1
|
Han Z, Wang Z, Rittschof D, Huang Z, Chen L, Hao H, Yao S, Su P, Huang M, Zhang YY, Ke C, Feng D. New genes helped acorn barnacles adapt to a sessile lifestyle. Nat Genet 2024; 56:970-981. [PMID: 38654131 DOI: 10.1038/s41588-024-01733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Barnacles are the only sessile lineages among crustaceans, and their sessile life begins with the settlement of swimming larvae (cyprids) and the formation of protective shells. These processes are crucial for adaptation to a sessile lifestyle, but the underlying molecular mechanisms remain poorly understood. While investigating these mechanisms in the acorn barnacle, Amphibalanus amphitrite, we discovered a new gene, bcs-6, which is involved in the energy metabolism of cyprid settlement and originated from a transposon by acquiring the promoter and cis-regulatory element. Unlike mollusks, the barnacle shell comprises alternate layers of chitin and calcite and requires another new gene, bsf, which generates silk-like fibers that efficiently bind chitin and aggregate calcite in the aquatic environment. Our findings highlight the importance of exploring new genes in unique adaptative scenarios, and the results will provide important insights into gene origin and material development.
Collapse
Affiliation(s)
- Zhaofang Han
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixuan Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Daniel Rittschof
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Liying Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huanhuan Hao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| | - Shanshan Yao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China
| | - Pei Su
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Miaoqin Huang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Danqing Feng
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Guo F, Ye Y, Zhu K, Lin S, Wang Y, Dong Z, Yao R, Li H, Wang W, Liao Z, Guo B, Yan X. Genetic Diversity, Population Structure, and Environmental Adaptation Signatures of Chinese Coastal Hard-Shell Mussel Mytilus coruscus Revealed by Whole-Genome Sequencing. Int J Mol Sci 2023; 24:13641. [PMID: 37686445 PMCID: PMC10488143 DOI: 10.3390/ijms241713641] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The hard-shell mussel (Mytilus coruscus) is widespread in the temperate coastal areas of the northwest Pacific and holds a significant position in the shellfish aquaculture market in China. However, the natural resources of this species have been declining, and population genetic studies of M. coruscus are also lacking. In this study, we conducted whole-genome resequencing (WGR) of M. coruscus from eight different latitudes along the Chinese coast and identified a total of 25,859,986 single nucleotide polymorphism (SNP) markers. Our findings indicated that the genetic diversity of M. coruscus from the Zhoushan region was lower compared with populations from other regions. Furthermore, we observed that the evolutionary tree clustered into two primary branches, and the Zhangzhou (ZZ) population was in a separate branch. The ZZ population was partly isolated from populations in other regions, but the distribution of branches was not geographically homogeneous, and a nested pattern emerged, consistent with the population differentiation index (FST) results. To investigate the selection characteristics, we utilized the northern M. coruscus populations (Dalian and Qingdao) and the central populations (Zhoushan and Xiangshan) as reference populations and the southern ZZ population as the target population. Our selection scan analysis identified several genes associated with thermal responses, including Hsp70 and CYP450. These genes may play important roles in the adaptation of M. coruscus to different living environments. Overall, our study provides a comprehensive understanding of the genomic diversity of coastal M. coruscus in China and is a valuable resource for future studies on genetic breeding and the evolutionary adaptation of this species.
Collapse
Affiliation(s)
- Feng Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Shuangrui Lin
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Yuxia Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Zhenyu Dong
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Ronghui Yao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Hongfei Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
| | - Weifeng Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Zhi Liao
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Baoying Guo
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| | - Xiaojun Yan
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (F.G.); (Y.Y.); (S.L.); (H.L.)
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.W.); (Z.D.); (R.Y.); (W.W.); (Z.L.)
| |
Collapse
|
3
|
Rand DM, Nunez JCB, Williams S, Rong S, Burley JT, Neil KB, Spierer AN, McKerrow W, Johnson DS, Raynes Y, Fayton TJ, Skvir N, Ferranti DA, Zeff MG, Lyons A, Okami N, Morgan DM, Kinney K, Brown BRP, Giblin AE, Cardon ZG. Parasite manipulation of host phenotypes inferred from transcriptional analyses in a trematode-amphipod system. Mol Ecol 2023; 32:5028-5041. [PMID: 37540037 PMCID: PMC10529729 DOI: 10.1111/mec.17093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host-parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for O. grillus including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.
Collapse
Affiliation(s)
- David M Rand
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Joaquin C B Nunez
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Shawn Williams
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Stephen Rong
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - John T Burley
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Kimberly B Neil
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Adam N Spierer
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Wilson McKerrow
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, USA
| | - David S Johnson
- Department of Biological Sciences, Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| | - Yevgeniy Raynes
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Thomas J Fayton
- University of Southern Mississippi, Hattiesburg, Mississippi, USA
- Cornell University, Ithaca, New York, USA
| | - Nicholas Skvir
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - David A Ferranti
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Maya Greenhill Zeff
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Amanda Lyons
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Naima Okami
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - David M Morgan
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | | | - Bianca R P Brown
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Anne E Giblin
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Zoe G Cardon
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
4
|
Mittermayer F, Helmerson C, Duvetorp M, Johannesson K, Panova M. The molecular background of the aspartate aminotransferase polymorphism in Littorina snails maintained by strong selection on small spatial scales. Gene 2023:147517. [PMID: 37257792 DOI: 10.1016/j.gene.2023.147517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Allozymes present several classical examples of divergent selection, including the variation in the cytosolic aspartate aminotransferase (AAT) in the intertidal snails Littorina saxatilis. AAT is a part of the asparate-malate shuttle, in the interidal molluscs involved in the anaerobic respiration during desiccation. Previous allozyme studies reported the sharp gradient in the frequencies of the AAT100and the AAT120 alleles between the low and high shores in the Northern Europe and the differences in their enzymatic activity, supporting the role of AAT in adaptation to desiccation. However, the populations in the Iberian Peninsula showed the opposite allele cline. Using the mRNA sequencing and the genome pool-seq analyses we characterize DNA sequences of the different AAT alleles, report the amino acid replacements behind the allozyme variation and show that same allozyme alleles in Northern and Southern populations have different protein sequences. Gene phylogeny reveals that the AAT100 and the northern AAT120 alleles represent the old polymorphism, shared among the closely related species of Littorina, while the southern AAT120 allele is more recently derived from AAT100. Further, we show that the Aat gene is expressed at constitutive level in different genotypes and conditions, supporting the role of structural variation in regulation of enzyme activity. Finally, we report the location and the structure of the gene in the L. saxatilis genome and the presence of two additional non-functional gene copies. Altogether, we provide a missing link between the classical allozyme studies and the genome scans and bring together the results produced over decades of the genetic research.
Collapse
Affiliation(s)
- Felix Mittermayer
- Research Division Marine Ecology, Research Unit Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany; Department of Marine Sciences, University of Gothenburg, Tjärnö, 45296 Strömstad, Sweden
| | - Cecilia Helmerson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo; Department of Marine Sciences, University of Gothenburg, Tjärnö, 45296 Strömstad, Sweden
| | - Mårten Duvetorp
- Department of Marine Sciences, University of Gothenburg, Tjärnö, 45296 Strömstad, Sweden
| | - Kerstin Johannesson
- Department of Marine Sciences, University of Gothenburg, Tjärnö, 45296 Strömstad, Sweden
| | - Marina Panova
- Department of Marine Sciences, University of Gothenburg, Tjärnö, 45296 Strömstad, Sweden.
| |
Collapse
|
5
|
Le Moan A, Panova M, De Jode A, Ortega‐Martinez O, Duvetorp M, Faria R, Butlin R, Johannesson K. An allozyme polymorphism is associated with a large chromosomal inversion in the marine snail Littorina fabalis. Evol Appl 2023; 16:279-292. [PMID: 36793696 PMCID: PMC9923470 DOI: 10.1111/eva.13427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Understanding the genetic targets of natural selection is one of the most challenging goals of population genetics. Some of the earliest candidate genes were identified from associations between allozyme allele frequencies and environmental variation. One such example is the clinal polymorphism in the arginine kinase (Ak) gene in the marine snail Littorina fabalis. While other enzyme loci do not show differences in allozyme frequencies among populations, the Ak alleles are near differential fixation across repeated wave exposure gradients in Europe. Here, we use this case to illustrate how a new sequencing toolbox can be employed to characterize the genomic architecture associated with historical candidate genes. We found that the Ak alleles differ by nine nonsynonymous substitutions, which perfectly explain the different migration patterns of the allozymes during electrophoresis. Moreover, by exploring the genomic context of the Ak gene, we found that the three main Ak alleles are located on different arrangements of a putative chromosomal inversion that reaches near fixation at the opposing ends of two transects covering a wave exposure gradient. This shows Ak is part of a large (3/4 of the chromosome) genomic block of differentiation, in which Ak is unlikely to be the only target of divergent selection. Nevertheless, the nonsynonymous substitutions among Ak alleles and the complete association of one allele with one inversion arrangement suggest that the Ak gene is a strong candidate to contribute to the adaptive significance of the inversion.
Collapse
Affiliation(s)
- Alan Le Moan
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Marina Panova
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Aurélien De Jode
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Olga Ortega‐Martinez
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Mårten Duvetorp
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - Rui Faria
- InBIO Laboratório Associado, CIBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIOCampus de VairãoVairãoPortugal
| | - Roger Butlin
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Kerstin Johannesson
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| |
Collapse
|
6
|
Yorisue T. Lack of a genetic cline and temporal genetic stability in an introduced barnacle along the Pacific coast of Japan. PeerJ 2022; 10:e14073. [PMID: 36193430 PMCID: PMC9526406 DOI: 10.7717/peerj.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/27/2022] [Indexed: 01/20/2023] Open
Abstract
Background Large numbers of exotic marine species have been introduced worldwide. Monitoring of introduced species is important to reveal mechanisms underlying their establishment and expansion. Balanus glandula is a common intertidal barnacle native to the northeastern Pacific. However, this species has been introduced to Japan, South America, South Africa, and Europe. While a latitudinal genetic cline is well known in its native range, it is unclear whether such a genetic cline occurs in introduced areas. Twenty years have passed since it was first identified in Japan and its distribution now ranges from temperate to subarctic regions. Methods In the present study, we examined genotypes of cytochrome oxidase subunit I (COI) of mitochondrial (mt)-DNA and elongation factor 1a (EF1) across the distribution of B. glandula in Japan at high and mid intertidal zones. Results At all sampling sites, native northern genotypes are abundant and I did not detect significant effects of latitude, tide levels, or their interaction on genotypic frequencies. Further, I did not detect any change of genotype composition between data collected during a study in 2004 and samples in the present study collected in 2019. Data from the present study offer an important baseline for future monitoring of this species and supply valuable insights into the mechanisms of establishment and expansion of introduced marine species generally.
Collapse
Affiliation(s)
- Takefumi Yorisue
- Institute of Natural and Environmental Sciences, University of Hyogo, Sanda, Hyogo, Japan
- Museum of Nature and Human Activities, Hyogo, Sanda, Hyogo, Japan
| |
Collapse
|
7
|
Nunez JCB, Rong S, Ferranti DA, Damian‐Serrano A, Neil KB, Glenner H, Elyanow RG, Brown BRP, Alm Rosenblad M, Blomberg A, Johannesson K, Rand DM. From tides to nucleotides: Genomic signatures of adaptation to environmental heterogeneity in barnacles. Mol Ecol 2021; 30:6417-6433. [PMID: 33960035 PMCID: PMC9292448 DOI: 10.1111/mec.15949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/25/2022]
Abstract
The northern acorn barnacle (Semibalanus balanoides) is a robust system to study the genetic basis of adaptations to highly heterogeneous environments. Adult barnacles may be exposed to highly dissimilar levels of thermal stress depending on where they settle in the intertidal (i.e., closer to the upper or lower tidal boundary). For instance, barnacles near the upper tidal limit experience episodic summer temperatures above recorded heat coma levels. This differential stress at the microhabitat level is also dependent on the aspect of sun exposure. In the present study, we used pool-seq approaches to conduct a genome wide screen for loci responding to intertidal zonation across the North Atlantic basin (Maine, Rhode Island, and Norway). Our analysis discovered 382 genomic regions containing SNPs which are consistently zonated (i.e., SNPs whose frequencies vary depending on their position in the rocky intertidal) across all surveyed habitats. Notably, most zonated SNPs are young and private to the North Atlantic. These regions show high levels of genetic differentiation across ecologically extreme microhabitats concomitant with elevated levels of genetic variation and Tajima's D, suggesting the action of non-neutral processes. Overall, these findings support the hypothesis that spatially heterogeneous selection is a general and repeatable feature for this species, and that natural selection can maintain functional genetic variation in heterogeneous environments.
Collapse
Affiliation(s)
- Joaquin C. B. Nunez
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceRIUSA
- Present address:
Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Stephen Rong
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceRIUSA
- Center for Computational Molecular BiologyBrown UniversityProvidenceRIUSA
| | - David A. Ferranti
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceRIUSA
| | | | - Kimberly B. Neil
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceRIUSA
| | - Henrik Glenner
- Department of Biological SciencesUniversity of BergenBergenNorway
- Center of Macroecology and Climate, GLOBEUniversity of CopenhagenCopenhagenDenmark
| | - Rebecca G. Elyanow
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceRIUSA
- Center for Computational Molecular BiologyBrown UniversityProvidenceRIUSA
| | - Bianca R. P. Brown
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceRIUSA
| | - Magnus Alm Rosenblad
- Department of Chemistry and Molecular BiologyUniversity of GothenburgLundberg LaboratoryGöteborgSweden
| | - Anders Blomberg
- Department of Chemistry and Molecular BiologyUniversity of GothenburgLundberg LaboratoryGöteborgSweden
| | - Kerstin Johannesson
- Department of Marine SciencesUniversity of GothenburgTjärnö Marine LaboratoryStrömstadSweden
| | - David M. Rand
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceRIUSA
- Center for Computational Molecular BiologyBrown UniversityProvidenceRIUSA
| |
Collapse
|
8
|
Nunez JCB, Rong S, Damian-Serrano A, Burley JT, Elyanow RG, Ferranti DA, Neil KB, Glenner H, Rosenblad MA, Blomberg A, Johannesson K, Rand DM. Ecological Load and Balancing Selection in Circumboreal Barnacles. Mol Biol Evol 2021; 38:676-685. [PMID: 32898261 PMCID: PMC7826171 DOI: 10.1093/molbev/msaa227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Acorn barnacle adults experience environmental heterogeneity at various spatial scales of their circumboreal habitat, raising the question of how adaptation to high environmental variability is maintained in the face of strong juvenile dispersal and mortality. Here, we show that 4% of genes in the barnacle genome experience balancing selection across the entire range of the species. Many of these genes harbor mutations maintained across 2 My of evolution between the Pacific and Atlantic oceans. These genes are involved in ion regulation, pain reception, and heat tolerance, functions which are essential in highly variable ecosystems. The data also reveal complex population structure within and between basins, driven by the trans-Arctic interchange and the last glaciation. Divergence between Atlantic and Pacific populations is high, foreshadowing the onset of allopatric speciation, and suggesting that balancing selection is strong enough to maintain functional variation for millions of years in the face of complex demography.
Collapse
Affiliation(s)
- Joaquin C B Nunez
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Stephen Rong
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI.,Center for Computational Molecular Biology, Brown University, Providence, RI
| | | | - John T Burley
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI.,Institute at Brown for Environment and Society, Brown University, Providence, RI
| | - Rebecca G Elyanow
- Center for Computational Molecular Biology, Brown University, Providence, RI
| | - David A Ferranti
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Kimberly B Neil
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI
| | - Henrik Glenner
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Magnus Alm Rosenblad
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundberg Laboratory, Göteborg, Sweden
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Lundberg Laboratory, Göteborg, Sweden
| | - Kerstin Johannesson
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, Strömstad, Sweden
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI.,Center for Computational Molecular Biology, Brown University, Providence, RI
| |
Collapse
|
9
|
Ip JCH, Qiu JW, Chan BKK. Genomic insights into the sessile life and biofouling of barnacles (Crustacea: Cirripedia). Heliyon 2021; 7:e07291. [PMID: 34189321 PMCID: PMC8220330 DOI: 10.1016/j.heliyon.2021.e07291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/06/2021] [Accepted: 06/09/2021] [Indexed: 12/01/2022] Open
Abstract
Members of the infraclass Cirripedia, commonly called barnacles, are unique among the subphylum Crustacea in that they exhibit a biphasic life cycle with a planktonic larval stage and a sessile adult stage. Understanding their unique sessile life and mechanisms of attachment are hampered by the lack of genomic resources. Here, we present a 746 Mb genome assembly of Lepas anserifera – the first sequenced stalked barnacle genome. We estimate that Cirripedia first arose ~495 million years ago (MYA) and further diversified since Mesozoic. A demographic analysis revealed remarkable population changes of the barnacle in relation to sea-level fluctuations in the last 2 MYA. Comparative genomic analyses revealed the expansion of a number of developmental related genes families in barnacle genomes, such as Br–C, PCP20 and Lola, which are potentially important for the evolution of metamorphosis, cuticle development and central nervous system. Phylogenetic analysis and tissue expression profiling showed the possible roles of gene duplication, functional diversification and co-option in shaping the genomic evolution of barnacles. Overall, our study provides not only a valuable draft genome for comparative genomic analysis of crustacean evolution, but also facilitates studies of biofouling control.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- Department of Biology and Hong Kong Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong.,Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China
| | - Jian-Wen Qiu
- Department of Biology and Hong Kong Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong.,Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China
| | - Benny K K Chan
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
10
|
Alm Rosenblad M, Abramova A, Lind U, Ólason P, Giacomello S, Nystedt B, Blomberg A. Genomic Characterization of the Barnacle Balanus improvisus Reveals Extreme Nucleotide Diversity in Coding Regions. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:402-416. [PMID: 33931810 PMCID: PMC8270832 DOI: 10.1007/s10126-021-10033-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/05/2021] [Indexed: 05/11/2023]
Abstract
Barnacles are key marine crustaceans in several habitats, and they constitute a common practical problem by causing biofouling on man-made marine constructions and ships. Despite causing considerable ecological and economic impacts, there is a surprising void of basic genomic knowledge, and a barnacle reference genome is lacking. We here set out to characterize the genome of the bay barnacle Balanus improvisus (= Amphibalanus improvisus) based on short-read whole-genome sequencing and experimental genome size estimation. We show both experimentally (DNA staining and flow cytometry) and computationally (k-mer analysis) that B. improvisus has a haploid genome size of ~ 740 Mbp. A pilot genome assembly rendered a total assembly size of ~ 600 Mbp and was highly fragmented with an N50 of only 2.2 kbp. Further assembly-based and assembly-free analyses revealed that the very limited assembly contiguity is due to the B. improvisus genome having an extremely high nucleotide diversity (π) in coding regions (average π ≈ 5% and average π in fourfold degenerate sites ≈ 20%), and an overall high repeat content (at least 40%). We also report on high variation in the α-octopamine receptor OctA (average π = 3.6%), which might increase the risk that barnacle populations evolve resistance toward antifouling agents. The genomic features described here can help in planning for a future high-quality reference genome, which is urgently needed to properly explore and understand proteins of interest in barnacle biology and marine biotechnology and for developing better antifouling strategies.
Collapse
Affiliation(s)
- Magnus Alm Rosenblad
- Deparment of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg , Sweden
| | - Anna Abramova
- Deparment of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg , Sweden
| | - Ulrika Lind
- Deparment of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg , Sweden
| | - Páll Ólason
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Stefania Giacomello
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, 17121, Solna, Sweden
| | - Björn Nystedt
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Anders Blomberg
- Deparment of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg , Sweden.
| |
Collapse
|
11
|
Tepolt CK, Palumbi SR. Rapid Adaptation to Temperature via a Potential Genomic Island of Divergence in the Invasive Green Crab, Carcinus maenas. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.580701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Widespread species often adapt easily to novel conditions – both those found in new habitats and those generated by climate change. However, rapid adaptation may be hindered in the marine realm, where long-distance dispersal and consequently high gene flow are predicted to limit potential for local adaptation. Here, we use a highly dispersive invasive marine crab to test the nature and speed of adaptation to temperature in the sea. Using single nucleotide polymorphisms (SNPs) generated from cardiac transcriptome sequencing, we characterized six populations of the European green crab (Carcinus maenas) located across parallel thermal gradients in their native and invasive ranges. We compared SNP frequencies with local temperatures and previously generated data on cardiac heat and cold tolerance to identify candidate markers associated with population-level differences in thermal physiology. Of 10,790 SNPs, 104 were identified as frequency outliers, a signal that was strongly driven by association with temperature and/or cold tolerance. Seventy-two of these outlier markers, representing 28 different genes, were in a cluster of SNPs identified as a potential inversion polymorphism using linkage disequilibrium network analysis. This SNP cluster was unique in the data set, which was otherwise characterized by low levels of linkage disequilibrium, and markers in this cluster showed a significant enrichment of coding substitutions relative to the full SNP set. These 72 outlier SNPs appear to be transmitted as a unit, and represent a putative genomic island of divergence which varied in frequency with organismal cold tolerance. This relationship was strikingly similar across both native and invasive populations, all of which showed a very strong correlation with cold tolerance (R2 = 0.96 over all six populations). Notably, three of these populations have diverged recently (<100 years) and show little to no neutral divergence, suggesting that this genomic region may be responding to temperature on a relatively short time scale. This relationship indicates adaptation to temperature based on the action of a putative genomic island of divergence, perhaps partially explaining the extraordinary invasive ability of this species.
Collapse
|
12
|
Brown BRP, Nunez JCB, Rand DM. Characterizing the cirri and gut microbiomes of the intertidal barnacle Semibalanus balanoides. Anim Microbiome 2020; 2:41. [PMID: 33499976 PMCID: PMC7807441 DOI: 10.1186/s42523-020-00058-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Natural populations inhabiting the rocky intertidal experience multiple ecological stressors and provide an opportunity to investigate how environmental differences influence microbiomes over small geographical scales. However, very few microbiome studies focus on animals that inhabit the intertidal. In this study, we investigate the microbiome of the intertidal barnacle Semibalanus balanoides. We first describe the microbiome of two body tissues: the feeding appendages, or cirri, and the gut. Next, we examine whether there are differences between the microbiome of each body tissue of barnacles collected from the thermally extreme microhabitats of the rocky shores' upper and lower tidal zones. RESULTS Overall, the microbiome of S. balanoides consisted of 18 phyla from 408 genera. Our results showed that although cirri and gut microbiomes shared a portion of their amplicon sequence variants (ASVs), the microbiome of each body tissue was distinct. Over 80% of the ASVs found in the cirri were also found in the gut, and 44% of the ASVs found in the gut were also found in the cirri. Notably, the gut microbiome was not a subset of the cirri microbiome. Additionally, we identified that the cirri microbiome was responsive to microhabitat differences. CONCLUSION Results from this study indicate that S. balanoides maintains distinct microbiomes in its cirri and gut tissues, and that the gut microbiome is more stable than the cirri microbiome between the extremes of the intertidal.
Collapse
Affiliation(s)
- Bianca R P Brown
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI, 02912, USA.
- Institute at Brown for Environment and Society, Brown University, 85 Waterman St., Providence, RI, 02912, USA.
| | - Joaquin C B Nunez
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI, 02912, USA
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI, 02912, USA.
| |
Collapse
|
13
|
Footprints of natural selection at the mannose-6-phosphate isomerase locus in barnacles. Proc Natl Acad Sci U S A 2020; 117:5376-5385. [PMID: 32098846 PMCID: PMC7071928 DOI: 10.1073/pnas.1918232117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rocky intertidal is a natural laboratory to study how natural selection acts on the genes and proteins responsible for organismal survival and reproduction. Alternative forms of enzymes that differ across the intertidal have been known for decades and have provided examples of selection, but the genetic basis of such enzyme variation is known in only a few cases. In this paper, we present molecular evidence of natural selection at the Mpi gene, a key enzyme in energy metabolism that alters survival of barnacles living across the stress gradient imposed by the intertidal. Our study demonstrates how natural selection can facilitate survival in highly heterogeneous environments through the maintenance of multiple molecular solutions to ecological stresses. The mannose-6-phosphate isomerase (Mpi) locus in Semibalanus balanoides has been studied as a candidate gene for balancing selection for more than two decades. Previous work has shown that Mpi allozyme genotypes (fast and slow) have different frequencies across Atlantic intertidal zones due to selection on postsettlement survival (i.e., allele zonation). We present the complete gene sequence of the Mpi locus and quantify nucleotide polymorphism in S. balanoides, as well as divergence to its sister taxon Semibalanus cariosus. We show that the slow allozyme contains a derived charge-altering amino acid polymorphism, and both allozyme classes correspond to two haplogroups with multiple internal haplotypes. The locus shows several footprints of balancing selection around the fast/slow site: an enrichment of positive Tajima’s D for nonsynonymous mutations, an excess of polymorphism, and a spike in the levels of silent polymorphism relative to silent divergence, as well as a site frequency spectrum enriched for midfrequency mutations. We observe other departures from neutrality across the locus in both coding and noncoding regions. These include a nonsynonymous trans-species polymorphism and a recent mutation under selection within the fast haplogroup. The latter suggests ongoing allelic replacement of functionally relevant amino acid variants. Moreover, predicted models of Mpi protein structure provide insight into the functional significance of the putatively selected amino acid polymorphisms. While footprints of selection are widespread across the range of S. balanoides, our data show that intertidal zonation patterns are variable across both spatial and temporal scales. These data provide further evidence for heterogeneous selection on Mpi.
Collapse
|