds, in combination with success stories from systems metabolic engineering, as reviewed here, promises a sustainable product portfolio from lignin, comprising bulk and specialty chemicals, biomaterials, and fuels.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
27
|
Structural Transformation and Creativity Induced by Biological Agents during Fermentation of Edible Nuts from Terminalia catappa. Molecules 2021; 26:molecules26195874. [PMID: 34641422 PMCID: PMC8510340 DOI: 10.3390/molecules26195874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Terminalia catappa L. (tropical almond) is a nutritious fruit found mainly in the tropics. This study is aimed to establish the naturally biotransformed molecules and identify the probiotic agents facilitating the fermentation. The aqueous extracts from both the unfermented and fermented T. catappa nuts were subjected to gas chromatography/mass spectrometry (GC/MS) analysis. Syringol (6.03%), glutamine (1.71%), methyl laurate (1.79%), methyl palmitate (1.53%), palmitic acid (5.20%), palmitoleic acid (2.80%), and methyl oleate (2.97%) were detected in the unfermented nuts of the T. catappa. Additionally, two of these natural compounds (palmitic acid (4.19%) and palmitoleic acid (1.48%)) survived the fermentation process to emerge in the fermented seeds. The other natural compounds were biotransformed into 2,3-butanediol (1.81%), butyric acid (16.20%), propane-1,3-diol (19.66%), neoheptanol (2.89%), 2-piperidinone (6.63%), palmitoleic acid (1.18%), formamide, n-(p-hydroxyphenethyl)- (2.80%), and cis-vaccenic acid (1.69%) that newly emerged in the fermented seeds. The phytochemical compounds are likely carbon sources for the organisms facilitating the biotransformed molecules and product production. Four (4) potential probiotic bacteria strains, namely, Probt B1a, Probt B2a, Probt B4a, and Probt B4b, were isolated from the fermented nut. Enterococcus faecum, and Enterococcus faecalis were the organisms identified as driving the fermentation of the seeds. All strains were gram-positive, catalase-negative, and non-hemolytic, which suggests their harmless nature. N-(p-hydroxyphenethyl)-) was associated with fermentation for the first time, and neoheptanol was discovered as the main alcoholic molecule formed during the fermentation of the seeds. This fermentation is a handy tool for bio-transforming compounds in raw food sources into compounds with nutritious and therapeutic potentials.
Collapse
|
28
|
Cai C, Xu Z, Zhou H, Chen S, Jin M. Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation. SCIENCE ADVANCES 2021; 7:eabg4585. [PMID: 34516898 PMCID: PMC8442903 DOI: 10.1126/sciadv.abg4585] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Converting lignin components into a single product is a promising way to upgrade lignin. Here, an efficient biocatalyst was developed to selectively produce gallate from lignin components by integrating three main reactions: hydroxylation, O-demethylation, and aryl side-chain oxidation. A rationally designed hydroxylase system was first introduced into a gallate biodegradation pathway–blocked Rhodococcus opacus mutant so that gallate accumulated from protocatechuate and compounds in its upper pathways. Native and heterologous O-demethylation systems were then used, leading to multiple lignin-derived methoxy aromatics being converted to gallate. Furthermore, an aryl side-chain oxidase was engaged to broaden the substrate spectrum. Consequently, the developed biocatalyst showed that gallate yields as high as 0.407 and 0.630 g of gallate per gram of lignin when alkaline-pretreated lignin and base-depolymerized ammonia fiber explosion lignin were applied as substrates, respectively. These results suggested that this rationally developed biocatalyst enabled the lignin valorization process to be simple and efficient.
Collapse
Affiliation(s)
- Chenggu Cai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Huarong Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
- Corresponding author.
| |
Collapse
|
29
|
Cytochromes P450 in the biocatalytic valorization of lignin. Curr Opin Biotechnol 2021; 73:43-50. [PMID: 34303185 DOI: 10.1016/j.copbio.2021.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022]
Abstract
The valorization of lignin is critical to establishing sustainable biorefineries as we transition away from petroleum-derived feedstocks. Advances in lignin fractionation and depolymerization are yielding new opportunities for the biocatalytic upgrading of lignin-derived aromatic compounds (LDACs) using microbial cell factories. Given their roles in lignin metabolism and their catalytic versatility, cytochromes P450 are attractive enzymes in engineering such biocatalysts. Here we highlight P450s that catalyze aromatic O-demethylation, a rate-limiting step in the conversion of LDACs to valuable chemicals, including efforts to engineer the specificity of these enzymes and to use them in developing biocatalysts. We also discuss broader opportunities at the intersection of biochemistry, structure-guided enzyme engineering, and metabolic engineering for application of P450s in the emerging area of microbial lignin valorization.
Collapse
|
30
|
Advancements in macromolecular crystallography: from past to present. Emerg Top Life Sci 2021; 5:127-149. [PMID: 33969867 DOI: 10.1042/etls20200316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Protein Crystallography or Macromolecular Crystallography (MX) started as a new discipline of science with the pioneering work on the determination of the protein crystal structures by John Kendrew in 1958 and Max Perutz in 1960. The incredible achievements in MX are attributed to the development of advanced tools, methodologies, and automation in every aspect of the structure determination process, which have reduced the time required for solving protein structures from years to a few days, as evident from the tens of thousands of crystal structures of macromolecules available in PDB. The advent of brilliant synchrotron sources, fast detectors, and novel sample delivery methods has shifted the paradigm from static structures to understanding the dynamic picture of macromolecules; further propelled by X-ray Free Electron Lasers (XFELs) that explore the femtosecond regime. The revival of the Laue diffraction has also enabled the understanding of macromolecules through time-resolved crystallography. In this review, we present some of the astonishing method-related and technological advancements that have contributed to the progress of MX. Even with the rapid evolution of several methods for structure determination, the developments in MX will keep this technique relevant and it will continue to play a pivotal role in gaining unprecedented atomic-level details as well as revealing the dynamics of biological macromolecules. With many exciting developments awaiting in the upcoming years, MX has the potential to contribute significantly to the growth of modern biology by unraveling the mechanisms of complex biological processes as well as impacting the area of drug designing.
Collapse
|
31
|
Cheng Q, DeYonker NJ. QM-Cluster Model Study of the Guaiacol Hydrogen Atom Transfer and Oxygen Rebound with Cytochrome P450 Enzyme GcoA. J Phys Chem B 2021; 125:3296-3306. [PMID: 33784103 DOI: 10.1021/acs.jpcb.0c10761] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The key step of the O-demethylation of guaiacol by GcoA of the cytochrome P450-reductase pair was studied with DFT using two 10-residue and three 15-residue QM-cluster models. For each model, two reaction pathways were examined, beginning with a different guaiacol orientation. Based on this study, His354, Phe349, Glu249, and Pro250 residues were found to be important for keeping the heme in a planar geometry throughout the reaction. Val241 and Gly245 residues were needed in the QM-cluster models to provide the hydrophobic pocket for an appropriate guaiacol pose in the reaction. The aromatic triad Phe75, Phe169, and Phe395 may be necessary to facilitate guaiacol migrating into the enzyme active site, but it does not qualitatively affect kinetics and thermodynamics of the proposed mechanism. All QM-cluster models created by RINRUS agree very well with previous experimental work. This study provides details for better understanding enzymatic O-demethylation of lignins to form catechol derivatives by GcoA.
Collapse
Affiliation(s)
- Qianyi Cheng
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| | - Nathan J DeYonker
- Department of Chemistry, University of Memphis, Memphis, Tennessee 38152, United States
| |
Collapse
|
32
|
Ellis E, Hinchen DJ, Bleem A, Bu L, Mallinson SJB, Allen MD, Streit BR, Machovina MM, Doolin QV, Michener WE, Johnson CW, Knott BC, Beckham GT, McGeehan JE, DuBois JL. Engineering a Cytochrome P450 for Demethylation of Lignin-Derived Aromatic Aldehydes. JACS AU 2021; 1:252-261. [PMID: 34467290 PMCID: PMC8395679 DOI: 10.1021/jacsau.0c00103] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 05/12/2023]
Abstract
Biological funneling of lignin-derived aromatic compounds is a promising approach for valorizing its catalytic depolymerization products. Industrial processes for aromatic bioconversion will require efficient enzymes for key reactions, including demethylation of O-methoxy-aryl groups, an essential and often rate-limiting step. The recently characterized GcoAB cytochrome P450 system comprises a coupled monoxygenase (GcoA) and reductase (GcoB) that catalyzes oxidative demethylation of the O-methoxy-aryl group in guaiacol. Here, we evaluate a series of engineered GcoA variants for their ability to demethylate o-and p-vanillin, which are abundant lignin depolymerization products. Two rationally designed, single amino acid substitutions, F169S and T296S, are required to convert GcoA into an efficient catalyst toward the o- and p-isomers of vanillin, respectively. Gain-of-function in each case is explained in light of an extensive series of enzyme-ligand structures, kinetic data, and molecular dynamics simulations. Using strains of Pseudomonas putida KT2440 already optimized for p-vanillin production from ferulate, we demonstrate demethylation by the T296S variant in vivo. This work expands the known aromatic O-demethylation capacity of cytochrome P450 enzymes toward important lignin-derived aromatic monomers.
Collapse
Affiliation(s)
- Emerald
S. Ellis
- Department
of Chemistry and Biochemistry, Montana State
University, 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| | - Daniel J. Hinchen
- Centre
for Enzyme Innovation, School of Biological Sciences, Institute of
Biological and Biomedical Sciences, University
of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Alissa Bleem
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Lintao Bu
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Sam J. B. Mallinson
- Centre
for Enzyme Innovation, School of Biological Sciences, Institute of
Biological and Biomedical Sciences, University
of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Mark D. Allen
- Centre
for Enzyme Innovation, School of Biological Sciences, Institute of
Biological and Biomedical Sciences, University
of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Bennett R. Streit
- Department
of Chemistry and Biochemistry, Montana State
University, 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| | - Melodie M. Machovina
- Department
of Chemistry and Biochemistry, Montana State
University, 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| | - Quinlan V. Doolin
- Department
of Chemistry and Biochemistry, Montana State
University, 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| | - William E. Michener
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Christopher W. Johnson
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Brandon C. Knott
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - John E. McGeehan
- Centre
for Enzyme Innovation, School of Biological Sciences, Institute of
Biological and Biomedical Sciences, University
of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Jennifer L. DuBois
- Department
of Chemistry and Biochemistry, Montana State
University, 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717, United States
| |
Collapse
|
33
|
Venkatesagowda B, Dekker RFH. Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups. Enzyme Microb Technol 2021; 147:109780. [PMID: 33992403 DOI: 10.1016/j.enzmictec.2021.109780] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 02/27/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
Lignin is an abundant natural plant aromatic biopolymer containing various functional groups that can be exploited for activating lignin for potential commercial applications. Applications are hindered due to the presence of a high content of methyl/methoxyl groups that affects reactiveness. Various chemical and enzymatic approaches have been investigated to increase the functionality in transforming lignin. Among these is demethylation/demethoxylation, which increases the potential numbers of vicinal hydroxyl groups for applications as phenol-formaldehyde resins. Although the chemical route to lignin demethylation is well-studied, the biological route is still poorly explored. Bacteria and fungi have the ability to demethylate lignin and lignin-related compounds. Considering that appropriate microorganisms possess the biochemical machinery to demethylate lignin by cleaving O-methyl groups liberating methanol, and modify lignin by increasing the vicinal diol content that allows lignin to substitute for phenol in organic polymer syntheses. Certain bacteria through the actions of specific O-demethylases can modify various lignin-related compounds generating vicinal diols and liberating methanol or formaldehyde as end-products. The enzymes include: cytochrome P450-aryl-O-demethylase, monooxygenase, veratrate 3-O-demethylase, DDVA O-demethylase (LigX; lignin-related biphenyl 5,5'-dehydrodivanillate (DDVA)), vanillate O-demethylase, syringate O-demethylase, and tetrahydrofolate-dependent-O-demethylase. Although, the fungal counterparts have not been investigated in depth as in bacteria, O-demethylases, nevertheless, have been reported in demethylating various lignin substrates providing evidence of a fungal enzyme system. Few fungi appear to have the ability to secrete O-demethylases. The fungi can mediate lignin demethylation enzymatically (laccase, lignin peroxidase, manganese peroxidase, O-demethylase), or non-enzymatically in brown-rot fungi through the Fenton reaction. This review discusses details on the aspects of microbial (bacterial and fungal) demethylation of lignins and lignin-model compounds and provides evidence of enzymes identified as specific O-demethylases involved in demethylation.
Collapse
Affiliation(s)
- Balaji Venkatesagowda
- Biorefining Research Institute, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada.
| | - Robert F H Dekker
- Biorefining Research Institute, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada; Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370, Londrina, PR, Brazil.
| |
Collapse
|
34
|
Yaguchi AL, Lee SJ, Blenner MA. Synthetic Biology towards Engineering Microbial Lignin Biotransformation. Trends Biotechnol 2021; 39:1037-1064. [PMID: 33712323 DOI: 10.1016/j.tibtech.2021.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 01/19/2023]
Abstract
Lignin is the second most abundant biopolymer on earth and is a major source of aromatic compounds; however, it is vastly underutilized owing to its heterogeneous and recalcitrant nature. Microorganisms have evolved efficient mechanisms that overcome these challenges to depolymerize lignin and funnel complex mixtures of lignin-derived monomers to central metabolites. This review summarizes recent synthetic biology efforts to enhance lignin depolymerization and aromatic catabolism in bacterial and fungal hosts for the production of both natural and novel bioproducts. We also highlight difficulties in engineering complex phenotypes and discuss the outlook for the future of lignin biological valorization.
Collapse
Affiliation(s)
- Allison L Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA
| | - Stephen J Lee
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA
| | - Mark A Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA; Current address: Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
35
|
Katsimpouras C, Stephanopoulos G. Enzymes in biotechnology: Critical platform technologies for bioprocess development. Curr Opin Biotechnol 2021; 69:91-102. [PMID: 33422914 DOI: 10.1016/j.copbio.2020.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 12/08/2020] [Indexed: 01/02/2023]
Abstract
Enzymes are core elements of biosynthetic pathways employed in the synthesis of numerous bioproducts. Here, we review enzyme promiscuity, enzyme engineering, enzyme immobilization, and cell-free systems as fundamental strategies of bioprocess development. Initially, promiscuous enzymes are the first candidates in the quest for new activities to power new, artificial, or bypass pathways that expand substrate range and catalyze the production of new products. If the activity or regulation of available enzymes is unsuitable for a process, protein engineering can be applied to improve them to the required level. When cell toxicity and low productivity cannot be engineered away, cell-free systems are an attractive option, especially in combination with enzyme immobilization that allows extended enzyme use. Overall, the above methods support powerful platforms for bioprocess development and optimization.
Collapse
Affiliation(s)
- Constantinos Katsimpouras
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA, USA
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139 MA, USA.
| |
Collapse
|
36
|
Ali HS, Henchman RH, de Visser SP. Lignin Biodegradation by a Cytochrome P450 Enzyme: A Computational Study into Syringol Activation by GcoA. Chemistry 2020; 26:13093-13102. [PMID: 32613677 PMCID: PMC7590115 DOI: 10.1002/chem.202002203] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/12/2022]
Abstract
A recently characterized cytochrome P450 isozyme GcoA activates lignin components through a selective O-demethylation or alternatively an acetal formation reaction. These are important reactions in biotechnology and, because lignin is readily available; it being the main component in plant cell walls. In this work we present a density functional theory study on a large active site model of GcoA to investigate syringol activation by an iron(IV)-oxo heme cation radical oxidant (Compound I) leading to hemiacetal and acetal products. Several substrate-binding positions were tested and full energy landscapes calculated. The study shows that substrate positioning determines the product distributions. Thus, with the phenol group pointing away from the heme, an O-demethylation is predicted, whereas an initial hydrogen-atom abstraction of the weak phenolic O-H group would trigger a pathway leading to ring-closure to form acetal products. Predictions on how to engineer P450 GcoA to get more selective product distributions are given.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Richard H. Henchman
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Sam P. de Visser
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
- Department of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| |
Collapse
|
37
|
Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin. Proc Natl Acad Sci U S A 2020; 117:25771-25778. [PMID: 32989155 DOI: 10.1073/pnas.1916349117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450 enzymes have tremendous potential as industrial biocatalysts, including in biological lignin valorization. Here, we describe P450s that catalyze the O-demethylation of lignin-derived guaiacols with different ring substitution patterns. Bacterial strains Rhodococcus rhodochrous EP4 and Rhodococcus jostii RHA1 both utilized alkylguaiacols as sole growth substrates. Transcriptomics of EP4 grown on 4-propylguaiacol (4PG) revealed the up-regulation of agcA, encoding a CYP255A1 family P450, and the aph genes, previously shown to encode a meta-cleavage pathway responsible for 4-alkylphenol catabolism. The function of the homologous pathway in RHA1 was confirmed: Deletion mutants of agcA and aphC, encoding the meta-cleavage alkylcatechol dioxygenase, grew on guaiacol but not 4PG. By contrast, deletion mutants of gcoA and pcaL, encoding a CYP255A2 family P450 and an ortho-cleavage pathway enzyme, respectively, grew on 4-propylguaiacol but not guaiacol. CYP255A1 from EP4 catalyzed the O-demethylation of 4-alkylguaiacols to 4-alkylcatechols with the following apparent specificities (k cat/K M): propyl > ethyl > methyl > guaiacol. This order largely reflected AgcA's binding affinities for the different guaiacols and was the inverse of GcoAEP4's specificities. The biocatalytic potential of AgcA was demonstrated by the ability of EP4 to grow on lignin-derived products obtained from the reductive catalytic fractionation of corn stover, depleting alkylguaiacols and alkylphenols. By identifying related P450s with complementary specificities for lignin-relevant guaiacols, this study facilitates the design of these enzymes for biocatalytic applications. We further demonstrated that the metabolic fate of the guaiacol depends on its substitution pattern, a finding that has significant implications for engineering biocatalysts to valorize lignin.
Collapse
|
38
|
Suitor JT, Varzandeh S, Wallace S. One-Pot Synthesis of Adipic Acid from Guaiacol in Escherichia coli. ACS Synth Biol 2020; 9:2472-2476. [PMID: 32786923 DOI: 10.1021/acssynbio.0c00254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adipic acid is one of the most important small molecules in the modern chemical industry. However, the damaging environmental impact of the current industrial synthesis of adipic acid has necessitated the development of greener, biobased approaches to its manufacture. Herein we report the first one-pot synthesis of adipic acid from guaiacol, a lignin-derived feedstock, using genetically engineered whole-cells of Escherichia coli. The reaction is mild, efficient, requires no additional additives or reagents, and produces no byproducts. This study demonstrates how modern synthetic biology can be used to valorize abundant feedstocks into industrially relevant small molecules in living cells.
Collapse
Affiliation(s)
- Jack T. Suitor
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| | - Simon Varzandeh
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| | - Stephen Wallace
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Alexander Crum Brown Road, Edinburgh EH9 3FF, U.K
| |
Collapse
|
39
|
Tailoring microbes to upgrade lignin. Curr Opin Chem Biol 2020; 59:23-29. [PMID: 32388219 DOI: 10.1016/j.cbpa.2020.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lignin depolymerization generates a mixture of numerous compounds that are difficult to separate cost-effectively. To address this heterogeneity issue, microbes have been employed to 'biologically funnel' a broad range of compounds present in depolymerized lignin into common central metabolites that can be converted into a single desirable product. Because the composition of depolymerized lignin varies significantly with the type of biomass and the depolymerization method, microbes should be selected and engineered by considering this compositional variation. An ideal microbe must efficiently metabolize all relevant lignin-derived compounds regardless of the compositional variation of feedstocks, but discovering or developing such a perfect microbe is very challenging. Instead, developing multiple tailored microbes to tolerate a given mixture of lignin-derived compounds and to convert most of these into a target product is more practical. This review summarizes recent progress toward the development of such microbes for lignin valorization and offers future directions.
Collapse
|
40
|
Yao J, He Y, Su N, Bharath SR, Tao Y, Jin JM, Chen W, Song H, Tang SY. Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps. Nat Commun 2020; 11:1515. [PMID: 32251291 PMCID: PMC7090077 DOI: 10.1038/s41467-020-14918-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/11/2020] [Indexed: 01/18/2023] Open
Abstract
Hydroxytyrosol is an antioxidant free radical scavenger that is biosynthesized from tyrosine. In metabolic engineering efforts, the use of the mouse tyrosine hydroxylase limits its production. Here, we design an efficient whole-cell catalyst of hydroxytyrosol in Escherichia coli by de-bottlenecking two rate-limiting enzymatic steps. First, we replace the mouse tyrosine hydroxylase by an engineered two-component flavin-dependent monooxygenase HpaBC of E. coli through structure-guided modeling and directed evolution. Next, we elucidate the structure of the Corynebacterium glutamicum VanR regulatory protein complexed with its inducer vanillic acid. By switching its induction specificity from vanillic acid to hydroxytyrosol, VanR is engineered into a hydroxytyrosol biosensor. Then, with this biosensor, we use in vivo-directed evolution to optimize the activity of tyramine oxidase (TYO), the second rate-limiting enzyme in hydroxytyrosol biosynthesis. The final strain reaches a 95% conversion rate of tyrosine. This study demonstrates the effectiveness of sequentially de-bottlenecking rate-limiting steps for whole-cell catalyst development. Whole-cell catalyst-based hydroxytyrosol production is low. Here, the authors increase the efficiency of its production in E. coli by de-bottlenecking two enzymatic steps catalyzed by monooxygenase and tyramine oxidase using structure-based enzyme redesign or in vivo-directed evolution with the aid of a newly developed biosensor.
Collapse
Affiliation(s)
- Jun Yao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yang He
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, Singapore
| | - Nannan Su
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, Singapore
| | | | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China.
| | - Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, Singapore.
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
41
|
Jiang Y, Wang C, Ma N, Chen J, Liu C, Wang F, Xu J, Cong Z. Regioselective aromatic O-demethylation with an artificial P450BM3 peroxygenase system. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00241k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly regioselective O-demethylation of aromatic ethers related to the bioconversion of lignin was achieved by the H2O2-dependent engineered P450BM3 enzymes with assistance of a dual-functional small molecule (DFSM) for the first time.
Collapse
Affiliation(s)
- Yihui Jiang
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Chunlan Wang
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
- University of Chinese Academy of Sciences
| | - Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
- University of Chinese Academy of Sciences
| | - Chuanfei Liu
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
| | - Fang Wang
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
- University of Chinese Academy of Sciences
| |
Collapse
|