1
|
Zhou Y, Xia XM, Lingle CJ. Disruption of a side portal pathway permits closed-state inactivation by BK β subunit N-termini. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642150. [PMID: 40161743 PMCID: PMC11952309 DOI: 10.1101/2025.03.09.642150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cytosolic N-termini of several BK channel β regulatory subunits mediate rapid inactivation. However, in contrast to Kv channels, inactivation does not occur via a simple, open channel block mechanism, but involves two steps, an association step in which ion permeation is maintained (O*), then followed by inactivation (I). To produce inactivation, BK β subunit N-termini enter the central cavity through a lateral entry pathway ("side portal") separating the transmembrane pore-gate-domain and cytosolic gating ring. Comparison of BK conformations reveals an aqueous pathway into the central cavity in the open structure, while in the closed structure three sequential basic residues (R 329 K 330 K 331 ) in S6 occlude central cavity access. We probed the impact of mutations of the RKK motif (RKK3Q, RKK3E, and RKK3V) on inactivation mediated by the β3a N-terminus. All three RKK-mutated constructs differentially reduce depolarization-activated outward current, prolong β3a-mediated tail current upon repolarization, and produce a persistent inward current at potentials down to -240 mV. With depolarization channels are driven into O*-I inactivated states and, upon repolarization, slow tails and persistent inward currents reflect slow changes in O*-I occupancy. However, evaluation of closed state occupancy prior to depolarization and at the end of slow tails reveals that some fraction of closed states at negative potentials corresponds to resting closed states in voltage-independent equilibrium with N-terminal-occluded closed-states. Thus, disruption of the RKK triplet both stabilizes the β3a-N-terminus in its position of inactivation and permits access of that N-terminus to its blocking position in closed states. Summary The role of BK S6 residues R329K330K331 and E321/E324 in β subunit-mediated inactivation is probed. WT R329K330K331 hinders inactivation in closed states, while RKK mutations stabilize inactivated states even under conditions where channels are otherwise closed. E321/E324 mutations do not permit closed-state inactivation.
Collapse
|
2
|
Kallure GS, Pal K, Zhou Y, Lingle CJ, Chowdhury S. High-resolution structures illuminate key principles underlying voltage and LRRC26 regulation of Slo1 channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572542. [PMID: 38187713 PMCID: PMC10769243 DOI: 10.1101/2023.12.20.572542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Multi-modal regulation of Slo1 channels by membrane voltage, intracellular calcium, and auxiliary subunits enables its pleiotropic physiological functions. Our understanding of how voltage impacts Slo1 conformational dynamics and the mechanisms by which auxiliary subunits, particularly of the LRRC (Leucine Rich Repeat containing) family of proteins, modulate its voltage gating remain unresolved. Here, we used single particle cryo-electron microscopy to determine structures of human Slo1 mutants which functionally stabilize the closed pore (F315A) or the activated voltage-sensor (R207A). Our structures, obtained under calcium-free conditions, reveal that a key step in voltage-sensing by Slo1 involves a rotameric flip of the voltage-sensing charges (R210 and R213) moving them by ∼6 Å across a hydrophobic gasket. Next we obtained reconstructions of a complex of human Slo1 with the human LRRC26 (γ1) subunit in absence of calcium. Together with extensive biochemical tests, we show that the extracellular domains of γ1 form a ring of interlocked dominos that stabilizes the quaternary assembly of the complex and biases Slo1:γ1 assembly towards high stoichiometric complexes. The transmembrane helix of γ1 is kinked and tightly packed against the Slo1 voltage-sensor. We hypothesize that γ1 subunits exert relatively small effects on early steps in voltage-gating but structurally stabilize non-S4 helices of Slo1 voltage-sensor which energetically facilitate conformational rearrangements that occur late in voltage stimulated transitions.
Collapse
|
3
|
Nordquist E, Zhang G, Barethiya S, Ji N, White KM, Han L, Jia Z, Shi J, Cui J, Chen J. Incorporating physics to overcome data scarcity in predictive modeling of protein function: A case study of BK channels. PLoS Comput Biol 2023; 19:e1011460. [PMID: 37713443 PMCID: PMC10529646 DOI: 10.1371/journal.pcbi.1011460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/27/2023] [Accepted: 08/24/2023] [Indexed: 09/17/2023] Open
Abstract
Machine learning has played transformative roles in numerous chemical and biophysical problems such as protein folding where large amount of data exists. Nonetheless, many important problems remain challenging for data-driven machine learning approaches due to the limitation of data scarcity. One approach to overcome data scarcity is to incorporate physical principles such as through molecular modeling and simulation. Here, we focus on the big potassium (BK) channels that play important roles in cardiovascular and neural systems. Many mutants of BK channel are associated with various neurological and cardiovascular diseases, but the molecular effects are unknown. The voltage gating properties of BK channels have been characterized for 473 site-specific mutations experimentally over the last three decades; yet, these functional data by themselves remain far too sparse to derive a predictive model of BK channel voltage gating. Using physics-based modeling, we quantify the energetic effects of all single mutations on both open and closed states of the channel. Together with dynamic properties derived from atomistic simulations, these physical descriptors allow the training of random forest models that could reproduce unseen experimentally measured shifts in gating voltage, ∆V1/2, with a RMSE ~ 32 mV and correlation coefficient of R ~ 0.7. Importantly, the model appears capable of uncovering nontrivial physical principles underlying the gating of the channel, including a central role of hydrophobic gating. The model was further evaluated using four novel mutations of L235 and V236 on the S5 helix, mutations of which are predicted to have opposing effects on V1/2 and suggest a key role of S5 in mediating voltage sensor-pore coupling. The measured ∆V1/2 agree quantitatively with prediction for all four mutations, with a high correlation of R = 0.92 and RMSE = 18 mV. Therefore, the model can capture nontrivial voltage gating properties in regions where few mutations are known. The success of predictive modeling of BK voltage gating demonstrates the potential of combining physics and statistical learning for overcoming data scarcity in nontrivial protein function prediction.
Collapse
Affiliation(s)
- Erik Nordquist
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Shrishti Barethiya
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Nathan Ji
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Kelli M. White
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Lu Han
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
4
|
Nordquist E, Zhang G, Barethiya S, Ji N, White KM, Han L, Jia Z, Shi J, Cui J, Chen J. Incorporating physics to overcome data scarcity in predictive modeling of protein function: a case study of BK channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546384. [PMID: 37425916 PMCID: PMC10327070 DOI: 10.1101/2023.06.24.546384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Machine learning has played transformative roles in numerous chemical and biophysical problems such as protein folding where large amount of data exists. Nonetheless, many important problems remain challenging for data-driven machine learning approaches due to the limitation of data scarcity. One approach to overcome data scarcity is to incorporate physical principles such as through molecular modeling and simulation. Here, we focus on the big potassium (BK) channels that play important roles in cardiovascular and neural systems. Many mutants of BK channel are associated with various neurological and cardiovascular diseases, but the molecular effects are unknown. The voltage gating properties of BK channels have been characterized for 473 site-specific mutations experimentally over the last three decades; yet, these functional data by themselves remain far too sparse to derive a predictive model of BK channel voltage gating. Using physics-based modeling, we quantify the energetic effects of all single mutations on both open and closed states of the channel. Together with dynamic properties derived from atomistic simulations, these physical descriptors allow the training of random forest models that could reproduce unseen experimentally measured shifts in gating voltage, ΔV 1/2 , with a RMSE ∼ 32 mV and correlation coefficient of R ∼ 0.7. Importantly, the model appears capable of uncovering nontrivial physical principles underlying the gating of the channel, including a central role of hydrophobic gating. The model was further evaluated using four novel mutations of L235 and V236 on the S5 helix, mutations of which are predicted to have opposing effects on V 1/2 and suggest a key role of S5 in mediating voltage sensor-pore coupling. The measured ΔV 1/2 agree quantitatively with prediction for all four mutations, with a high correlation of R = 0.92 and RMSE = 18 mV. Therefore, the model can capture nontrivial voltage gating properties in regions where few mutations are known. The success of predictive modeling of BK voltage gating demonstrates the potential of combining physics and statistical learning for overcoming data scarcity in nontrivial protein function prediction. Author Summary Deep machine learning has brought many exciting breakthroughs in chemistry, physics and biology. These models require large amount of training data and struggle when the data is scarce. The latter is true for predictive modeling of the function of complex proteins such as ion channels, where only hundreds of mutational data may be available. Using the big potassium (BK) channel as a biologically important model system, we demonstrate that a reliable predictive model of its voltage gating property could be derived from only 473 mutational data by incorporating physics-derived features, which include dynamic properties from molecular dynamics simulations and energetic quantities from Rosetta mutation calculations. We show that the final random forest model captures key trends and hotspots in mutational effects of BK voltage gating, such as the important role of pore hydrophobicity. A particularly curious prediction is that mutations of two adjacent residues on the S5 helix would always have opposite effects on the gating voltage, which was confirmed by experimental characterization of four novel mutations. The current work demonstrates the importance and effectiveness of incorporating physics in predictive modeling of protein function with scarce data.
Collapse
Affiliation(s)
- Erik Nordquist
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shrishti Barethiya
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Nathan Ji
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Kelli M White
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lu Han
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Gao J, Yin H, Dong Y, Wang X, Liu Y, Wang K. A Novel Role of Uricosuric Agent Benzbromarone in BK Channel Activation and Reduction of Airway Smooth Muscle Contraction. Mol Pharmacol 2023; 103:241-254. [PMID: 36669879 DOI: 10.1124/molpharm.122.000638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023] Open
Abstract
The uricosuric drug benzbromarone, widely used for treatment of gout, hyperpolarizes the membrane potential of airway smooth muscle cells, but how it works remains unknown. Here we show a novel role of benzbromarone in activation of large conductance calcium-activated K+ channels. Benzbromarone results in dose-dependent activation of macroscopic big potassium (BK) currents about 1.7- to 14.5-fold with an EC50 of 111 μM and shifts the voltage-dependent channel activation to a more hyperpolarizing direction about 10 to 54 mV in whole-cell patch clamp recordings. In single-channel recordings, benzbromarone decreases single BKα channel closed dwell time and increases the channel open probability. Coexpressing β1 subunit also enhances BK activation by benzbromarone with an EC50 of 67 μM and a leftward shift of conductance-voltage (G-V) curve about 44 to 138 mV. Site-directed mutagenesis reveals that a motif of three amino acids 329RKK331 in the cytoplasmic linker between S6 and C-terminal regulator of potassium conductance (RCK) gating ring mediates the pharmacological activation of BK channels by benzbromarone. Further ex vivo assay shows that benzbromarone causes reduction of tracheal strip contraction. Taken together, our findings demonstrate that uricosuric benzbromarone activates BK channels through molecular mechanism of action involving the channel RKK motif of S6-RCK linker. Pharmacological activation of BK channel by benzbromarone causes reduction of tracheal strip contraction, holding a repurposing potential for asthma and pulmonary arterial hypertension or BK channelopathies. SIGNIFICANCE STATEMENT: We describe a novel role of uricosuric agent benzbromarone in big potassium (BK) channel activation and relaxation of airway smooth muscle contraction. In this study, we find that benzbromarone is an activator of the large-conductance Ca2+- and voltage-activated K+ channel (BK channel), which serves numerous cellular functions, including control of smooth muscle contraction. Pharmacological activation of BK channel by the FDA-approved drug benzbromarone may hold repurposing potential for treatment of asthma and pulmonary arterial hypertension or BK channelopathies.
Collapse
Affiliation(s)
- Jian Gao
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Hao Yin
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yanqun Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Xintong Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yani Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - KeWei Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China (J.G., X.W.); Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (H.Y., Y.D., Y.L., K.W.); and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| |
Collapse
|
6
|
Sun L, Horrigan FT. A gating lever and molecular logic gate that couple voltage and calcium sensor activation to opening in BK potassium channels. SCIENCE ADVANCES 2022; 8:eabq5772. [PMID: 36516264 PMCID: PMC9750137 DOI: 10.1126/sciadv.abq5772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
BK channels uniquely integrate voltage and calcium signaling in diverse cell types through allosteric activation of their K+-conducting pore by structurally distinct V and Ca2+ sensor domains. Here, we define mechanisms and interaction pathways that link V sensors to the pore by analyzing effects on allosteric coupling of point mutations in the context of Slo1 BK channel structure. A gating lever, mediated by S4/S5 segment interaction within the transmembrane domain, rotates to engage and stabilize the open conformation of the S6 inner pore helix upon V sensor activation. In addition, an indirect pathway, mediated by the carboxyl-terminal cytosolic domain (CTD) and C-linker that connects the CTD to S6, stabilizes the closed conformation when V sensors are at rest. Unexpectedly, this mechanism, which bypasses the covalent connections of C-linker to CTD and pore, also transduces Ca2+-dependent coupling in a manner that is completely nonadditive with voltage, analogous to the function of a digital logic (OR) gate.
Collapse
Affiliation(s)
- Liang Sun
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank T. Horrigan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Zhang G, Xu X, Jia Z, Geng Y, Liang H, Shi J, Marras M, Abella C, Magleby KL, Silva JR, Chen J, Zou X, Cui J. An allosteric modulator activates BK channels by perturbing coupling between Ca 2+ binding and pore opening. Nat Commun 2022; 13:6784. [PMID: 36351900 PMCID: PMC9646747 DOI: 10.1038/s41467-022-34359-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
BK type Ca2+-activated K+ channels activate in response to both voltage and Ca2+. The membrane-spanning voltage sensor domain (VSD) activation and Ca2+ binding to the cytosolic tail domain (CTD) open the pore across the membrane, but the mechanisms that couple VSD activation and Ca2+ binding to pore opening are not clear. Here we show that a compound, BC5, identified from in silico screening, interacts with the CTD-VSD interface and specifically modulates the Ca2+ dependent activation mechanism. BC5 activates the channel in the absence of Ca2+ binding but Ca2+ binding inhibits BC5 effects. Thus, BC5 perturbs a pathway that couples Ca2+ binding to pore opening to allosterically affect both, which is further supported by atomistic simulations and mutagenesis. The results suggest that the CTD-VSD interaction makes a major contribution to the mechanism of Ca2+ dependent activation and is an important site for allosteric agonists to modulate BK channel activation.
Collapse
Affiliation(s)
- Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri - Columbia, Columbia, MO, USA.,Department of Physics and Astronomy, University of Missouri - Columbia, Columbia, MO, USA.,Department of Biochemistry, University of Missouri - Columbia, Columbia, MO, USA.,Institute for Data Science and Informatics, University of Missouri - Columbia, Columbia, MO, USA
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Yanyan Geng
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hongwu Liang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Martina Marras
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Carlota Abella
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA
| | - Karl L Magleby
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan R Silva
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA.
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA. .,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA.
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri - Columbia, Columbia, MO, USA. .,Department of Physics and Astronomy, University of Missouri - Columbia, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri - Columbia, Columbia, MO, USA. .,Institute for Data Science and Informatics, University of Missouri - Columbia, Columbia, MO, USA.
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, USA.
| |
Collapse
|
8
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
9
|
Cui J. BK Channel Gating Mechanisms: Progresses Toward a Better Understanding of Variants Linked Neurological Diseases. Front Physiol 2021; 12:762175. [PMID: 34744799 PMCID: PMC8567085 DOI: 10.3389/fphys.2021.762175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 12/21/2022] Open
Abstract
The large conductance Ca2+-activated potassium (BK) channel is activated by both membrane potential depolarization and intracellular Ca2+ with distinct mechanisms. Neural physiology is sensitive to the function of BK channels, which is shown by the discoveries of neurological disorders that are associated with BK channel mutations. This article reviews the molecular mechanisms of BK channel activation in response to voltage and Ca2+ binding, including the recent progress since the publication of the atomistic structure of the whole BK channel protein, and the neurological disorders associated with BK channel mutations. These results demonstrate the unique mechanisms of BK channel activation and that these mechanisms are important factors in linking BK channel mutations to neurological disorders.
Collapse
Affiliation(s)
- Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, United States
| |
Collapse
|
10
|
Yang J, Hammoud B, Li C, Ridler A, Yau D, Kim J, Won KJ, Stanley CA, Hoshi T, Stanescu DE. Decreased KATP Channel Activity Contributes to the Low Glucose Threshold for Insulin Secretion of Rat Neonatal Islets. Endocrinology 2021; 162:6301135. [PMID: 34134142 PMCID: PMC8276892 DOI: 10.1210/endocr/bqab121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Transitional hypoglycemia in normal newborns occurs in the first 3 days of life and has clinical features consistent with hyperinsulinism. We found a lower threshold for glucose-stimulated insulin secretion from freshly isolated embryonic day (E) 22 rat islets, which persisted into the first postnatal days. The threshold reached the adult level by postnatal day (P) 14. Culturing P14 islets also decreased the glucose threshold. Freshly isolated P1 rat islets had a lower threshold for insulin secretion in response to 2-aminobicyclo-(2, 2, 1)-heptane-2-carboxylic acid, a nonmetabolizable leucine analog, and diminished insulin release in response to tolbutamide, an inhibitor of β-cell KATP channels. These findings suggested that decreased KATP channel function could be responsible for the lower glucose threshold for insulin secretion. Single-cell transcriptomic analysis did not reveal a lower expression of KATP subunit genes in E22 compared with P14 β cells. The investigation of electrophysiological characteristics of dispersed β cells showed that early neonatal and cultured cells had fewer functional KATP channels per unit membrane area. Our findings suggest that decreased surface density of KATP channels may contribute to the observed differences in glucose threshold for insulin release.
Collapse
Affiliation(s)
- Juxiang Yang
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Batoul Hammoud
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Abigail Ridler
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daphne Yau
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Junil Kim
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, South Korea
| | - Kyoung-Jae Won
- Biotech Research & Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Charles A Stanley
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Toshinori Hoshi
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diana E Stanescu
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: Diana Elena Stanescu, MD, The Children's Hospital of Philadelphia, Abramson Pediatric Research Center, 3615 Civic Center Blvd, #802G, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Reinmuth L, Hsiao CC, Hamann J, Rosenkilde M, Mackrill J. Multiple Targets for Oxysterols in Their Regulation of the Immune System. Cells 2021; 10:cells10082078. [PMID: 34440846 PMCID: PMC8391951 DOI: 10.3390/cells10082078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis. These cellular processes play critical roles in both the innate and adaptive immune systems. This review will survey the two broad classes of cell-surface receptors for oxysterols (G-protein coupled receptors (GPCRs) and ion channels), the mechanisms by which cholesterol oxidation products act on them, and their presence and functions in the different cell types of the immune system. Overall, this review will highlight the potential of oxysterols, synthetic derivatives and their receptors for physiological and therapeutic modulation of the immune system.
Collapse
Affiliation(s)
- Lisa Reinmuth
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Mette Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| | - John Mackrill
- Department of Physiology, School of Medicine, BioSciences Institute, University College Cork, College Road, Cork T12 YT20, Ireland
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| |
Collapse
|
12
|
Liu Y, Xu X, Gao J, Naffaa MM, Liang H, Shi J, Wang HZ, Yang ND, Hou P, Zhao W, White KM, Kong W, Dou A, Cui A, Zhang G, Cohen IS, Zou X, Cui J. A PIP 2 substitute mediates voltage sensor-pore coupling in KCNQ activation. Commun Biol 2020; 3:385. [PMID: 32678288 PMCID: PMC7367283 DOI: 10.1038/s42003-020-1104-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022] Open
Abstract
KCNQ family K+ channels (KCNQ1-5) in the heart, nerve, epithelium and ear require phosphatidylinositol 4,5-bisphosphate (PIP2) for voltage dependent activation. While membrane lipids are known to regulate voltage sensor domain (VSD) activation and pore opening in voltage dependent gating, PIP2 was found to interact with KCNQ1 and mediate VSD-pore coupling. Here, we show that a compound CP1, identified in silico based on the structures of both KCNQ1 and PIP2, can substitute for PIP2 to mediate VSD-pore coupling. Both PIP2 and CP1 interact with residues amongst a cluster of amino acids critical for VSD-pore coupling. CP1 alters KCNQ channel function due to different interactions with KCNQ compared with PIP2. We also found that CP1 returned drug-induced action potential prolongation in ventricular myocytes to normal durations. These results reveal the structural basis of PIP2 regulation of KCNQ channels and indicate a potential approach for the development of anti-arrhythmic therapy.
Collapse
Affiliation(s)
- Yongfeng Liu
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Xianjin Xu
- grid.134936.a0000 0001 2162 3504Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211 USA
| | - Junyuan Gao
- grid.36425.360000 0001 2216 9681Department of Physiology and Biophysics, and Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Moawiah M. Naffaa
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Hongwu Liang
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Jingyi Shi
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Hong Zhan Wang
- grid.36425.360000 0001 2216 9681Department of Physiology and Biophysics, and Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Nien-Du Yang
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Panpan Hou
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Wenshan Zhao
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Kelli McFarland White
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Wenjuan Kong
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Alex Dou
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Amy Cui
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Guohui Zhang
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| | - Ira S. Cohen
- grid.36425.360000 0001 2216 9681Department of Physiology and Biophysics, and Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Xiaoqin Zou
- grid.134936.a0000 0001 2162 3504Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211 USA
| | - Jianmin Cui
- grid.4367.60000 0001 2355 7002Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University in Saint Louis, Saint Louis, MO 63130 USA
| |
Collapse
|
13
|
Yazdani M, Zhang G, Jia Z, Shi J, Cui J, Chen J. Aromatic interactions with membrane modulate human BK channel activation. eLife 2020; 9:55571. [PMID: 32597752 PMCID: PMC7371421 DOI: 10.7554/elife.55571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022] Open
Abstract
Large-conductance potassium (BK) channels are transmembrane (TM) proteins that can be synergistically and independently activated by membrane voltage and intracellular Ca2+. The only covalent connection between the cytosolic Ca2+ sensing domain and the TM pore and voltage sensing domains is a 15-residue ‘C-linker’. To determine the linker’s role in human BK activation, we designed a series of linker sequence scrambling mutants to suppress potential complex interplay of specific interactions with the rest of the protein. The results revealed a surprising sensitivity of BK activation to the linker sequence. Combining atomistic simulations and further mutagenesis experiments, we demonstrated that nonspecific interactions of the linker with membrane alone could directly modulate BK activation. The C-linker thus plays more direct roles in mediating allosteric coupling between BK domains than previously assumed. Our results suggest that covalent linkers could directly modulate TM protein function and should be considered an integral component of the sensing apparatus.
Collapse
Affiliation(s)
- Mahdieh Yazdani
- Department of Chemistry, University of Massachusetts, Amherst, United States
| | - Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, United States
| | - Zhiguang Jia
- Department of Chemistry, University of Massachusetts, Amherst, United States
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, United States
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| |
Collapse
|