1
|
Kumar KK, Aburawi EH, Ljubisavljevic M, Leow MKS, Feng X, Ansari SA, Emerald BS. Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues. Clin Epigenetics 2024; 16:78. [PMID: 38862980 PMCID: PMC11167878 DOI: 10.1186/s13148-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetes mellitus is a chronic disease that impairs metabolism, and its prevalence has reached an epidemic proportion globally. Most people affected are with type 2 diabetes mellitus (T2DM), which is caused by a decline in the numbers or functioning of pancreatic endocrine islet cells, specifically the β-cells that release insulin in sufficient quantity to overcome any insulin resistance of the metabolic tissues. Genetic and epigenetic factors have been implicated as the main contributors to the T2DM. Epigenetic modifiers, histone deacetylases (HDACs), are enzymes that remove acetyl groups from histones and play an important role in a variety of molecular processes, including pancreatic cell destiny, insulin release, insulin production, insulin signalling, and glucose metabolism. HDACs also govern other regulatory processes related to diabetes, such as oxidative stress, inflammation, apoptosis, and fibrosis, revealed by network and functional analysis. This review explains the current understanding of the function of HDACs in diabetic pathophysiology, the inhibitory role of various HDAC inhibitors (HDACi), and their functional importance as biomarkers and possible therapeutic targets for T2DM. While their role in T2DM is still emerging, a better understanding of the role of HDACi may be relevant in improving insulin sensitivity, protecting β-cells and reducing T2DM-associated complications, among others.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Elhadi Husein Aburawi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Melvin Khee Shing Leow
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
- Dept of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Program, Singapore, Singapore
| | - Xu Feng
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
da Fonseca ACP, Assis ISDS, Salum KCR, Palhinha L, Abreu GDM, Zembrzuski VM, Campos Junior M, Nogueira-Neto JF, Cambraia A, Souza Junior MLF, Maya-Monteiro CM, Cabello PH, Bozza PT, Carneiro JRI. Genetic variants in DBC1, SIRT1, UCP2 and ADRB2 as potential biomarkers for severe obesity and metabolic complications. Front Genet 2024; 15:1363417. [PMID: 38841722 PMCID: PMC11151296 DOI: 10.3389/fgene.2024.1363417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Obesity is a multifactorial disease associated with the development of many comorbidities. This disease is associated with several metabolic alterations; however, it has been shown that some individuals with obesity do not exhibit metabolic syndrome. Adipose tissue neutralizes the detrimental effects of circulating fatty acids, ectopic deposition, and inflammation, among others, through its esterification into neutral lipids that are stored in the adipocyte. However, when the adipocyte is overloaded, i.e., its expansion capacity is exceeded, this protection is lost, resulting in fatty acid toxicity with ectopic fat accumulation in peripheral tissues and inflammation. In this line, this study aimed to investigate whether polymorphisms in genes that control adipose tissue fat storage capacity are potential biomarkers for severe obesity susceptibility and also metabolic complications. Methods This study enrolled 305 individuals with severe obesity (cases, BMI≥35 kg/m2) and 196 individuals with normal weight (controls, 18.5≤BMI≤24.9 kg/m2). Demographic, anthropometric, biochemical, and blood pressure variables were collected from the participants. Plasma levels of leptin, resistin, MCP1, and PAI1 were measured by Bio-Plex 200 Multiplexing Analyzer System. Genomic DNA was extracted and variants in DBC1 (rs17060940), SIRT1 (rs7895833 and rs1467568), UCP2 (rs660339), PPARG (rs1801282) and ADRB2 (rs1042713 and rs1042714) genes were genotyped by PCR allelic discrimination using TaqMan® assays. Results Our findings indicated that SIRT1 rs7895833 polymorphism was a risk factor for severe obesity development in the overdominant model. SIRT1 rs1467568 and UCP2 rs660339 were associated with anthropometric traits. SIRT1 rs1467568 G allele was related to lower medians of body adipose index and hip circumference, while the UCP2 rs660339 AA genotype was associate with increased body mass index. Additionally, DBC1 rs17060940 influenced glycated hemoglobin. Regarding metabolic alterations, 27% of individuals with obesity presented balanced metabolic status in our cohort. Furthermore, SIRT1 rs1467568 AG genotype increased 2.5 times the risk of developing metabolic alterations. No statistically significant results were observed with Peroxisome Proliferator-Activated Receptor Gama and ADRB2 polymorphisms. Discussion/Conclusion This study revealed that SIRT1 rs7895833 and rs1467568 are potential biomarkers for severe obesity susceptibility and the development of unbalanced metabolic status in obesity, respectively. UCP2 rs660339 and DBC1 rs17060940 also showed a significant role in obesity related-traits.
Collapse
Affiliation(s)
- Ana Carolina Proença da Fonseca
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Genetics Laboratory, Grande Rio University/AFYA, Rio de Janeiro, Brazil
- Postgraduate Program in Translational Biomedicine, Grande Rio University/AFYA, Rio de Janeiro, Brazil
| | - Izadora Sthephanie da Silva Assis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Kaio Cezar Rodrigues Salum
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabriella de Medeiros Abreu
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mario Campos Junior
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Amanda Cambraia
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Pedro Hernán Cabello
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - João Regis Ivar Carneiro
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Talukdar P, Pal S, Biswas D. Post-translational modification-dependent oligomerization switch in regulation of global transcription and DNA damage repair during genotoxic stress. Nat Commun 2024; 15:4128. [PMID: 38750015 PMCID: PMC11096357 DOI: 10.1038/s41467-024-48530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Mechanisms of functional cross-talk between global transcriptional repression and efficient DNA damage repair during genotoxic stress are poorly known. In this study, using human AF9 as representative of Super Elongation Complex (SEC) components, we delineate detailed mechanisms of these processes. Mechanistically, we describe that Poly-Serine domain-mediated oligomerization is pre-requisite for AF9 YEATS domain-mediated TFIID interaction-dependent SEC recruitment at the promoter-proximal region for release of paused RNA polymerase II. Interestingly, during genotoxic stress, CaMKII-mediated phosphorylation-dependent nuclear export of AF9-specific deacetylase HDAC5 enhances concomitant PCAF-mediated acetylation of K339 residue. This causes monomerization of AF9 and reduces TFIID interaction for transcriptional downregulation. Furthermore, the K339 acetylation-dependent enhanced AF9-DNA-PKc interaction leads to phosphorylation at S395 residue which reduces AF9-SEC interaction resulting in transcriptional downregulation and efficient repair of DNA damage. After repair, nuclear re-entry of HDAC5 reduces AF9 acetylation and restores its TFIID and SEC interaction to restart transcription.
Collapse
Affiliation(s)
| | - Sujay Pal
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India.
| |
Collapse
|
4
|
Nandy A, Biswas D. Basic techniques associated with studying transcription elongation both in vitro and in vivo within mammalian cells. Methods 2024; 221:42-54. [PMID: 38040206 DOI: 10.1016/j.ymeth.2023.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
All cellular functions and identity of every cell are directly or indirectly depend on its gene expression. Therefore, cells control their gene expression very finely at multiple layers. Cells always fine tune its gene expression profile depending on the internal and external cues to maintain best possible cellular growth condition. Regulation of mRNA production is a major step in the control of gene expression. mRNA production primarily depends on two factors. One is the level of RNA polymerase II (Pol II hereafter) recruitment at the promoter region and another is the amount of Pol II successfully elongating through the whole gene body also known as coding region. There are several proteins (individually or as part of a complex) which control elongation of Pol II both positively or negatively. It is important to understand how different transcription factors regulate this elongation step since this knowledge is important for understanding different cellular functions both under basal and stimulus-dependent contexts. Here, we have discussed both in vitro and in vivo techniques which can be used to study the effect of different factors on Pol II-mediated transcription elongation. In vitro techniques give us valuable information about the ability of a transcription factor or a complex to exert its direct effect on the overall processes. In vivo techniques give us an understanding about the effect of a transcription factor or a complex in its native condition where functions of a transcription factor can be influenced by many other factors including its associated ones.
Collapse
Affiliation(s)
- Arijit Nandy
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
6
|
Basu S, Nandy A, Ghosh A, Mall DP, Biswas D. Degradation of CDK9 by Ubiquitin E3 Ligase STUB1 Regulates P-TEFb Level and Its Functions for Global Target Gene Expression within Mammalian Cells. Mol Cell Biol 2023; 43:451-471. [PMID: 37564002 PMCID: PMC10512928 DOI: 10.1080/10985549.2023.2239694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Positive transcription elongation factor b (P-TEFb) regulates expression of diverse sets of genes within mammalian cells that have implications in several human disease pathogeneses. However, mechanisms of functional regulation of P-TEFb complex through regulation of its stability are poorly known. In this study, we show an important role of C-terminus of Hsc70-interacting protein (CHIP aka STUB1) in regulation of overall level of CDK9 and thus P-TEFb complex within mammalian cells. STUB1 acts as a ubiquitin E3 ligase for proteasomal degradation of CDK9 involving N-terminal lysine 3 (K3) residue. Whereas, overexpression of STUB1 enhances, its knockdown reduces overall CDK9 degradation kinetics within mammalian cells. Interestingly, owing to the same region of binding within CDK9, CyclinT1 protects CDK9 from STUB1-mediated degradation. Factors that cooperatively bind with CyclinT1 to form functional complex also protects CDK9 from degradation by STUB1. Knockdown of STUB1 enhances CDK9 expression and thus P-TEFb complex formation that leads to global increase in RNA polymerase II CTD phosphorylation and transcriptional activation of diverse P-TEFb target genes. Thus, we describe an important functional role of STUB1 in regulation of transcription through modulation of overall level of P-TEFb complex formation within mammalian cells.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arijit Nandy
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Avik Ghosh
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Dheerendra Pratap Mall
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Kim HJ, Moon SJ, Kim JH. Mechanistic insights into the dual role of CCAR2/DBC1 in cancer. Exp Mol Med 2023; 55:1691-1701. [PMID: 37524873 PMCID: PMC10474295 DOI: 10.1038/s12276-023-01058-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 08/02/2023] Open
Abstract
Cell cycle and apoptosis regulator 2 (CCAR2), also known as deleted in breast cancer 1 (DBC1), has been recently identified as a master regulator of transcriptional processes and plays diverse roles in physiology and pathophysiology, including as a regulator of apoptosis, DNA repair, metabolism, and tumorigenesis. CCAR2 functions as a coregulator of various transcription factors and a critical regulator of numerous epigenetic modifiers. Based on its ability to stimulate apoptosis by activating and stabilizing p53, CCAR2 was initially considered to be a tumor suppressor. However, an increasing number of studies have shown that CCAR2 also functions as a tumor-promoting coregulator by activating oncogenic transcription factors and regulating the enzymatic activity of epigenetic modifiers, indicating that CCAR2 may play a dual role in cancer progression by acting as a tumor suppressor and tumor promoter. Here, we review recent progress in understanding the dual tumor-suppressing and oncogenic roles of CCAR2 in cancer. We discuss CCAR2 domain structures, its interaction partners, and the molecular mechanisms by which it regulates the activities of transcription factors and epigenetic modifiers.
Collapse
Affiliation(s)
- Hwa Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Sue Jin Moon
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea
| | - Jeong Hoon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea.
- Research Institute for Future Medicine, Samsung Medical Center, Seoul, 06351, South Korea.
| |
Collapse
|
8
|
Pal S, Biswas D. Promoter-proximal regulation of gene transcription: Key factors involved and emerging role of general transcription factors in assisting productive elongation. Gene 2023:147571. [PMID: 37331491 DOI: 10.1016/j.gene.2023.147571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
The pausing of RNA polymerase II (Pol II) at the promoter-proximal sites is a key rate-limiting step in gene expression. Cells have dedicated a specific set of proteins that sequentially establish pause and then release the Pol II from promoter-proximal sites. A well-controlled pausing and subsequent release of Pol II is crucial for thefine tuning of expression of genes including signal-responsive and developmentally-regulated ones. The release of paused Pol II broadly involves its transition from initiation to elongation. In this review article, we will discuss the phenomenon of Pol II pausing, the underlying mechanism, and also the role of different known factors, with an emphasis on general transcription factors, involved in this overall regulation. We will further discuss some recent findings suggesting a possible role (underexplored) of initiation factors in assisting the transition of transcriptionally-engaged paused Pol II into productive elongation.
Collapse
Affiliation(s)
- Sujay Pal
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Pal S, Yadav D, Biswas D. ATM-mediated ELL phosphorylation enhances its self-association through increased EAF1 interaction and inhibits global transcription during genotoxic stress. Nucleic Acids Res 2022; 50:10995-11012. [PMID: 36305813 PMCID: PMC9638944 DOI: 10.1093/nar/gkac943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 10/15/2022] [Indexed: 12/05/2022] Open
Abstract
Mammalian cells immediately inhibit transcription upon exposure to genotoxic stress to avoid fatal collision between ongoing transcription and newly recruited DNA repair machineries to protect genomic integrity. However, mechanisms of this early transcriptional inhibition are poorly understood. In this study, we decipher a novel role of human EAF1, a positive regulator of ELL-dependent RNA Polymerase II-mediated transcription in vitro, in regulation of temporal inhibition of transcription during genotoxic stress. Our results show that, besides Super Elongation Complex (SEC) and Little Elongation Complex (LEC), human ELL (aka ELL1) also forms a complex with EAF1 alone. Interestingly, contrary to the in vitro studies, EAF1 inhibits ELL-dependent RNA polymerase II-mediated transcription of diverse target genes. Mechanistically, we show that intrinsic self-association property of ELL leads to its reduced interaction with other SEC components. EAF1 enhances ELL self-association and thus reduces its interaction with other SEC components leading to transcriptional inhibition. Physiologically, we show that upon exposure to genotoxic stress, ATM-mediated ELL phosphorylation-dependent enhanced EAF1 association results in reduced ELL interaction with other SEC components that lead to global transcriptional inhibition. Thus, we describe an important mechanism of dynamic transcriptional regulation during genotoxic stress involving post-translational modification of a key elongation factor.
Collapse
Affiliation(s)
- Sujay Pal
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dipika Yadav
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Basu S, Nandy A, Barad MK, Pal S, Biswas D. Negative Feedback Loop Mechanism between EAF1/2 and DBC1 in Regulating ELL Stability and Functions. Mol Cell Biol 2022; 42:e0015122. [PMID: 36036574 PMCID: PMC9590304 DOI: 10.1128/mcb.00151-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/05/2022] [Accepted: 08/08/2022] [Indexed: 12/25/2022] Open
Abstract
Although ELL-associated factors 1 and 2 (EAF1/2) have been shown to enhance RNA polymerase II-mediated transcription in vitro, their functional roles in vivo are poorly known. In this report, we show functions of these proteins in regulating ELL stability through their competitive binding with HDAC3 at the N terminus of ELL. Reduced HDAC3 binding to ELL causes increased acetylation leading to reduced ubiquitylation-mediated degradation. Similar functional roles played by DBC1 in regulating ELL stability further prompted in-depth analyses that demonstrated presence of negative feedback loop mechanisms between DBC1 and EAF1/2 in maintaining overall ELL level. Mechanistically, increased DBC1 reduces EAF1/2 level through increased ubiquitylation involving E3 ubiquitin ligase TRIM28, whereas increased EAF1/2 reduces DBC1 level through reduced transcription. Physiologically, after a few passages, ELL levels in either DBC1 or EAF1 knockdown cells are restored through enhanced expression of EAF1 and DBC1, respectively. Interestingly, for maintenance of ELL level, mammalian cells prefer the EAF1-dependent pathway during exposure to genotoxic stress, and the DBC1-dependent pathway during exposure to growth factors. Thus, we describe coordinated functions of multiple factors, including EAF1/2, HDAC3, DBC1, and TRIM28 in regulating ELL protein level for optimal target gene expression in a context-dependent manner within mammalian cells.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Arijit Nandy
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Mahesh K. Barad
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sujay Pal
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Identification of sitagliptin binding proteins by affinity purification mass spectrometry. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1453-1463. [PMID: 36239351 PMCID: PMC9827809 DOI: 10.3724/abbs.2022142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with increasing incidence. The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin has been used for the treatment of T2DM worldwide. Although sitagliptin has excellent therapeutic outcome, adverse effects are observed. In addition, previous studies have suggested that sitagliptin may have pleiotropic effects other than treating T2DM. These pieces of evidence point to the importance of further investigation of the molecular mechanisms of sitagliptin, starting from the identification of sitagliptin-binding proteins. In this study, by combining affinity purification mass spectrometry (AP-MS) and stable isotope labeling by amino acids in cell culture (SILAC), we discover seven high-confidence targets that can interact with sitagliptin. Surface plasmon resonance (SPR) assay confirms the binding of sitagliptin to three proteins, i. e., LYPLAL1, TCP1, and CCAR2, with binding affinities (K D) ranging from 50.1 μM to 1490 μM. Molecular docking followed by molecular dynamic (MD) simulation reveals hydrogen binding between sitagliptin and the catalytic triad of LYPLAL1, and also between sitagliptin and the P-loop of ATP-binding pocket of TCP1. Molecular mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis indicates that sitagliptin can stably bind to LYPLAL1 and TCP1 in active sites, which may have an impact on the functions of these proteins. SPR analysis validates the binding affinity of sitagliptin to TCP1 mutant D88A is ~10 times lower than that to the wild-type TCP1. Our findings provide insights into the sitagliptin-targets interplay and demonstrate the potential of sitagliptin in regulating gluconeogenesis and in anti-tumor drug development.
Collapse
|
12
|
Liu Q, Luo Q, Feng J, Zhao Y, Ma B, Cheng H, Zhao T, Lei H, Mu C, Chen L, Meng Y, Zhang J, Long Y, Su J, Chen G, Li Y, Hu G, Liao X, Chen Q, Zhu Y. Hypoxia-induced proteasomal degradation of DBC1 by SIAH2 in breast cancer progression. eLife 2022; 11:81247. [PMID: 35913115 PMCID: PMC9377797 DOI: 10.7554/elife.81247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
DBC1 has been characterized as a key regulator of physiological and pathophysiological activities, such as DNA damage, senescence, and tumorigenesis. However, the mechanism by which the functional stability of DBC1 is regulated has yet to be elucidated. Here, we report that the ubiquitination-mediated degradation of DBC1 is regulated by the E3 ubiquitin ligase SIAH2 and deubiquitinase OTUD5 under hypoxic stress. Mechanistically, hypoxia promoted DBC1 to interact with SIAH2 but not OTUD5, resulting in the ubiquitination and subsequent degradation of DBC1 through the ubiquitin–proteasome pathway. SIAH2 knockout inhibited tumor cell proliferation and migration, which could be rescued by double knockout of SIAH2/CCAR2. Human tissue microarray analysis further revealed that the SIAH2/DBC1 axis was responsible for tumor progression under hypoxic stress. These findings define a key role of the hypoxia-mediated SIAH2-DBC1 pathway in the progression of human breast cancer and provide novel insights into the metastatic mechanism of breast cancer.
Collapse
Affiliation(s)
- Qiangqiang Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qian Luo
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jianyu Feng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yanping Zhao
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Biao Ma
- College of Life Sciences, Nankai University, Tianjin, China
| | | | - Tian Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hong Lei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chenglong Mu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Linbo Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanyuan Meng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jiaojiao Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yijia Long
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jingyi Su
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yanjun Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gang Hu
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Xudong Liao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yushan Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
13
|
HDACs and the epigenetic plasticity of cancer cells: Target the complexity. Pharmacol Ther 2022; 238:108190. [PMID: 35430294 DOI: 10.1016/j.pharmthera.2022.108190] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells must adapt to the hostile conditions of the microenvironment in terms of nutrition, space, and immune system attack. Mutations of DNA are the drivers of the tumorigenic process, but mutations must be able to hijack cellular functions to sustain the spread of mutant genomes. Transcriptional control is a key function in this context and is controlled by the rearrangement of the epigenome. Unlike genomic mutations, the epigenome of cancer cells can in principle be reversed. The discovery of the first epigenetic drugs triggered a contaminating enthusiasm. Unfortunately, the complexity of the epigenetic machinery has frustrated this enthusiasm. To develop efficient patient-oriented epigenetic therapies, we need to better understand the nature of this complexity. In this review, we will discuss recent advances in understanding the contribution of HDACs to the maintenance of the transformed state and the rational for their selective targeting.
Collapse
|
14
|
Jurgens SJ, Choi SH, Morrill VN, Chaffin M, Pirruccello JP, Halford JL, Weng LC, Nauffal V, Roselli C, Hall AW, Oetjens MT, Lagerman B, vanMaanen DP, Aragam KG, Lunetta KL, Haggerty CM, Lubitz SA, Ellinor PT. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nat Genet 2022; 54:240-250. [PMID: 35177841 PMCID: PMC8930703 DOI: 10.1038/s41588-021-01011-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
Cardiometabolic diseases are the leading cause of death worldwide. Despite a known genetic component, our understanding of these diseases remains incomplete. Here, we analyzed the contribution of rare variants to 57 diseases and 26 cardiometabolic traits, using data from 200,337 UK Biobank participants with whole-exome sequencing. We identified 57 gene-based associations, with broad replication of novel signals in Geisinger MyCode. There was a striking risk associated with mutations in known Mendelian disease genes, including MYBPC3, LDLR, GCK, PKD1 and TTN. Many genes showed independent convergence of rare and common variant evidence, including an association between GIGYF1 and type 2 diabetes. We identified several large effect associations for height and 18 unique genes associated with blood lipid or glucose levels. Finally, we found that between 1.0% and 2.4% of participants carried rare potentially pathogenic variants for cardiometabolic disorders. These findings may facilitate studies aimed at therapeutics and screening of these common disorders.
Collapse
Affiliation(s)
- Sean J. Jurgens
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Valerie N. Morrill
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James P. Pirruccello
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer L. Halford
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Victor Nauffal
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Carolina Roselli
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amelia W. Hall
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Braxton Lagerman
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | - David P. vanMaanen
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | | | - Krishna G. Aragam
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kathryn L. Lunetta
- NHLBI and Boston University’s Framingham Heart Study, Framingham, MA, USA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Christopher M. Haggerty
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA.,Heart Institute, Geisinger, Danville, PA, USA
| | - Steven A. Lubitz
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.,Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.,Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.,
| |
Collapse
|
15
|
Tian Q, Zhou LQ. Lactate Activates Germline and Cleavage Embryo Genes in Mouse Embryonic Stem Cells. Cells 2022; 11:548. [PMID: 35159357 PMCID: PMC8833948 DOI: 10.3390/cells11030548] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Lactate was recently found to mediate histone lysine lactylation and facilitate polarization of M1 macrophages, indicating its role in metabolic regulation of gene expression. During somatic cell reprogramming, lactate promotes histone lactylation of pluripotency genes and improves reprogramming efficiency. However, the function of lactate in cell fate control in embryonic stem cells (ESCs) remains elusive. In this study, we revealed that lactate supplementation activated germline genes in mouse ESCs. Lactate also induced global upregulation of cleavage embryo genes, such as members of the Zscan4 gene family. Further exploration demonstrated that lactate stimulated H3K18 lactylation accumulation on germline and cleavage embryo genes, which in turn promoted transcriptional elongation. Our findings indicated that lactate supplementation expanded the transcriptional network in mouse ESCs.
Collapse
Affiliation(s)
| | - Li-quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
16
|
Sarwar Z, Nabi N, Bhat SA, Gillani SQ, Reshi I, Un Nisa M, Adelmant G, Marto J, Andrabi S. Interaction of DBC1 with polyoma small T antigen promotes its degradation and negatively regulates tumorigenesis. J Biol Chem 2021; 298:101496. [PMID: 34921839 PMCID: PMC8784333 DOI: 10.1016/j.jbc.2021.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 12/05/2022] Open
Abstract
Deleted in Breast Cancer 1 (DBC1) is an important metabolic sensor. Previous studies have implicated DBC1 in various cellular functions, notably cell proliferation, apoptosis, histone modification, and adipogenesis. However, current reports about the role of DBC1 in tumorigenesis are controversial and designate DBC1 alternatively as a tumor suppressor or a tumor promoter. In the present study, we report that polyoma small T antigen (PyST) associates with DBC1 in mammalian cells, and this interaction leads to the posttranslational downregulation of DBC1 protein levels. When coexpressed, DBC1 overcomes PyST-induced mitotic arrest and promotes the exit of cells from mitosis. Using both transient and stable modes of PyST expression, we also show that cellular DBC1 is subjected to degradation by LKB1, a tumor suppressor and cellular energy sensor kinase, in an AMP kinase-independent manner. Moreover, LKB1 negatively regulates the phosphorylation as well as activity of the prosurvival kinase AKT1 through DBC1 and its downstream pseudokinase substrate, Tribbles 3 (TRB3). Using both transient transfection and stable cell line approaches as well as soft agar assay, we demonstrate that DBC1 has oncogenic potential. In conclusion, our study provides insight into a novel signaling axis that connects LKB1, DBC1, TRB3, and AKT1. We propose that the LKB1–DBC1–AKT1 signaling paradigm may have an important role in the regulation of cell cycle and apoptosis and consequently tumorigenesis.
Collapse
Affiliation(s)
- Zarka Sarwar
- Department of Biochemistry, University of Kashmir, Srinagar, India, 190006
| | - Nusrat Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, India, 190006
| | - Sameer Ahmed Bhat
- Department of Biochemistry, University of Kashmir, Srinagar, India, 190006
| | | | - Irfana Reshi
- Department of Biochemistry, University of Kashmir, Srinagar, India, 190006
| | - Misbah Un Nisa
- Department of Biochemistry, University of Kashmir, Srinagar, India, 190006
| | - Guillaume Adelmant
- Blais Proteomics Centre, Dana Farber Cancer Institute, Harvard University, Boston, USA
| | - Jarrod Marto
- Blais Proteomics Centre, Dana Farber Cancer Institute, Harvard University, Boston, USA
| | - Shaida Andrabi
- Department of Biochemistry, University of Kashmir, Srinagar, India, 190006.
| |
Collapse
|
17
|
Human FKBP5 negatively regulates transcription through inhibition of P-TEFb complex formation. Mol Cell Biol 2021; 42:e0034421. [PMID: 34780285 DOI: 10.1128/mcb.00344-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although large number of recent studies indicate strong association of FKBP5 (aka FKBP51) functions with various stress-related psychiatric disorder, the overall mechanisms are poorly understood. Beyond a few studies indicating its functions in regulating glucocorticoid receptor-, and AKT-signalling pathways, other functional roles (if any) are unclear. In this study, we report an anti-proliferative role of human FKBP5 through negative regulation of expression of proliferation-related genes. Mechanistically, we show that, owing to same region of interaction on CDK9, human FKBP5 directly competes with CyclinT1 for functional P-TEFb complex formation. In vitro biochemical coupled with cell-based assays, showed strong negative effect of FKBP5 on P-TEFb-mediated phosphorylation of diverse substrates. Consistently, FKBP5 knockdown showed enhanced P-TEFb complex formation leading to increased global RNA polymerase II CTD phosphorylation and expression of proliferation-related genes and subsequent proliferation. Thus, our results show an important role of FKBP5 in negative regulation of P-TEFb functions within mammalian cells.
Collapse
|
18
|
Deacetylation-dependent regulation of PARP1 by SIRT2 dictates ubiquitination of PARP1 in oxidative stress-induced vascular injury. Redox Biol 2021; 47:102141. [PMID: 34555594 PMCID: PMC8461381 DOI: 10.1016/j.redox.2021.102141] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) has a major regulatory role in cardiovascular disease. However, inhibiting PARP1 activity does not significantly improve clinical outcomes of cardiovascular disease, which suggests that the regulatory mechanism of PARP1 in cardiovascular disease is unclear. Here, we focused on deacetylation regulatory mechanisms of PARP1 and crosstalk of PARP1 post-translational modifications. We uncovered the crucial molecular interactions and protein modifications of deacetylase Sirtuin 2 (SIRT2) and PARP1 in vascular damage. The results showed that SIRT2 was involved in this process and oxidative stress damage factor PARP1 was a novel physiological substrate of SIRT2. SIRT2 interacted with PARP1 at the PARP-A-helical domain and deacetylated the K249 residue of PARP1. Furthermore, SIRT2 promoted ubiquitination of the K249 residue of PARP1 via mobilization of the E3 ubiquitin ligase WW domain-containing protein 2 (WWP2), which led to proteasome-mediated degradation of PARP1. Knockout of SIRT2 in mice and cells increased PARP1 acetylation and decreased PARP1 ubiquitination, which in turn aggravated oxidative stress-induced vascular injury and remodeling. Conversely, overexpression of SIRT2 in mice and cells decreased PARP1 acetylation, increased PARP1 ubiquitination, and relieved oxidative stress-induced vascular injury and remodeling. Overall, this study revealed a previously unrecognized mechanistic link between SIRT2 and PARP1 in the regulation of oxidative stress-induced vascular injury.
Collapse
|
19
|
Dang Q, Shao B, Zhou Q, Chen C, Guo Y, Wang G, Liu J, Kan Q, Yuan W, Sun Z. RNA N 6-Methyladenosine in Cancer Metastasis: Roles, Mechanisms, and Applications. Front Oncol 2021; 11:681781. [PMID: 34211849 PMCID: PMC8239292 DOI: 10.3389/fonc.2021.681781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer metastasis is a symptom of adverse prognosis, a prime origin of therapy failure, and a lethal challenge for cancer patients. N6-methyladenosine (m6A), the most prevailing modification in messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) of higher eukaryotes, has attracted increasing attention. Growing studies have verified the pivotal roles of m6A methylation in controlling mRNAs and ncRNAs in diverse physiological processes. Remarkably, recent findings have showed that aberrant methylation of m6A-related RNAs could influence cancer metastasis. In this review, we illuminate how m6A modifiers act on mRNAs and ncRNAs and modulate metastasis in several cancers, and put forward the clinical application prospects of m6A methylation.
Collapse
Affiliation(s)
- Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaxin Guo
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Basic Medical, Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Inhibition of the Super Elongation Complex Suppresses Herpes Simplex Virus Immediate Early Gene Expression, Lytic Infection, and Reactivation from Latency. mBio 2020; 11:mBio.01216-20. [PMID: 32518191 PMCID: PMC7373197 DOI: 10.1128/mbio.01216-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HSV infections can cause pathologies ranging from recurrent lesions to significant ocular disease. Initiation of lytic infection and reactivation from latency in sensory neurons are dependent on the induced expression of the viral immediate early genes. Transcription of these genes is controlled at multiple levels, including modulation of the chromatin state of the viral genome and appropriate recruitment of transcription factors and coactivators. Following initiation of transcription, IE genes are subject to a key regulatory stage in which transcriptional elongation rates are controlled by the activity of the super elongation complex. Inhibition of the SEC blocks both lytic infection and reactivation from latency in sensory neurons. In addition to providing insights into the mechanisms controlling viral infection and reactivation, inhibitors of critical components such as the SEC may represent novel antivirals. Induction of herpes simplex virus (HSV) immediate early (IE) gene transcription promotes the initiation of lytic infection and reactivation from latency in sensory neurons. IE genes are transcribed by the cellular RNA polymerase II (RNAPII) and regulated by multiple transcription factors and coactivators. The HCF-1 cellular coactivator plays a central role in driving IE expression at multiple stages through interactions with transcription factors, chromatin modulation complexes, and transcription elongation components, including the active super elongation complex/P-TEFb (SEC-P-TEFb). Here, we demonstrate that the SEC occupies the promoters of HSV IE genes during the initiation of lytic infection and during reactivation from latency. Specific inhibitors of the SEC suppress viral IE expression and block the spread of HSV infection. Significantly, these inhibitors also block the initiation of viral reactivation from latency in sensory ganglia. The potent suppression of IE gene expression by SEC inhibitors indicates that transcriptional elongation represents a determining rate-limiting stage in HSV IE gene transcription and that the SEC plays a critical role in driving productive elongation during both phases of the viral life cycle. Most importantly, this supports the model that signal-mediated induction of SEC-P-TEFb levels can promote reactivation of a population of poised latent genomes.
Collapse
|