1
|
The Neglected Contribution of Streptomycin to the Tuberculosis Drug Resistance Problem. Genes (Basel) 2021; 12:genes12122003. [PMID: 34946952 PMCID: PMC8701281 DOI: 10.3390/genes12122003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
The airborne pathogen Mycobacterium tuberculosis is responsible for a present major public health problem worsened by the emergence of drug resistance. M. tuberculosis has acquired and developed streptomycin (STR) resistance mechanisms that have been maintained and transmitted in the population over the last decades. Indeed, STR resistant mutations are frequently identified across the main M. tuberculosis lineages that cause tuberculosis outbreaks worldwide. The spread of STR resistance is likely related to the low impact of the most frequent underlying mutations on the fitness of the bacteria. The withdrawal of STR from the first-line treatment of tuberculosis potentially lowered the importance of studying STR resistance. However, the prevalence of STR resistance remains very high, could be underestimated by current genotypic methods, and was found in outbreaks of multi-drug (MDR) and extensively drug (XDR) strains in different geographic regions. Therefore, the contribution of STR resistance to the problem of tuberculosis drug resistance should not be neglected. Here, we review the impact of STR resistance and detail well-known and novel candidate STR resistance mechanisms, genes, and mutations. In addition, we aim to provide insights into the possible role of STR resistance in the development of multi-drug resistant tuberculosis.
Collapse
|
2
|
Castro RAD, Borrell S, Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 45:fuaa071. [PMID: 33320947 PMCID: PMC8371278 DOI: 10.1093/femsre/fuaa071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) has been responsible for the greatest number of human deaths due to an infectious disease in general, and due to antimicrobial resistance (AMR) in particular. The etiological agents of human TB are a closely-related group of human-adapted bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Understanding how MTBC populations evolve within-host may allow for improved TB treatment and control strategies. In this review, we highlight recent works that have shed light on how AMR evolves in MTBC populations within individual patients. We discuss the role of heteroresistance in AMR evolution, and review the bacterial, patient and environmental factors that likely modulate the magnitude of heteroresistance within-host. We further highlight recent works on the dynamics of MTBC genetic diversity within-host, and discuss how spatial substructures in patients' lungs, spatiotemporal heterogeneity in antimicrobial concentrations and phenotypic drug tolerance likely modulates the dynamics of MTBC genetic diversity in patients during treatment. We note the general characteristics that are shared between how the MTBC and other bacterial pathogens evolve in humans, and highlight the characteristics unique to the MTBC.
Collapse
Affiliation(s)
- Rhastin A D Castro
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Basel, Switzerland
| |
Collapse
|
3
|
Rocha DMGC, Magalhães C, Cá B, Ramos A, Carvalho T, Comas I, Guimarães JT, Bastos HN, Saraiva M, Osório NS. Heterogeneous Streptomycin Resistance Level Among Mycobacterium tuberculosis Strains From the Same Transmission Cluster. Front Microbiol 2021; 12:659545. [PMID: 34177837 PMCID: PMC8226182 DOI: 10.3389/fmicb.2021.659545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Widespread and frequent resistance to the second-line tuberculosis (TB) medicine streptomycin, suggests ongoing transmission of low fitness cost streptomycin resistance mutations. To investigate this hypothesis, we studied a cohort of 681 individuals from a TB epidemic in Portugal. Whole-genome sequencing (WGS) analyses were combined with phenotypic growth studies in culture media and in mouse bone marrow derived macrophages. Streptomycin resistance was the most frequent resistance in the cohort accounting for 82.7% (n = 67) of the resistant Mycobacterium tuberculosis isolates. WGS of 149 clinical isolates identified 13 transmission clusters, including three clusters containing only streptomycin resistant isolates. The biggest cluster was formed by eight streptomycin resistant isolates with a maximum of five pairwise single nucleotide polymorphisms of difference. Interestingly, despite their genetic similarity, these isolates displayed different resistance levels to streptomycin, as measured both in culture media and in infected mouse bone marrow derived macrophages. The genetic bases underlying this phenotype are a combination of mutations in gid and other genes. This study suggests that specific streptomycin resistance mutations were transmitted in the cohort, with the resistant isolates evolving at the cluster level to allow low-to-high streptomycin resistance levels without a significative fitness cost. This is relevant not only to better understand transmission of streptomycin resistance in a clinical setting dominated by Lineage 4 M. tuberculosis infections, but mainly because it opens new prospects for the investigation of selection and spread of drug resistance in general.
Collapse
Affiliation(s)
- Deisy M G C Rocha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | - Carlos Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Baltazar Cá
- i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | - Angelica Ramos
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Teresa Carvalho
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Iñaki Comas
- Biomedicine Institute of Valencia IBV-CSIC, Valencia, Spain.,CIBER in Epidemiology and Public Health, Valencia, Spain
| | - João Tiago Guimarães
- Department of Clinical Pathology, Centro Hospitalar São João, Porto, Portugal.,Institute of Public Health, University of Porto, Porto, Portugal.,Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Helder Novais Bastos
- i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal.,Serviço de Pneumologia, Centro Hospitalar Universitário de São João EPE, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigacão e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|