1
|
Nassir N, A Almarri M, Akter H, Hassan Khansaheb H, Uddin KMF, Abou Tayoun A, Du Plessis SS, Haber M, Alsheikh-Ali A, Uddin M. Advancing clinical genomics with Middle Eastern and South Asian pangenomes. Nat Med 2025; 31:725-727. [PMID: 40038508 DOI: 10.1038/s41591-025-03544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Affiliation(s)
- Nasna Nassir
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Mohamed A Almarri
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
- Genome Center, Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates
| | - Hosneara Akter
- Genetics and Genomic Medicine Centre (GGMC), NeuroGen Healthcare, Dhaka, Bangladesh
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Hamda Hassan Khansaheb
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - K M Furkan Uddin
- Genetics and Genomic Medicine Centre (GGMC), NeuroGen Healthcare, Dhaka, Bangladesh
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Stefan S Du Plessis
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Marc Haber
- Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Alawi Alsheikh-Ali
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates.
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates.
- Dubai Health, Dubai, United Arab Emirates.
| | - Mohammed Uddin
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates.
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates.
- GenomeArc, Mississauga, Ontario, Canada.
| |
Collapse
|
2
|
Purnomo GA, Kealy S, O'Connor S, Schapper A, Shaw B, Llamas B, Teixeira JC, Sudoyo H, Tobler R. The genetic origins and impacts of historical Papuan migrations into Wallacea. Proc Natl Acad Sci U S A 2024; 121:e2412355121. [PMID: 39689173 DOI: 10.1073/pnas.2412355121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024] Open
Abstract
The tropical archipelago of Wallacea was first settled by anatomically modern humans (AMH) by 50 thousand years ago (kya), with descendent populations thought to have remained genetically isolated prior to the arrival of Austronesian seafarers around 3.5 kya. Modern Wallaceans exhibit a longitudinal countergradient of Papuan- and Asian-related ancestries widely considered as evidence for mixing between local populations and Austronesian seafarers, though converging multidisciplinary evidence suggests that the Papuan-related component instead comes primarily from back-migrations from New Guinea. Here, we reconstruct Wallacean population genetic history using more than 250 newly reported genomes from 12 Wallacean and three West Papuan populations and confirm that the vast majority of Papuan-related ancestry in Wallacea (~75 to 100%) comes from prehistoric migrations originating in New Guinea and only a minor fraction is attributable to the founding AMH settlers. Mixing between Papuan and local Wallacean lineages appears to have been confined to the western and central parts of the archipelago and likely occurred contemporaneously with the widespread introduction of genes from Austronesian seafarers-which now comprise between ~40 and 85% of modern Wallacean ancestry-though dating historical admixture events remains challenging due to mixing continuing into the Historical Period. In conjunction with archaeological and linguistic records, our findings point to a dynamic Wallacean population history that was profoundly reshaped by the spread of Papuan genes, languages, and culture in the past 3,500 y.
Collapse
Affiliation(s)
- Gludhug A Purnomo
- Australian Centre for Ancient DNA, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, School of Biological Sciences, University of Adelaide, SA 5005, Australia
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute for Nanotechnology, Tangerang, Banten 15811, Indonesia
| | - Shimona Kealy
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT 2601, Australia
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT 2601, Australia
| | - Sue O'Connor
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT 2601, Australia
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT 2601, Australia
| | - Antoinette Schapper
- Vrije Universiteit, Amsterdam 1081, The Netherlands
- Lacito-CNRS, Villejuif 94800, France
| | - Ben Shaw
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT 2601, Australia
- Evolution of Cultural Diversity Initiative, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT 2601, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, School of Biological Sciences, University of Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
- Indigenous Genomics, The Kids Research Institute Australia, Adelaide, SA 5000, Australia
| | - Joao C Teixeira
- Australian Centre for Ancient DNA, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, School of Biological Sciences, University of Adelaide, SA 5005, Australia
- Evolution of Cultural Diversity Initiative, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT 2601, Australia
- Centre for Interdisciplinary Studies, University of Coimbra, Coimbra 3000-186, Portugal
| | - Herawati Sudoyo
- Genome Diversity and Disease Laboratory, Mochtar Riady Institute for Nanotechnology, Tangerang, Banten 15811, Indonesia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT 2601, Australia
- Evolution of Cultural Diversity Initiative, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Hubmann R, Hilgarth M, Löwenstern T, Lienhard A, Sima F, Reisinger M, Hobel-Kleisch C, Porpaczy E, Haferlach T, Hoermann G, Laccone F, Jungbauer C, Valent P, Staber PB, Shehata M, Jäger U. Somatic Recombination Between an Ancient and a Recent NOTCH2 Gene Variant Is Associated with the NOTCH2 Gain-of-Function Phenotype in Chronic Lymphocytic Leukemia. Int J Mol Sci 2024; 25:12581. [PMID: 39684291 DOI: 10.3390/ijms252312581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Constitutively active NOTCH2 signaling is a hallmark in chronic lymphocytic leukemia (CLL). The precise underlying defect remains obscure. Here we show that the mRNA sequence coding for the NOTCH2 negative regulatory region (NRR) is consistently deleted in CLL cells. The most common NOTCH2ΔNRR-DEL2 deletion is associated with two intronic single nucleotide variations (SNVs) which either create (CTTAT, G>A for rs2453058) or destroy (CTCGT, A>G for rs5025718) a putative splicing branch point sequence (BPS). Phylogenetic analysis demonstrates that rs2453058 is part of an ancient NOTCH2 gene variant (*1A01) which is associated with type 2 diabetes mellitus (T2DM) and is two times more frequent in Europeans than in East Asians, resembling the differences in CLL incidence. In contrast, rs5025718 belongs to a recent NOTCH2 variant (*1a4) that dominates the world outside Africa. Nanopore sequencing indicates that somatic reciprocal crossing over between rs2453058 (*1A01) and rs5025718 (*1a4) leads to recombined NOTCH2 alleles with altered BPS patterns in NOTCH2*1A01/*1a4 CLL cases. This would explain the loss of the NRR domain by aberrant pre-mRNA splicing and consequently the NOTCH2 gain-of-function phenotype. Together, our findings suggest that somatic recombination of inherited NOTCH2 variants might be relevant to CLL etiology and may at least partly explain its geographical clustering.
Collapse
Affiliation(s)
- Rainer Hubmann
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Martin Hilgarth
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tamara Löwenstern
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Lienhard
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Filip Sima
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Manuel Reisinger
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Claudia Hobel-Kleisch
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Edit Porpaczy
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Gregor Hoermann
- MLL Munich Leukemia Laboratory, 81377 Munich, Germany
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, 1040 Vienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Philipp B Staber
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Medhat Shehata
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Yermakovich D, André M, Brucato N, Kariwiga J, Leavesley M, Pankratov V, Mondal M, Ricaut FX, Dannemann M. Denisovan admixture facilitated environmental adaptation in Papua New Guinean populations. Proc Natl Acad Sci U S A 2024; 121:e2405889121. [PMID: 38889149 PMCID: PMC11214076 DOI: 10.1073/pnas.2405889121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Neandertals and Denisovans, having inhabited distinct regions in Eurasia and possibly Oceania for over 200,000 y, experienced ample time to adapt to diverse environmental challenges these regions presented. Among present-day human populations, Papua New Guineans (PNG) stand out as one of the few carrying substantial amounts of both Neandertal and Denisovan DNA, a result of past admixture events with these archaic human groups. This study investigates the distribution of introgressed Denisovan and Neandertal DNA within two distinct PNG populations, residing in the highlands of Mt Wilhelm and the lowlands of Daru Island. These locations exhibit unique environmental features, some of which may parallel the challenges that archaic humans once confronted and adapted to. Our results show that PNG highlanders carry higher levels of Denisovan DNA compared to PNG lowlanders. Among the Denisovan-like haplotypes with higher frequencies in highlander populations, those exhibiting the greatest frequency difference compared to lowlander populations also demonstrate more pronounced differences in population frequencies than frequency-matched nonarchaic variants. Two of the five most highly differentiated of those haplotypes reside in genomic areas linked to brain development genes. Conversely, Denisovan-like haplotypes more frequent in lowlanders overlap with genes associated with immune response processes. Our findings suggest that Denisovan DNA has provided genetic variation associated with brain biology and immune response to PNG genomes, some of which might have facilitated adaptive processes to environmental challenges.
Collapse
Affiliation(s)
- Danat Yermakovich
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Mathilde André
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Nicolas Brucato
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Toulouse Institut National Polytechnique, Université Toulouse 3–Paul Sabatier, cedex 9, Toulouse31062, France
| | - Jason Kariwiga
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
- School of Social Science, University of Queensland, St. Lucia, QLD4072, Australia
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
- The Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage & College of Arts, Society and Education, James Cook University, Cairns, QLD4870, Australia
| | - Vasili Pankratov
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Mayukh Mondal
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel24118, Germany
| | - François-Xavier Ricaut
- Centre de Recherche sur la Biodiversité et l'Environnement, Université de Toulouse, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Toulouse Institut National Polytechnique, Université Toulouse 3–Paul Sabatier, cedex 9, Toulouse31062, France
| | - Michael Dannemann
- Center of Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| |
Collapse
|
5
|
Peyrégne S, Slon V, Kelso J. More than a decade of genetic research on the Denisovans. Nat Rev Genet 2024; 25:83-103. [PMID: 37723347 DOI: 10.1038/s41576-023-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 09/20/2023]
Abstract
Denisovans, a group of now extinct humans who lived in Eastern Eurasia in the Middle and Late Pleistocene, were first identified from DNA sequences just over a decade ago. Only ten fragmentary remains from two sites have been attributed to Denisovans based entirely on molecular information. Nevertheless, there has been great interest in using genetic data to understand Denisovans and their place in human history. From the reconstruction of a single high-quality genome, it has been possible to infer their population history, including events of admixture with other human groups. Additionally, the identification of Denisovan DNA in the genomes of present-day individuals has provided insights into the timing and routes of dispersal of ancient modern humans into Asia and Oceania, as well as the contributions of archaic DNA to the physiology of present-day people. In this Review, we synthesize more than a decade of research on Denisovans, reconcile controversies and summarize insights into their population history and phenotype. We also highlight how our growing knowledge about Denisovans has provided insights into our own evolutionary history.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Viviane Slon
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Janet Kelso
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
6
|
Dokuru DR, Horwitz TB, Freis SM, Stallings MC, Ehringer MA. South Asia: The Missing Diverse in Diversity. Behav Genet 2024; 54:51-62. [PMID: 37917228 PMCID: PMC11129896 DOI: 10.1007/s10519-023-10161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
South Asia, making up around 25% of the world's population, encompasses a wide range of individuals with tremendous genetic and environmental diversity. This region, which spans eight countries, is home to over 4500 anthropologically defined groups that speak numerous languages and have an array of religious beliefs and cultures, making it one of the most diverse places in the world. Much of the region's rich genetic diversity and structure is the result of a complex combination of population history, migration patterns, and endogamous practices. Despite the overwhelming size and diversity, South Asians have often been underrepresented in genetic research, making up less than 2% of the participants in genetic studies. This has led to a lack of population specific understanding of genetic disease risks. We aim to raise awareness about underlying genetic diversity in this ancestry group, call attention to the lack of representation of the group, and to highlight strategies for future studies in South Asians.
Collapse
Affiliation(s)
- Deepika R Dokuru
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, 80303, USA.
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
| | - Tanya B Horwitz
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, 80303, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Samantha M Freis
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, 80303, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, 80303, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30 St, Boulder, CO, 80303, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
7
|
Rigaud S, Rybin EP, Khatsenovich AM, Queffelec A, Paine CH, Gunchinsuren B, Talamo S, Marchenko DV, Bolorbat T, Odsuren D, Gillam JC, Izuho M, Fedorchenko AY, Odgerel D, Shelepaev R, Hublin JJ, Zwyns N. Symbolic innovation at the onset of the Upper Paleolithic in Eurasia shown by the personal ornaments from Tolbor-21 (Mongolia). Sci Rep 2023; 13:9545. [PMID: 37308668 PMCID: PMC10261033 DOI: 10.1038/s41598-023-36140-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Figurative depictions in art first occur ca. 50,000 years ago in Europe, Africa, and Southeast Asia. Considered by most as an advanced form of symbolic behavior, they are restricted to our species. Here, we report a piece of ornament interpreted as a phallus-like representation. It was found in a 42,000 ca.-year-old Upper Paleolithic archaeological layer at the open-air archaeological site of Tolbor-21, in Mongolia. Mineralogical, microscopic, and rugosimetric analyses points toward the allochthonous origin of the pendant and a complex functional history. Three-dimensional phallic pendants are unknown in the Paleolithic record, and this discovery predates the earliest known sexed anthropomorphic representation. It attests that hunter-gatherer communities used sex anatomical attributes as symbols at a very early stage of their dispersal in the region. The pendant was produced during a period that overlaps with age estimates for early introgression events between Homo sapiens and Denisovans, and in a region where such encounters are plausible.
Collapse
Grants
- CNRS International Associate Laboratory ARTEMIR “Multidisciplinary Research on Prehistoric Art in Eurasia” and the French National Research Agency (ANR) in the frame of the Programme IdEx Bordeaux (ANR-10-IDEX-03-02, Emergence NETAWA project). This research benefited from the scientific framework of the University of Bordeaux's IdEx "Investments for the Future" program / GPR "Human Past".
- The Russian Scientific Foundation supports ER, AMK and DM for field research and lithic analysis (project #19-18-00198) and faunal and spatial analysis (project #19-78-10112). The National Scientific Foundation (#1560784) supports NZ field research in the Ikh-Tulberiin-Gol.
- the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No. 803147 RESOLUTION, https://site.unibo.it/resolution-erc/en)
- Grant in-Aid for Scientific Research on Innovative Areas (Grant No. 1802 for FY2016-2020 led by Y. Nishiaki) from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- the Leakey Foundation, the Max Planck Society, the UC-Davis Department of Anthropology and the UC-Davis Academic Senate, and the Hellman Foundation
Collapse
Affiliation(s)
- Solange Rigaud
- CNRS, Université de Bordeaux, UMR5199 PACEA Bâtiment B2 Allée Geoffroy Saint Hilaire, 33615, Pessac, France.
| | - Evgeny P Rybin
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, 17 Lavrentiev Ave., Novosibirsk, Russia, 630090.
| | - Arina M Khatsenovich
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, 17 Lavrentiev Ave., Novosibirsk, Russia, 630090
| | - Alain Queffelec
- CNRS, Université de Bordeaux, UMR5199 PACEA Bâtiment B2 Allée Geoffroy Saint Hilaire, 33615, Pessac, France
| | - Clea H Paine
- Archaeology Institute, University of the Highlands and Islands, Kirkwall, UK
| | - Byambaa Gunchinsuren
- Institute of Archaeology, Mongolian Academy of Sciences, Peace Avenue, Ulaanbaatar, 13330, Mongolia
| | - Sahra Talamo
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Daria V Marchenko
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, 17 Lavrentiev Ave., Novosibirsk, Russia, 630090
| | - Tsedendorj Bolorbat
- Institute of Archaeology, Mongolian Academy of Sciences, Peace Avenue, Ulaanbaatar, 13330, Mongolia
| | - Davaakhuu Odsuren
- Institute of Archaeology, Mongolian Academy of Sciences, Peace Avenue, Ulaanbaatar, 13330, Mongolia
| | | | - Masami Izuho
- Faculty of Social Sciences and Humanities, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Alexander Yu Fedorchenko
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, 17 Lavrentiev Ave., Novosibirsk, Russia, 630090
| | | | - Roman Shelepaev
- V.S. Sobolev's Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Science, Ak. Koptyug Avenue 3, Novosibirsk, Russia, 630090
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Chaire de Paléoanthropologie, Collège de France, 75005, Paris, France
| | - Nicolas Zwyns
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Department of Anthropology, University of California-Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Tobler R, Souilmi Y, Huber CD, Bean N, Turney CSM, Grey ST, Cooper A. The role of genetic selection and climatic factors in the dispersal of anatomically modern humans out of Africa. Proc Natl Acad Sci U S A 2023; 120:e2213061120. [PMID: 37220274 PMCID: PMC10235988 DOI: 10.1073/pnas.2213061120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/14/2023] [Indexed: 05/25/2023] Open
Abstract
The evolutionarily recent dispersal of anatomically modern humans (AMH) out of Africa (OoA) and across Eurasia provides a unique opportunity to examine the impacts of genetic selection as humans adapted to multiple new environments. Analysis of ancient Eurasian genomic datasets (~1,000 to 45,000 y old) reveals signatures of strong selection, including at least 57 hard sweeps after the initial AMH movement OoA, which have been obscured in modern populations by extensive admixture during the Holocene. The spatiotemporal patterns of these hard sweeps provide a means to reconstruct early AMH population dispersals OoA. We identify a previously unsuspected extended period of genetic adaptation lasting ~30,000 y, potentially in the Arabian Peninsula area, prior to a major Neandertal genetic introgression and subsequent rapid dispersal across Eurasia as far as Australia. Consistent functional targets of selection initiated during this period, which we term the Arabian Standstill, include loci involved in the regulation of fat storage, neural development, skin physiology, and cilia function. Similar adaptive signatures are also evident in introgressed archaic hominin loci and modern Arctic human groups, and we suggest that this signal represents selection for cold adaptation. Surprisingly, many of the candidate selected loci across these groups appear to directly interact and coordinately regulate biological processes, with a number associated with major modern diseases including the ciliopathies, metabolic syndrome, and neurodegenerative disorders. This expands the potential for ancestral human adaptation to directly impact modern diseases, providing a platform for evolutionary medicine.
Collapse
Affiliation(s)
- Raymond Tobler
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Environment Institute, The University of Adelaide, Adelaide, SA5005, Australia
| | - Christian D. Huber
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Nigel Bean
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, SA5005, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Chris S. M. Turney
- Division of Research, University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Shane T. Grey
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW2052, Australia
- Transplantation Immunology Group, Translation Science Pillar, Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Blue Sky Genetics, Ashton, SA5137, Australia
| |
Collapse
|
9
|
Auerbach BM, Savell KRR, Agosto ER. Morphology, evolution, and the whole organism imperative: Why evolutionary questions need multi-trait evolutionary quantitative genetics. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 37060292 DOI: 10.1002/ajpa.24733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Since Washburn's New Physical Anthropology, researchers have sought to understand the complexities of morphological evolution among anatomical regions in human and non-human primates. Researchers continue, however, to preferentially use comparative and functional approaches to examine complex traits, but these methods cannot address questions about evolutionary process and often conflate function with fitness. Moreover, researchers also tend to examine anatomical elements in isolation, which implicitly assumes independent evolution among different body regions. In this paper, we argue that questions asked in primate evolution are best examined using multiple anatomical regions subjected to model-bound methods built from an understanding of evolutionary quantitative genetics. A nascent but expanding number of studies over the last two decades use this approach, examining morphological integration, evolvability, and selection modeling. To help readers learn how to use these methods, we review fundamentals of evolutionary processes within a quantitative genetic framework, explore the importance of neutral evolutionary theory, and explain the basics of evolutionary quantitative genetics, namely the calculation of evolutionary potential for multiple traits in response to selection. Leveraging these methods, we demonstrate their use to understand non-independence in possible evolutionary responses across the limbs, limb girdles, and basicranium of humans. Our results show that model-bound quantitative genetic methods can reveal unexpected genetic covariances among traits that create a novel but measurable understanding of evolutionary complexity among multiple traits. We advocate for evolutionary quantitative genetic methods to be a standard whenever appropriate to keep studies of primate morphological evolution relevant for the next seventy years and beyond.
Collapse
Affiliation(s)
- Benjamin M Auerbach
- Department of Anthropology, The University of Tennessee, Knoxville, Tennessee, USA
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Kristen R R Savell
- Department of Biology, Sacred Heart University, Fairfield, Connecticut, USA
| | - Elizabeth R Agosto
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Antón SC, Middleton ER. Making meaning from fragmentary fossils: Early Homo in the Early to early Middle Pleistocene. J Hum Evol 2023; 179:103307. [PMID: 37030994 DOI: 10.1016/j.jhevol.2022.103307] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 04/10/2023]
Abstract
In celebration of the 50th anniversary of the Journal of Human Evolution, we re-evaluate the fossil record for early Homo (principally Homo erectus, Homo habilis, and Homo rudolfensis) from early diversification and dispersal in the Early Pleistocene to the ultimate demise of H. erectus in the early Middle Pleistocene. The mid-1990s marked an important historical turning point in our understanding of early Homo with the redating of key H. erectus localities, the discovery of small H. erectus in Asia, and the recovery of an even earlier presence of early Homo in Africa. As such, we compare our understanding of early Homo before and after this time and discuss how the order of fossil discovery and a focus on anchor specimens has shaped, and in many ways biased, our interpretations of early Homo species and the fossils allocated to them. Fragmentary specimens may counter conventional wisdom but are often overlooked in broad narratives. We recognize at least three different cranial and two or three pelvic morphotypes of early Homo. Just one postcranial morph aligns with any certainty to a cranial species, highlighting the importance of explicitly identifying how we link specimens together and to species; we offer two ways of visualizing these connections. Chronologically and morphologically H. erectus is a member of early Homo, not a temporally more recent species necessarily evolved from either H. habilis or H. rudolfensis. Nonetheless, an ancestral-descendant notion of their evolution influences expectations around the anatomy of missing elements, especially the foot. Weak support for long-held notions of postcranial modernity in H. erectus raises the possibility of alternative drivers of dispersal. New observations suggest that the dearth of faces in later H. erectus may mask taxonomic diversity in Asia and suggest various later mid-Pleistocene populations could derive from either Asia or Africa. Future advances will rest on the development of nuanced ways to affiliate fossils, greater transparency of implicit assumptions, and attention to detailed life history information for comparative collections; all critical pursuits for future research given the great potential they have to enrich our evolutionary reconstructions for the next fifty years and beyond.
Collapse
Affiliation(s)
- Susan C Antón
- Center for the Study of Human Origins, Department of Anthropology, New York University, NY, NY 10003, USA.
| | - Emily R Middleton
- Department of Anthropology, University of Wisconsin-Milwaukee, WI 53211, USA
| |
Collapse
|
11
|
Taufik L, Teixeira JC, Llamas B, Sudoyo H, Tobler R, Purnomo GA. Human Genetic Research in Wallacea and Sahul: Recent Findings and Future Prospects. Genes (Basel) 2022; 13:genes13122373. [PMID: 36553640 PMCID: PMC9778601 DOI: 10.3390/genes13122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Genomic sequence data from worldwide human populations have provided a range of novel insights into our shared ancestry and the historical migrations that have shaped our global genetic diversity. However, a comprehensive understanding of these fundamental questions has been impeded by the lack of inclusion of many Indigenous populations in genomic surveys, including those from the Wallacean archipelago (which comprises islands of present-day Indonesia located east and west of Wallace's and Lydekker's Lines, respectively) and the former continent of Sahul (which once combined New Guinea and Australia during lower sea levels in the Pleistocene). Notably, these regions have been important areas of human evolution throughout the Late Pleistocene, as documented by diverse fossil and archaeological records which attest to the regional presence of multiple hominin species prior to the arrival of anatomically modern human (AMH) migrants. In this review, we collate and discuss key findings from the past decade of population genetic and phylogeographic literature focussed on the hominin history in Wallacea and Sahul. Specifically, we examine the evidence for the timing and direction of the ancient AMH migratory movements and subsequent hominin mixing events, emphasising several novel but consistent results that have important implications for addressing these questions. Finally, we suggest potentially lucrative directions for future genetic research in this key region of human evolution.
Collapse
Affiliation(s)
- Leonard Taufik
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia
- Correspondence: (L.T.); (G.A.P.)
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, ACT 2601, Australia
- Centre for Interdisciplinary Studies, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 2601, Australia
- Indigenous Genomics Research Group, Telethon Kids Institute, Adelaide, SA 5001, Australia
| | - Herawati Sudoyo
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, ACT 2601, Australia
| | - Gludhug A. Purnomo
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (L.T.); (G.A.P.)
| |
Collapse
|
12
|
Forni D, Cagliani R, Clerici M, Sironi M. Disease-causing human viruses: novelty and legacy. Trends Microbiol 2022; 30:1232-1242. [PMID: 35902319 DOI: 10.1016/j.tim.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/13/2023]
Abstract
About 270 viruses are known to infect humans. Some of these viruses have been known for centuries, whereas others have recently emerged. During their evolutionary history, humans have moved out of Africa to populate the world. In historical times, human migrations resulted in the displacement of large numbers of people. All these events determined the movement and dispersal of human-infecting viruses. Technological advances have resulted in the characterization of the genetic variability of human viruses, both in extant and in archaeological samples. Field studies investigated the diversity of viruses hosted by other animals. In turn, these advances provided insight into the evolutionary history of human viruses back in time and defined the key events through which they originated and spread.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy; Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| |
Collapse
|
13
|
Brumm A, Bulbeck D, Hakim B, Burhan B, Oktaviana AA, Sumantri I, Zhao JX, Aubert M, Sardi R, McGahan D, Saiful AM, Adhityatama S, Kaifu Y. Skeletal remains of a Pleistocene modern human (Homo sapiens) from Sulawesi. PLoS One 2021; 16:e0257273. [PMID: 34587195 PMCID: PMC8480874 DOI: 10.1371/journal.pone.0257273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Major gaps remain in our knowledge of the early history of Homo sapiens in Wallacea. By 70-60 thousand years ago (ka), modern humans appear to have entered this distinct biogeographical zone between continental Asia and Australia. Despite this, there are relatively few Late Pleistocene sites attributed to our species in Wallacea. H. sapiens fossil remains are also rare. Previously, only one island in Wallacea (Alor in the southeastern part of the archipelago) had yielded skeletal evidence for pre-Holocene modern humans. Here we report on the first Pleistocene human skeletal remains from the largest Wallacean island, Sulawesi. The recovered elements consist of a nearly complete palate and frontal process of a modern human right maxilla excavated from Leang Bulu Bettue in the southwestern peninsula of the island. Dated by several different methods to between 25 and 16 ka, the maxilla belongs to an elderly individual of unknown age and sex, with small teeth (only M1 to M3 are extant) that exhibit severe occlusal wear and related dental pathologies. The dental wear pattern is unusual. This fragmentary specimen, though largely undiagnostic with regards to morphological affinity, provides the only direct insight we currently have from the fossil record into the identity of the Late Pleistocene people of Sulawesi.
Collapse
Affiliation(s)
- Adam Brumm
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, Australia
| | - David Bulbeck
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, Australia
| | | | - Basran Burhan
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, Australia
| | - Adhi Agus Oktaviana
- Pusat Penelitian Arkeologi Nasional (ARKENAS), Jakarta, Indonesia
- Place, Evolution and Rock Art Heritage Unit, Griffith Centre for Social and Cultural Research, Griffith University, Gold Coast, Australia
| | - Iwan Sumantri
- Archaeology Laboratory, Hasanuddin University, Makassar, Indonesia
| | - Jian-xin Zhao
- School of Earth & Environmental Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Maxime Aubert
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, Australia
- Place, Evolution and Rock Art Heritage Unit, Griffith Centre for Social and Cultural Research, Griffith University, Gold Coast, Australia
| | - Ratno Sardi
- Balai Arkeologi Sulawesi Selatan, Makassar, Indonesia
| | - David McGahan
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, Australia
| | | | | | - Yousuke Kaifu
- The University Museum, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
14
|
Brucato N, André M, Tsang R, Saag L, Kariwiga J, Sesuki K, Beni T, Pomat W, Muke J, Meyer V, Boland A, Deleuze JF, Sudoyo H, Mondal M, Pagani L, Romero IG, Metspalu M, Cox MP, Leavesley M, Ricaut FX. Papua New Guinean genomes reveal the complex settlement of north Sahul. Mol Biol Evol 2021; 38:5107-5121. [PMID: 34383935 PMCID: PMC8557464 DOI: 10.1093/molbev/msab238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The settlement of Sahul, the lost continent of Oceania, remains one of the most ancient and debated human migrations. Modern New Guineans inherited a unique genetic diversity tracing back 50,000 years, and yet there is currently no model reconstructing their past population dynamics. We generated 58 new whole genome sequences from Papua New Guinea, filling geographical gaps in previous sampling, specifically to address alternative scenarios of the initial migration to Sahul and the settlement of New Guinea. Here, we present the first genomic models for the settlement of northeast Sahul considering one or two migrations from Wallacea. Both models fit our dataset, reinforcing the idea that ancestral groups to New Guinean and Indigenous Australians split early, potentially during their migration in Wallacea where the northern route could have been favored. The earliest period of human presence in Sahul was an era of interactions and gene flow between related but already differentiated groups, from whom all modern New Guineans, Bismarck islanders and Indigenous Australians descend. The settlement of New Guinea was probably initiated from its southeast region, where the oldest archaeological sites have been found. This was followed by two migrations into the south and north lowlands that ultimately reached the west and east highlands. We also identify ancient gene flows between populations in New Guinea, Australia, East Indonesia and the Bismarck Archipelago, emphasizing the fact that the anthropological landscape during the early period of Sahul settlement was highly dynamic rather than the traditional view of extensive isolation.
Collapse
Affiliation(s)
- Nicolas Brucato
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France
| | - Mathilde André
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France.,Institute of Genomics, University of Tartu, Tartu, Tartumaa 51010, Estonia
| | - Roxanne Tsang
- School of Humanities, Languages and Social Science and Place, Evolution and Rock Art Heritage Unit, Griffith University Centre for Social and Cultural Research, Griffith University, Australia.,Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
| | - Lauri Saag
- Institute of Genomics, University of Tartu, Tartu, Tartumaa 51010, Estonia
| | - Jason Kariwiga
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea.,School of Social Science, University of Queensland, Australia, St Lucia, QLD 4072, Australia
| | - Kylie Sesuki
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
| | - Teppsy Beni
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - John Muke
- Social Research Institute, Papua New Guinea
| | - Vincent Meyer
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France
| | - Herawati Sudoyo
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia
| | - Mayukh Mondal
- Institute of Genomics, University of Tartu, Tartu, Tartumaa 51010, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Tartumaa 51010, Estonia.,Department of Biology, University of Padua, Italy
| | | | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu, Tartumaa 51010, Estonia
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Matthew Leavesley
- Strand of Anthropology, Sociology and Archaeology, School of Humanities and Social Sciences, University of Papua New Guinea, PO Box 320, University 134, National Capital District, Papua New Guinea.,College of Arts, Society and Education, James Cook University, P.O. Box 6811, Cairns, Queensland, 4870, Australia.,ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Wollongong, Wollongong, New south Wales, 2522, Australia
| | - François-Xavier Ricaut
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France
| |
Collapse
|
15
|
Mitogenomes Reveal Two Major Influxes of Papuan Ancestry across Wallacea Following the Last Glacial Maximum and Austronesian Contact. Genes (Basel) 2021; 12:genes12070965. [PMID: 34202821 PMCID: PMC8306604 DOI: 10.3390/genes12070965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
The tropical archipelago of Wallacea contains thousands of individual islands interspersed between mainland Asia and Near Oceania, and marks the location of a series of ancient oceanic voyages leading to the peopling of Sahul—i.e., the former continent that joined Australia and New Guinea at a time of lowered sea level—by 50,000 years ago. Despite the apparent deep antiquity of human presence in Wallacea, prior population history research in this region has been hampered by patchy archaeological and genetic records and is largely concentrated upon more recent history that follows the arrival of Austronesian seafarers ~3000–4000 years ago (3–4 ka). To shed light on the deeper history of Wallacea and its connections with New Guinea and Australia, we performed phylogeographic analyses on 656 whole mitogenomes from these three regions, including 186 new samples from eight Wallacean islands and three West Papuan populations. Our results point to a surprisingly dynamic population history in Wallacea, marked by two periods of extensive demographic change concentrated around the Last Glacial Maximum ~15 ka and post-Austronesian contact ~3 ka. These changes appear to have greatly diminished genetic signals informative about the original peopling of Sahul, and have important implications for our current understanding of the population history of the region.
Collapse
|
16
|
Spitzer M. Unsere Vorfahren. NERVENHEILKUNDE 2021; 40:492-510. [DOI: 10.1055/a-1389-6941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
17
|
Widespread Denisovan ancestry in Island Southeast Asia but no evidence of substantial super-archaic hominin admixture. Nat Ecol Evol 2021; 5:616-624. [PMID: 33753899 DOI: 10.1038/s41559-021-01408-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
The hominin fossil record of Island Southeast Asia (ISEA) indicates that at least two endemic 'super-archaic' species-Homo luzonensis and H. floresiensis-were present around the time anatomically modern humans arrived in the region >50,000 years ago. Intriguingly, contemporary human populations across ISEA carry distinct genomic traces of ancient interbreeding events with Denisovans-a separate hominin lineage that currently lacks a fossil record in ISEA. To query this apparent disparity between fossil and genetic evidence, we performed a comprehensive search for super-archaic introgression in >400 modern human genomes, including >200 from ISEA. Our results corroborate widespread Denisovan ancestry in ISEA populations, but fail to detect any substantial super-archaic admixture signals compatible with the endemic fossil record of ISEA. We discuss the implications of our findings for the understanding of hominin history in ISEA, including future research directions that might help to unlock more details about the prehistory of the enigmatic Denisovans.
Collapse
|
18
|
Carlhoff S, Duli A, Nägele K, Nur M, Skov L, Sumantri I, Oktaviana AA, Hakim B, Burhan B, Syahdar FA, McGahan DP, Bulbeck D, Perston YL, Newman K, Saiful AM, Ririmasse M, Chia S, Hasanuddin, Pulubuhu DAT, Suryatman, Supriadi, Jeong C, Peter BM, Prüfer K, Powell A, Krause J, Posth C, Brumm A. Genome of a middle Holocene hunter-gatherer from Wallacea. Nature 2021; 596:543-547. [PMID: 34433944 PMCID: PMC8387238 DOI: 10.1038/s41586-021-03823-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Much remains unknown about the population history of early modern humans in southeast Asia, where the archaeological record is sparse and the tropical climate is inimical to the preservation of ancient human DNA1. So far, only two low-coverage pre-Neolithic human genomes have been sequenced from this region. Both are from mainland Hòabìnhian hunter-gatherer sites: Pha Faen in Laos, dated to 7939-7751 calibrated years before present (yr cal BP; present taken as AD 1950), and Gua Cha in Malaysia (4.4-4.2 kyr cal BP)1. Here we report, to our knowledge, the first ancient human genome from Wallacea, the oceanic island zone between the Sunda Shelf (comprising mainland southeast Asia and the continental islands of western Indonesia) and Pleistocene Sahul (Australia-New Guinea). We extracted DNA from the petrous bone of a young female hunter-gatherer buried 7.3-7.2 kyr cal BP at the limestone cave of Leang Panninge2 in South Sulawesi, Indonesia. Genetic analyses show that this pre-Neolithic forager, who is associated with the 'Toalean' technocomplex3,4, shares most genetic drift and morphological similarities with present-day Papuan and Indigenous Australian groups, yet represents a previously unknown divergent human lineage that branched off around the time of the split between these populations approximately 37,000 years ago5. We also describe Denisovan and deep Asian-related ancestries in the Leang Panninge genome, and infer their large-scale displacement from the region today.
Collapse
Affiliation(s)
- Selina Carlhoff
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany ,grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Akin Duli
- grid.412001.60000 0000 8544 230XDepartemen Arkeologi, Fakultas Ilmu Budaya, Universitas Hasanuddin, Makassar, Indonesia
| | - Kathrin Nägele
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany ,grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Muhammad Nur
- grid.412001.60000 0000 8544 230XDepartemen Arkeologi, Fakultas Ilmu Budaya, Universitas Hasanuddin, Makassar, Indonesia
| | - Laurits Skov
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Iwan Sumantri
- grid.412001.60000 0000 8544 230XDepartemen Arkeologi, Fakultas Ilmu Budaya, Universitas Hasanuddin, Makassar, Indonesia
| | - Adhi Agus Oktaviana
- grid.512005.30000 0001 2178 7840Pusat Penelitian Arkeologi Nasional (ARKENAS), Jakarta, Indonesia ,grid.1022.10000 0004 0437 5432Place, Evolution and Rock Art Heritage Unit, Griffith Centre for Social and Cultural Research, Griffith University, Gold Coast, Queensland Australia
| | - Budianto Hakim
- grid.511616.4Balai Arkeologi Sulawesi Selatan, Makassar, Indonesia
| | - Basran Burhan
- grid.1022.10000 0004 0437 5432Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland Australia
| | | | - David P. McGahan
- grid.1022.10000 0004 0437 5432Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland Australia
| | - David Bulbeck
- grid.1001.00000 0001 2180 7477Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Canberra, Australian Capital Territory Australia
| | - Yinika L. Perston
- grid.1022.10000 0004 0437 5432Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland Australia
| | - Kim Newman
- grid.1022.10000 0004 0437 5432Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland Australia
| | | | - Marlon Ririmasse
- grid.512005.30000 0001 2178 7840Pusat Penelitian Arkeologi Nasional (ARKENAS), Jakarta, Indonesia
| | - Stephen Chia
- grid.11875.3a0000 0001 2294 3534Centre for Global Archaeological Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Hasanuddin
- grid.511616.4Balai Arkeologi Sulawesi Selatan, Makassar, Indonesia
| | - Dwia Aries Tina Pulubuhu
- grid.412001.60000 0000 8544 230XDepartemen Sosiologi, Fakultas Ilmu Sosial, Universitas Hasanuddin, Makassar, Indonesia
| | - Suryatman
- grid.511616.4Balai Arkeologi Sulawesi Selatan, Makassar, Indonesia
| | - Supriadi
- grid.412001.60000 0000 8544 230XDepartemen Arkeologi, Fakultas Ilmu Budaya, Universitas Hasanuddin, Makassar, Indonesia
| | - Choongwon Jeong
- grid.31501.360000 0004 0470 5905School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Benjamin M. Peter
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kay Prüfer
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany ,grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam Powell
- grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany ,grid.419518.00000 0001 2159 1813Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cosimo Posth
- grid.469873.70000 0004 4914 1197Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany ,grid.10392.390000 0001 2190 1447Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Adam Brumm
- grid.1022.10000 0004 0437 5432Australian Research Centre for Human Evolution, Griffith University, Brisbane, Queensland Australia
| |
Collapse
|
19
|
Past Extinctions of Homo Species Coincided with Increased Vulnerability to Climatic Change. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.oneear.2020.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Rees JS, Castellano S, Andrés AM. The Genomics of Human Local Adaptation. Trends Genet 2020; 36:415-428. [DOI: 10.1016/j.tig.2020.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/23/2023]
|