1
|
Hanics J, Tretiakov EO, Romanov RA, Gáspárdy A, Hevesi Z, Schnell R, Harkany T, Alpár A. Neuronal activity modulates the expression of secretagogin, a Ca 2+ sensor protein, during mammalian forebrain development. Acta Physiol (Oxf) 2025; 241:e70031. [PMID: 40165367 PMCID: PMC11959173 DOI: 10.1111/apha.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
AIM Because of their stable expression, some EF-hand Ca2+-binding proteins are broadly used as histochemical markers of neurons in the nervous system. Secretagogin is a member of "neuron-specific" Ca2+-sensor proteins, yet variations in its expression due, chiefly, to neuronal activity remain ambiguous. We aimed to fill this gap of knowledge both in its use as a cell identity marker and for mechanistic analysis. METHODS We mapped secretagogin distribution in human foetal forebrains. Then, Scgn-iCre::Ai9 mice in conjunction with single-cell RNA-seq were used to molecularly characterize cortical secretagogin-expressing neurons. Besides the in vitro manipulation of both SH-SY5Y neuroblastoma cells and primary cortical cultures from foetal mice, the activity dependence of secretagogin expression was also studied upon systemic kainate administration and dark rearing. RESULTS In the mammalian brain, including humans, both transient and stable secretagogin expression sites exist. In the cerebral cortex, we identified deep-layer pyramidal neurons with lifelong expression of secretagogin. Secretagogin expression was affected by neuronal activity: it was delayed in a cohort of human foetuses with Down's syndrome relative to age-matched controls. In mice, dark rearing reduced secretagogin expression in the superior colliculus, a midbrain structure whose development is dependent on topographic visual inputs. In contrast, excitation by both KCl exposure of SH-SY5Y cells and primary cortical neurons in vitro and through systemic kainate administration in mice increased secretagogin expression. CONCLUSION We suggest that secretagogin expression in neurons is developmentally regulated and activity dependent.
Collapse
Affiliation(s)
- János Hanics
- Department of AnatomySemmelweis UniversityBudapestHungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental BiologySemmelweis UniversityBudapestHungary
| | - Evgenii O. Tretiakov
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Roman A. Romanov
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Anna Gáspárdy
- Department of AnatomySemmelweis UniversityBudapestHungary
| | - Zsófia Hevesi
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
| | - Robert Schnell
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
- Department of NeuroscienceBiomedicum 7D, Karolinska InstitutetSolnaSweden
| | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain Research, Medical University of ViennaViennaAustria
- Department of NeuroscienceBiomedicum 7D, Karolinska InstitutetSolnaSweden
| | - Alán Alpár
- Department of AnatomySemmelweis UniversityBudapestHungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental BiologySemmelweis UniversityBudapestHungary
| |
Collapse
|
2
|
Téllez de Meneses PG, Pérez-Revuelta L, Canal-Alonso Á, Hernández-Pérez C, Cocho T, Valero J, Weruaga E, Díaz D, Alonso JR. Immunohistochemical distribution of secretagogin in the mouse brain. Front Neuroanat 2023; 17:1224342. [PMID: 37711587 PMCID: PMC10498459 DOI: 10.3389/fnana.2023.1224342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Calcium is essential for the correct functioning of the central nervous system, and calcium-binding proteins help to finely regulate its concentration. Whereas some calcium-binding proteins such as calmodulin are ubiquitous and are present in many cell types, others such as calbindin, calretinin, and parvalbumin are expressed in specific neuronal populations. Secretagogin belongs to this latter group and its distribution throughout the brain is only partially known. In the present work, the distribution of secretagogin-immunopositive cells was studied in the entire brain of healthy adult mice. Methods Adult male C57BL/DBA mice aged between 5 and 7 months were used. Their whole brain was sectioned and used for immunohistochemistry. Specific neural populations were observed in different zones and nuclei identified according to Paxinos mouse brain atlas. Results Labelled cells were found with a Golgi-like staining, allowing an excellent characterization of their dendritic and axonal arborizations. Many secretagogin-positive cells were observed along different encephalic regions, especially in the olfactory bulb, basal ganglia, and hypothalamus. Immunostained populations were very heterogenous in both size and distribution, as some nuclei presented labelling in their entire extension, but in others, only scattered cells were present. Discussion Secretagogin can provide a more complete vision of calcium-buffering mechanisms in the brain, and can be a useful neuronal marker in different brain areas for specific populations.
Collapse
Affiliation(s)
- Pablo G. Téllez de Meneses
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Laura Pérez-Revuelta
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ángel Canal-Alonso
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Bioinformatics, Intelligent Systems and Educational Technology (BISITE) Research Group, Universidad de Salamanca, Salamanca, Spain
| | - Carlos Hernández-Pérez
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Teresa Cocho
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jorge Valero
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Eduardo Weruaga
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - David Díaz
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José R. Alonso
- Institute for Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
3
|
Shahal T, Segev E, Konstantinovsky T, Marcus Y, Shefer G, Pasmanik-Chor M, Buch A, Ebenstein Y, Zimmet P, Stern N. Deconvolution of the epigenetic age discloses distinct inter-personal variability in epigenetic aging patterns. Epigenetics Chromatin 2022; 15:9. [PMID: 35255955 PMCID: PMC8900303 DOI: 10.1186/s13072-022-00441-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The epigenetic age can now be extrapolated from one of several epigenetic clocks, which are based on age-related changes in DNA methylation levels at specific multiple CpG sites. Accelerated aging, calculated from the discrepancy between the chronological age and the epigenetic age, has shown to predict morbidity and mortality rate. We assumed that deconvolution of epigenetic age to its components could shed light on the diversity of epigenetic, and by inference, on inter-individual variability in the causes of biological aging. RESULTS Using the Horvath original epigenetic clock, we identified several CpG sites linked to distinct genes that quantitatively explain much of the inter-personal variability in epigenetic aging, with CpG sites related to secretagogin and malin being the most variable. We show that equal epigenetic age in different subjects can result from variable contribution size of the same CpG sites to the total epigenetic age. In a healthy cohort, the most variable CpG sites are responsible for accelerated and decelerated epigenetic aging, relative to chronological age. CONCLUSIONS Of the 353 CpG sites that form the basis for the Horvath epigenetic age, we have found the CpG sites that are responsible for accelerated and decelerated epigenetic aging in healthy subjects. However, the relative contribution of each site to aging varies between individuals, leading to variable personal aging patterns. Our findings pave the way to form personalized aging cards allowing the identification of specific genes related to CpG sites, as aging markers, and perhaps treatment of these targets in order to hinder undesirable age drifting.
Collapse
Affiliation(s)
- Tamar Shahal
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Elad Segev
- Department of Applied Mathematics, Holon Institute of Technology, Holon, Israel
| | - Thomas Konstantinovsky
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Applied Mathematics, Holon Institute of Technology, Holon, Israel
| | - Yonit Marcus
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Gabi Shefer
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Buch
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Ebenstein
- Department of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Paul Zimmet
- Department of Diabetes, Monash University School of Medicine, Melbourne, Australia
| | - Naftali Stern
- The Sagol Center for Epigenetics of Aging and Metabolism, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Löffler-Stastka H, Steinmair D. Future of processing and facilitating change and learning. World J Psychiatry 2021; 11:507-516. [PMID: 34631456 PMCID: PMC8474993 DOI: 10.5498/wjp.v11.i9.507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/24/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
The field of the sciences of the mind is evolving fast. With the diversification of knowledge and accumulation of data, often lacking integration and reproducibility, questions arise. The role of critical thinking and research is evident. As the science of the unconscious, psychoanalysis provides a method and theory to understand human minds and mentalities, helping the patient know his mind and transform action into reflection. Mental activities, including social skills, develop in the social context, depending on the social environment’s demands and resources put onto the individual. Encoding emotional signals, markers of meaning for the individual, is ontogenetically necessary and has influences on memory encoding. Beyond theoretical understanding, implicit relational knowledge is actualized in the therapeutic setting. With a strong focus on experiencing emotional reconsolidation of memories, previous relationships’ repercussions are enriched with broadening viewpoints in the analytic environment. The long-term effects of psychotherapeutic treatments have been examined. A sufficient explanation of the specific factors contributing to success or an answer when an impact is lacking is still under investigation. When investigating subliminal and implicit mechanisms leading to memory reconsolidation and the formation of functional object relations and interaction patterns, the focus is set on affective interplay and processing prior/during and after social interactions. The present paper discusses which parameters might contribute to the reshaping of memories and the linkage of memory with the emotional load of experience. Providing insights into such dynamic mental phenomena could enhance process research by investigating moment by moment interactions in psychoanalysis, treatment, and learning processes. Due to the research subject’s complexity, different research methods and integration of associated research fields are required.
Collapse
Affiliation(s)
| | - Dagmar Steinmair
- Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|