1
|
Datsenko OP, Baziievskyi A, Sadkova I, Campos B, Brewster JT, Kowalski J, Hinklin RJ, Mykhailiuk PK. Alkyl Azetidines Via Batch and Flow Photochemistry. Org Lett 2025. [PMID: 40184521 DOI: 10.1021/acs.orglett.5c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Alkyl azetidines have been prepared by photochemical modifications of azetidine-2-carboxylic acids in batch and in flow. The reaction has been realized in milligram, gram, and even multigram quantities. The obtained azetidines are valuable building blocks for drug discovery.
Collapse
Affiliation(s)
| | | | - Iryna Sadkova
- Enamine Ltd, Winston Churchill St. 78, 02094 Kyiv, Ukraine
| | - Bismarck Campos
- Pfizer Boulder Research and Development, 3200 Walnut St., Boulder, Colorado 80023, United States
| | - James T Brewster
- Pfizer Boulder Research and Development, 3200 Walnut St., Boulder, Colorado 80023, United States
| | - John Kowalski
- Pfizer Boulder Research and Development, 3200 Walnut St., Boulder, Colorado 80023, United States
| | - Ronald J Hinklin
- Pfizer Boulder Research and Development, 3200 Walnut St., Boulder, Colorado 80023, United States
| | | |
Collapse
|
2
|
Laga E, Nieto S, Cativiela C, Urriolabeitia EP. o-Halogenation and -Alkoxylation of Phenylglycine Derivatives by Pd-Mediated C-H Functionalization: Scope and Limitations. Molecules 2025; 30:236. [PMID: 39860106 PMCID: PMC11767792 DOI: 10.3390/molecules30020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Orthopalladated derivatives from substituted phenylglycines [Pd(μ-Cl)(C6H3R1C(R2)(R3)N(R4)2]2 (1) react with halogenating reagents (PhICl2, Br2, I2) (2) to give the corresponding o-halogenated amino acids C6H3(X)R1C(R2)(R3)N(R4)2 (3). The reaction is general and tolerates a variety of functional groups (R1 to R4) at the aryl ring, the Cα, and the N atom. On the other hand, the reaction of [Pd(μ-Cl)(C6H3R1C(R2)(R3)N(R4)2]2 (1) with PhI(OAc)2 in the presence of a variety of alcohols R5OH (4) gives the o-alkoxylated phenylglycines C6H3(OR5)R1C(R2)(R3)N(R4)2 (5), also as a general process. A partial loss of the enantiomeric excess is observed when the starting phenylglycine is enantiomerically pure, this arising from the formation of bridging azavinylidene (6) and imine intermediate species (7), which were characterized by X-ray diffraction methods.
Collapse
Affiliation(s)
| | | | | | - Esteban P. Urriolabeitia
- Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC—Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain; (E.L.); (S.N.); (C.C.)
| |
Collapse
|
3
|
Huang M, Sun H, Seufert F, Friedrich A, Marder TB, Hu J. Photoredox/Cu-Catalyzed Decarboxylative C(sp 3)-C(sp 3) Coupling to Access C(sp 3)-Rich gem-Diborylalkanes. Angew Chem Int Ed Engl 2024; 63:e202401782. [PMID: 38818649 DOI: 10.1002/anie.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
gem-Diborylalkanes are highly valuable building blocks in organic synthesis and pharmaceutical chemistry due to their ability to participate in multi-step cross-coupling transformations, allowing for the rapid generation of molecular complexity. While progress has been made in their synthetic metholodology, the construction of β-tertiary and C(sp3)-rich gem-diborylalkanes remains a synthetic challenge due to substrate limitations and steric hindrance issues. An approach is presented that utilizes synergistic photoredox and copper catalysis to achieve efficient C(sp3)-C(sp3) cross-coupling of alkyl N-hydroxyphthalimide esters, which can easily be obtained from alkyl carboxylic acids, with diborylmethyl species, providing a series of C(sp3)-rich gem-diborylalkanes with 1°, 2°, and even 3° β positions. Furthermore, this approach can also be applied to complex medicinal compounds and natural products, offering rapid access to molecular complexity and late-stage functionalization of C(sp3)-rich drug candidates. Mechanistic experiments revealed that diborylmethyl Cu(I) species participated in both the photoredox process and the key C(sp3)-C(sp3) bond-forming step.
Collapse
Affiliation(s)
- Mingming Huang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Huaxing Sun
- State Key Laboratory of Organic Electronics and Information Displays & & Institute of Advanced Materials (IAM), College of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Florian Seufert
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jiefeng Hu
- State Key Laboratory of Organic Electronics and Information Displays & & Institute of Advanced Materials (IAM), College of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Mandal N, Mondal P, Mandal S, Datta A. Unlocking Enantioselectivity: Synergy of 2-Pyridone and Chiral Amino Acids in Pd-Catalyzed β-C(sp 3)-H Transformations. J Org Chem 2024; 89:9223-9232. [PMID: 38885175 DOI: 10.1021/acs.joc.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Enantioselective C(sp3)-H activation has garnered significant attention in synthetic and computational chemistry. Chiral transient directing groups (TDGs) hold promise for enabling Pd(II)-catalyzed enantioselective C(sp3)-H functionalization. Despite the interest in this strategy, it presents a challenge because the stereogenic center on the chiral TDG is frequently distant from the C-H bond, leading to a mixture of functionalized products. Our computational study on Pd(II)-catalyzed enantioselective β-C(sp3)-H arylation of aliphatic ketone with chiral amino acids provides a sustainable route to synthesizing complex chiral molecular scaffolds. The cooperative action of 2-pyridone derivatives and chiral amino acids is crucial in promoting the enantio-discriminating C-H activation, oxidative addition, and reductive elimination steps. Using 5-nitro-2-pyridone as the optimal external ligand demonstrates its ability to achieve the highest level of enantioselection. In contrast, the modeled 3,5-di((trifluoromethyl)sulfonyl)-2-pyridone ligand facilitates the most straightforward C-H activation. This study underscores the pivotal role of the alkyl substituent at the α-position of the amino acid (TDG) in altering enantioselectivity.
Collapse
Affiliation(s)
- Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| | - Partha Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| | - Sucharita Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata 700032, India
| |
Collapse
|
5
|
Wearing ER, Yeh YC, Terrones GG, Parikh SG, Kevlishvili I, Kulik HJ, Schindler CS. Visible light-mediated aza Paternò-Büchi reaction of acyclic oximes and alkenes to azetidines. Science 2024; 384:1468-1476. [PMID: 38935726 DOI: 10.1126/science.adj6771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
The aza Paternò-Büchi reaction is a [2+2]-cycloaddition reaction between imines and alkenes that produces azetidines, four-membered nitrogen-containing heterocycles. Currently, successful examples rely primarily on either intramolecular variants or cyclic imine equivalents. To unlock the full synthetic potential of aza Paternò-Büchi reactions, it is essential to extend the reaction to acyclic imine equivalents. Here, we report that matching of the frontier molecular orbital energies of alkenes with those of acyclic oximes enables visible light-mediated aza Paternò-Büchi reactions through triplet energy transfer catalysis. The utility of this reaction is further showcased in the synthesis of epi-penaresidin B. Density functional theory computations reveal that a competition between the desired [2+2]-cycloaddition and alkene dimerization determines the success of the reaction. Frontier orbital energy matching between the reactive components lowers transition-state energy (ΔGǂ) values and ultimately promotes reactivity.
Collapse
Affiliation(s)
- Emily R Wearing
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Cheng Yeh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gianmarco G Terrones
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seren G Parikh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Corinna S Schindler
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1 BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 1Z4 BC, Canada
- BC Cancer, Vancouver V5Z 1G1 BC, Canada
| |
Collapse
|
6
|
Nilova A, Mannchen MD, Noel AN, Semenova E, Grenning AJ. Vicinal stereocenters via asymmetric allylic alkylation and Cope rearrangement: a straightforward route to functionally and stereochemically rich heterocycles. Chem Sci 2023; 14:2755-2762. [PMID: 36908968 PMCID: PMC9993902 DOI: 10.1039/d2sc07021a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
An asymmetric allylic alkylation/Cope rearrangement (AAA/[3,3]) capable of stereoselectively constructing vicinal stereocenters has been developed. Strategically integrated 4-methylation on the 3,3-dicyano-1,5-diene controls stereoselectivity and drives Cope rearrangement equilibrium in the forward direction. The AAA/[3,3] sequence rapidly converts abundant achiral and racemic starting materials into valuable (hetero)cycloalkane building blocks bearing significant functional and stereochemical complexity, highlighting the value of (hetero)cyclohexylidenemalononitriles as launching points for complex heterocycle synthesis. On this line, the resulting alkylidenemalononitrile moiety can be readily converted into amides via Hayashi-Lear amidation to ultimately yield amido-piperidines, tropanes, and related scaffolds with 3-5 stereocenters and drug-like functionality.
Collapse
Affiliation(s)
- Aleksandra Nilova
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Michael D Mannchen
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Abdias N Noel
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Evgeniya Semenova
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Alexander J Grenning
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| |
Collapse
|
7
|
Ng TW, Tao R, See WWL, Poh SB, Zhao Y. Economical Access to Diverse Enantiopure Tetrahydropyridines and Piperidines Enabled by Catalytic Borrowing Hydrogen. Angew Chem Int Ed Engl 2023; 62:e202212528. [PMID: 36374610 DOI: 10.1002/anie.202212528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/16/2022]
Abstract
We disclose herein a catalytic borrowing hydrogen method that enables an unprecedented, economical one-pot access to enantiopure tetrahydropyridines with minimal reagent use or waste formation. This method couples a few classes of readily available substrates with commercially available 1,3-amino alcohols, and delivers the valuable tetrahydropyridines of different substitution patterns free of N-protection. Such transformations are highly challenging to achieve, as multiple redox steps need to be realized in a cascade and numerous side reactions including a facile aromatization have to be overcome. Highly diastereoselective functionalizations of tetrahydropyridines also result in a general access to enantiopure di- and tri-substituted piperidines, which ranks the topmost frequent N-heterocycle in commercial drugs.
Collapse
Affiliation(s)
- Teng Wei Ng
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ran Tao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore.,Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Willy Wei Li See
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Si Bei Poh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
8
|
Brewster JT, Randall SD, Kowalski J, Cruz C, Shoemaker R, Tarlton E, Hinklin RJ. A Decarboxylative Cross-Coupling Platform To Access 2-Heteroaryl Azetidines: Building Blocks with Application in Medicinal Chemistry. Org Lett 2022; 24:9123-9129. [DOI: 10.1021/acs.orglett.2c03852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- James T. Brewster
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Samuel D. Randall
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - John Kowalski
- Drug Metabolism & Pharmacokinetics, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Cole Cruz
- Medicinal Chemistry Synthesis Development, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder Colorado 80301, United States
| | - Richard Shoemaker
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| | - Eugene Tarlton
- Medicinal Chemistry Synthesis Development, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder Colorado 80301, United States
| | - Ronald J. Hinklin
- Medicinal Chemistry Division, Pfizer Boulder Research and Development, 3200 Walnut Street, Boulder, Colorado 80301, United States
| |
Collapse
|
9
|
Trammel GL, Kannangara PB, Vasko D, Datsenko O, Mykhailiuk P, Brown MK. Arylboration of Enecarbamates for the Synthesis of Borylated Saturated N-Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202212117. [PMID: 36250954 PMCID: PMC9643676 DOI: 10.1002/anie.202212117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/09/2022]
Abstract
Two catalytic systems have been developed for the arylboration of endocyclic enecarbamates to deliver synthetically versatile borylated saturated N-heterocycles in good regio- and diastereoselectivities. A Cu/Pd dual catalytic reaction enables the synthesis of borylated, α-arylated azetidines, while a Ni-catalysed arylboration reaction efficiently functionalizes 5-, 6-, and 7-membered enecarbamates. In the case of the Cu/Pd-system, a remarkable additive effect was identified that allowed for broader scope. The products are synthetically useful, as demonstrated by manipulations of the boronic ester to access biologically active compounds.
Collapse
Affiliation(s)
- Grace L. Trammel
- Department of ChemistryIndiana University800 E. Kirkwood Ave.BloomingtonIN, 47401USA
| | | | | | | | - Pavel Mykhailiuk
- Enamine Ltd.Chervonotkatska 6002094KyivUkraine
- Taras Shevchenko National University of KyivChemistry DepartmentVolodymyrska 6401601KyivUkraine
| | - M. Kevin Brown
- Department of ChemistryIndiana University800 E. Kirkwood Ave.BloomingtonIN, 47401USA
| |
Collapse
|
10
|
Trammel GL, Kannangara PB, Vasko D, Datsenko O, Mykhailiuk P, Brown MK. Arylboration of Enecarbamates for the Synthesis of Borylated Saturated N‐Heterocycles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Grace L. Trammel
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| | | | - Dmytro Vasko
- Enamine Ltd. Chervonotkatska 60 02094 Kyiv Ukraine
| | | | - Pavel Mykhailiuk
- Enamine Ltd. Chervonotkatska 60 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv Chemistry Department Volodymyrska 64 01601 Kyiv Ukraine
| | - M. Kevin Brown
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN, 47401 USA
| |
Collapse
|
11
|
Mao Y, Li J, Tang C, Ma B, Xu Z, Ke C, Feng L, Zhang H, Yao S, Dai HX, Ye Y. Fused-ring α-pyrones from intramolecular C–H activation and their lipids-lowering activity associated with LXR-IDOL-LDLR axis regulation. Eur J Med Chem 2022; 244:114866. [DOI: 10.1016/j.ejmech.2022.114866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022]
|
12
|
Han J, Yu H, Zi W. Carboxylic Acid-Directed Manganese(I)-Catalyzed Regioselective Hydroarylation of Unactivated Alkenes. Org Lett 2022; 24:6154-6158. [PMID: 35952363 DOI: 10.1021/acs.orglett.2c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A carboxylic acid-directed regioselective hydroarylation reaction of unactivated alkenes with aryl boronic acids was reported. This transformation was enabled by homogeneous manganese catalyst MnBr(CO)5 in the presence of KOH and H2O in the m-xylene reaction medium. Both internal and terminal alkenes worked well in this transformation, and a series of functional groups were tolerated. This reaction not only provided an expeditious method to prepare γ-aryl carboxylic acids from simple starting materials but also would inspire further studies in employing homogeneous manganese catalysis in organic synthesis.
Collapse
Affiliation(s)
- Jingqiang Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huimin Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China
| |
Collapse
|
13
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
14
|
Piticari A, Antermite D, Higham JI, Moore JH, Webster MP, Bull JA. Stereoselective Palladium‐Catalyzed C(
sp
3
)−H Mono‐Arylation of Piperidines and Tetrahydropyrans with a C(4) Directing Group. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Amalia‐Sofia Piticari
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - Daniele Antermite
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - Joe I. Higham
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - J. Harry Moore
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | | | - James A. Bull
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| |
Collapse
|
15
|
Wang H, Huang H, Gong C, Diao Y, Chen J, Wu SH, Wang L. Nickel-Catalyzed Chemo- and Regioselective Benzylarylation of Unactivated Alkenes with o-Bromobenzyl Chlorides. Org Lett 2021; 24:328-333. [PMID: 34958584 DOI: 10.1021/acs.orglett.1c03991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chemo- and regioselectively nickel-catalyzed reductive benzylarylation of unactivated alkenes with o-bromobenzyl chlorides is disclosed herein, in which electrophiles participate through a single-component double-site approach. Moreover, its utility is underscored by the concise synthesis of bioactive Indane compounds and postreaction functionalizations leading to structurally diverse scaffolds. Preliminary mechanistic investigations suggest a radical chain reaction mechanism.
Collapse
Affiliation(s)
- Hailong Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Haichao Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Chao Gong
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Jianmei Chen
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| |
Collapse
|
16
|
Liu B, Romine AM, Rubel CZ, Engle KM, Shi BF. Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp 3)-H Bonds. Chem Rev 2021; 121:14957-15074. [PMID: 34714620 PMCID: PMC8968411 DOI: 10.1021/acs.chemrev.1c00519] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transition-metal-catalyzed, coordination-assisted C(sp3)-H functionalization has revolutionized synthetic planning over the past few decades as the use of these directing groups has allowed for increased access to many strategic positions in organic molecules. Nonetheless, several challenges remain preeminent, such as the requirement for high temperatures, the difficulty in removing or converting directing groups, and, although many metals provide some reactivity, the difficulty in employing metals outside of palladium. This review aims to give a comprehensive overview of coordination-assisted, transition-metal-catalyzed, direct functionalization of nonactivated C(sp3)-H bonds by covering the literature since 2004 in order to demonstrate the current state-of-the-art methods as well as the current limitations. For clarity, this review has been divided into nine sections by the transition metal catalyst with subdivisions by the type of bond formation. Synthetic applications and reaction mechanism are discussed where appropriate.
Collapse
Affiliation(s)
- Bin Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Andrew M. Romine
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States.,Corresponding Author- (K. M. E.); (B.-F. S.)
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, 38 Zheda Rd., Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China,Corresponding Author- (K. M. E.); (B.-F. S.)
| |
Collapse
|
17
|
Tao Q, Li YN, Tang WJ, Liu PY, Yu F, He YP. Di-ortho-C H arylation of phenylalanine: A bimetallic interaction between Pd(IV)-Ag(I). Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Nguyen K, Clement HA, Bernier L, Coe JW, Farrell W, Helal CJ, Reese MR, Sach NW, Lee JC, Hall DG. Correction to “Catalytic Enantioselective Synthesis of a cis-β-Boronyl Cyclobutylcarboxyester Scaffold and Its Highly Diastereoselective Nickel/Photoredox Dual-Catalyzed Csp 3–Csp 2 Cross-Coupling to Access Elusive trans-β-Aryl/Heteroaryl Cyclobutylcarboxyesters”. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Teng S, Chi YR, Zhou JS. Enantioselective Three-Component Coupling of Heteroarenes, Cycloalkenes and Propargylic Acetates. Angew Chem Int Ed Engl 2021; 60:4491-4495. [PMID: 33259131 DOI: 10.1002/anie.202014781] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Asymmetric coupling proceeds efficiently between propargylic acetates, cycloalkenes and electron-rich heteroarenes including indoles, pyrroles, activated furans and thiophenes. 2,3-Disubstituted tetrahydrofurans and pyrrolidines are produced in trans configuration and excellent enantiomeric ratios. The reaction proceeds via Wacker-type attack of nucleophilic heteroarenes on alkenes activated by allenyl PdII species.
Collapse
Affiliation(s)
- Shenghan Teng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F-312, 2199 Lishui Road, Nanshan District, Shenzhen, 518055, China
| |
Collapse
|
20
|
Parida SK, Mandal T, Das S, Hota SK, De Sarkar S, Murarka S. Single Electron Transfer-Induced Redox Processes Involving N-(Acyloxy)phthalimides. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04756] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sanju Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India
| |
Collapse
|
21
|
Teng S, Chi YR, Zhou JS. Enantioselective Three‐Component Coupling of Heteroarenes, Cycloalkenes and Propargylic Acetates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shenghan Teng
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School, Room F-312 2199 Lishui Road, Nanshan District Shenzhen 518055 China
| |
Collapse
|
22
|
Niu PP, Liu PY, Meng YN, Yu F, He YP. MIA-Directed 2-Pyridione-Enabled Selective Ortho-C–H Arylation of Phenylalanine: A Mechanistic Study. J Org Chem 2021; 86:3096-3106. [PMID: 33442983 DOI: 10.1021/acs.joc.0c02872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Peng-Peng Niu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Road West 1, Fushun 113001, China
| | - Peng-Yu Liu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Road West 1, Fushun 113001, China
| | - Yue-Ning Meng
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Road West 1, Fushun 113001, China
| | - Fang Yu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Road West 1, Fushun 113001, China
| | - Yu-Peng He
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Road West 1, Fushun 113001, China
| |
Collapse
|
23
|
Yang T, Jiang Y, Luo Y, Lim JJH, Lan Y, Koh MJ. Chemoselective Union of Olefins, Organohalides, and Redox-Active Esters Enables Regioselective Alkene Dialkylation. J Am Chem Soc 2020; 142:21410-21419. [DOI: 10.1021/jacs.0c09922] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tao Yang
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Singapore 117549, Republic of Singapore
| | - Yi Jiang
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Singapore 117549, Republic of Singapore
| | - Yixin Luo
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Joel Jun Han Lim
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Singapore 117549, Republic of Singapore
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Singapore 117549, Republic of Singapore
| |
Collapse
|
24
|
Ready and selective access to 2-arylquinazolines from α-amino acids via a new solvent-free domino transformation under synergistic nano Fe-Mo-Se catalyst. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Reiners F, Joseph E, Nißl B, Didier D. Stereoselective Access to Azetidine-Based α-Amino Acids and Applications to Small Peptide Synthesis. Org Lett 2020; 22:8533-8537. [PMID: 33052683 DOI: 10.1021/acs.orglett.0c03131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-natural azetidine-based amino acids (Aze) present interesting features in protein engineering. A simple organometallic route toward unsaturated carboxylic acid precursors is presented. Subsequent metal-catalyzed asymmetric reduction allowed for the synthesis of a new library of 2-azetidinylcarboxylic acids, which were finally employed in the formation of small peptide chains.
Collapse
Affiliation(s)
- Felix Reiners
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Emanuel Joseph
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Benedikt Nißl
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Dorian Didier
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
26
|
Vaghi F, Bucci R, Clerici F, Contini A, Gelmi ML. Non-natural 3-Arylmorpholino-β-amino Acid as a PPII Helix Inducer. Org Lett 2020; 22:6197-6202. [PMID: 32790435 PMCID: PMC8009597 DOI: 10.1021/acs.orglett.0c02331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 02/04/2023]
Abstract
A new non-natural β-amino acid, named 3-Ar-β-Morph, was designed and synthesized via a regio- and diastereoselective Pd-catalyzed C(sp3)H-arylation of the corresponding 2S,6S-(6-methoxymorpholin-2-yl)carboxylic acid, readily available from glucose. According to the computational prevision and confirmed by IR and NMR data, the insertion of 3-Ar-β-Morph in a model foldamer represents a way to stabilize a PPII-like helix through the presence of two γ-turns, secondary structure motifs induced by the morpholine ring, and the trans-tertiary amide bond.
Collapse
Affiliation(s)
| | | | - Francesca Clerici
- DISFARM-Sez. Chimica Generale
e Organica “A. Marchesini”, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - Alessandro Contini
- DISFARM-Sez. Chimica Generale
e Organica “A. Marchesini”, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - M. Luisa Gelmi
- DISFARM-Sez. Chimica Generale
e Organica “A. Marchesini”, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
27
|
Hu QL, Hou KQ, Li J, Ge Y, Song ZD, Chan ASC, Xiong XF. Silanol: a bifunctional group for peptide synthesis and late-stage functionalization. Chem Sci 2020; 11:6070-6074. [PMID: 34094099 PMCID: PMC8159358 DOI: 10.1039/d0sc02439b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 12/27/2022] Open
Abstract
Chemical modification of a specific amino acid residue on peptides represents an efficient strategy to improve their pharmacokinetics and facilitates the potential to achieve post-synthetic diversification of peptides. Herein, we reported the first Pd-catalyzed late-stage ortho-olefination of Tyr residues on peptides with high chemo- and site-selectivity, by employing the easily attached and removable silanol as a bifunctional protecting group and directing group. Up to hexapeptides with variation on amino acid sequences or locations of the Tyr residue and different olefins were compatible with this protocol, which enriched the chemical toolbox for late-stage modification via C(sp2)-H functionalization. Furthermore, the orthogonal protection strategies of Tyr were also developed and could be applied to SPPS.
Collapse
Affiliation(s)
- Qi-Long Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| | - Ke-Qiang Hou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| | - Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| | - Yang Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| | - Zhen-Dong Song
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| | - Albert S C Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University 510006 Guangzhou Guangdong P. R. China
| |
Collapse
|
28
|
Gerry CJ, Schreiber SL. Recent achievements and current trajectories of diversity-oriented synthesis. Curr Opin Chem Biol 2020; 56:1-9. [DOI: 10.1016/j.cbpa.2019.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
|
29
|
Xia G, Zhuang Z, Liu LY, Schreiber SL, Melillo B, Yu JQ. Ligand-Enabled β-Methylene C(sp 3 )-H Arylation of Masked Aliphatic Alcohols. Angew Chem Int Ed Engl 2020; 59:7783-7787. [PMID: 32050036 PMCID: PMC7219561 DOI: 10.1002/anie.202000632] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 12/18/2022]
Abstract
Despite recent advances, reactivity and site-selectivity remain significant obstacles for the practical application of C(sp3 )-H bond functionalization methods. Here, we describe a system that combines a salicylic-aldehyde-derived L,X-type directing group with an electron-deficient 2-pyridone ligand to enable the β-methylene C(sp3 )-H arylation of aliphatic alcohols, which has not been possible previously. Notably, this protocol is compatible with heterocycles embedded in both alcohol substrates and aryl coupling partners. A site- and stereo-specific annulation of dihydrocholesterol and the synthesis of a key intermediate of englitazone illustrate the practicality of this method.
Collapse
Affiliation(s)
- Guoqin Xia
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhe Zhuang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Luo-Yan Liu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
30
|
Li H, Guo L, Feng X, Huo L, Zhu S, Chu L. Sequential C-O decarboxylative vinylation/C-H arylation of cyclic oxalates via a nickel-catalyzed multicomponent radical cascade. Chem Sci 2020; 11:4904-4910. [PMID: 34122946 PMCID: PMC8159219 DOI: 10.1039/d0sc01471k] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
A selective, sequential C-O decarboxylative vinylation/C-H arylation of cyclic alcohol derivatives enabled by visible-light photoredox/nickel dual catalysis is described. This protocol utilizes a multicomponent radical cascade process, i.e. decarboxylative vinylation/1,5-HAT/aryl cross-coupling, to achieve efficient, site-selective dual-functionalization of saturated cyclic hydrocarbons in one single operation. This synergistic protocol provides straightforward access to sp3-enriched scaffolds and an alternative retrosynthetic disconnection to diversely functionalized saturated ring systems from the simple starting materials.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Lei Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Xiaoliang Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Liping Huo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University Shanghai 201620 China
| |
Collapse
|
31
|
Guo R, Witherspoon BP, Brown MK. Evolution of a Strategy for the Enantioselective Synthesis of (-)-Cajanusine. J Am Chem Soc 2020; 142:5002-5006. [PMID: 32149511 PMCID: PMC7252469 DOI: 10.1021/jacs.0c00359] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The first enantioselective synthesis of (-)-cajanusine is presented. Key features of the route include a rapid synthesis of the [4.2.0]bicyclooctane core by an enantioselective isomerization/stereoselective [2+2]-cycloaddition strategy as well as prominent use of catalytic methods for bond construction. The evolution of the approach is also presented that highlights unexpected roadblocks and how novel solutions were developed.
Collapse
Affiliation(s)
- Renyu Guo
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Brittany P Witherspoon
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
32
|
Xia G, Zhuang Z, Liu L, Schreiber SL, Melillo B, Yu J. Ligand‐Enabled β‐Methylene C(sp
3
)−H Arylation of Masked Aliphatic Alcohols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guoqin Xia
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Zhe Zhuang
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Luo‐Yan Liu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program Broad Institute Cambridge MA 02142 USA
- Department of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
| | - Bruno Melillo
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- Chemical Biology and Therapeutics Science Program Broad Institute Cambridge MA 02142 USA
| | - Jin‐Quan Yu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
33
|
Diastereoselective Synthesis of 2,3,4-Trisubstituted Tetrahydrofurans via Thermally Reactive 1,5-Diene- tert-butyl Carbonates. Org Lett 2020; 22:842-847. [PMID: 31951142 DOI: 10.1021/acs.orglett.9b04306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report that 3,3-dicyano-1,5-dienes bearing tert-butyl carbonates can be thermally converted to 2,3,4-trisubstituted tetrahydrofurans. The transformation relies on two thermally reactive functional groups, a 1,5-diene and a tert-butyl carbonate, that react cooperatively to yield the furan scaffolds by thermal Cope rearrangement, Boc deprotection, and oxy-Michael addition. Described herein is background related to the discovery, optimization, and scope of the key transformation and representative functional group interconversion chemistry for the tetrahydrofuran scaffolds.
Collapse
|
34
|
Derosa J, Kang T, Tran VT, Wisniewski SR, Karunananda MK, Jankins TC, Xu KL, Engle KM. Nickel‐Catalyzed 1,2‐Diarylation of Alkenyl Carboxylates: A Gateway to 1,2,3‐Trifunctionalized Building Blocks. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Joseph Derosa
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Taeho Kang
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Van T. Tran
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Steven R. Wisniewski
- Chemical & Synthetic Development Bristol-Myers Squibb 1 Squibb Drive New Brunswick NJ 08903 USA
| | - Malkanthi K. Karunananda
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Tanner C. Jankins
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Kane L. Xu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Keary M. Engle
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
35
|
Derosa J, Kang T, Tran VT, Wisniewski SR, Karunananda MK, Jankins TC, Xu KL, Engle KM. Nickel‐Catalyzed 1,2‐Diarylation of Alkenyl Carboxylates: A Gateway to 1,2,3‐Trifunctionalized Building Blocks. Angew Chem Int Ed Engl 2019; 59:1201-1205. [DOI: 10.1002/anie.201913062] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Joseph Derosa
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Taeho Kang
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Van T. Tran
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Steven R. Wisniewski
- Chemical & Synthetic Development Bristol-Myers Squibb 1 Squibb Drive New Brunswick NJ 08903 USA
| | - Malkanthi K. Karunananda
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Tanner C. Jankins
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Kane L. Xu
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Keary M. Engle
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
36
|
|
37
|
Wang Y, Dix MM, Bianco G, Remsberg JR, Lee HY, Kalocsay M, Gygi SP, Forli S, Vite G, Lawrence RM, Parker CG, Cravatt BF. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs. Nat Chem 2019; 11:1113-1123. [PMID: 31659311 PMCID: PMC6874898 DOI: 10.1038/s41557-019-0351-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/10/2019] [Indexed: 11/29/2022]
Abstract
A fundamental challenge in chemical biology and medicine is to understand and expand the fraction of the human proteome that can be targeted by small molecules. We recently described a strategy that integrates fragment-based ligand discovery with chemical proteomics to furnish global portraits of reversible small-molecule/protein interactions in human cells. Excavating clear structure-activity relationships from these 'ligandability' maps, however, was confounded by the distinct physicochemical properties and corresponding overall protein-binding potential of individual fragments. Here, we describe a compelling solution to this problem by introducing a next-generation set of fully functionalized fragments differing only in absolute stereochemistry. Using these enantiomeric probe pairs, or 'enantioprobes', we identify numerous stereoselective protein-fragment interactions in cells and show that these interactions occur at functional sites on proteins from diverse classes. Our findings thus indicate that incorporating chirality into fully functionalized fragment libraries provides a robust and streamlined method to discover ligandable proteins in cells.
Collapse
Affiliation(s)
- Yujia Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Giulia Bianco
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jarrett R Remsberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Hsin-Yu Lee
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Marian Kalocsay
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Gregory Vite
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - R Michael Lawrence
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|