1
|
Waring AJ, Whitelegge JP, Sharma SK, Gordon LM, Walther FJ. Emulation of the structure of the Saposin protein fold by a lung surfactant peptide construct of surfactant Protein B. PLoS One 2022; 17:e0276787. [PMID: 36327300 PMCID: PMC9632872 DOI: 10.1371/journal.pone.0276787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structure of the synthetic lung Surfactant Protein B Peptide Super Mini-B was determined using an integrative experimental approach, including mass spectrometry and isotope enhanced Fourier-transform infrared (FTIR) spectroscopy. Mass spectral analysis of the peptide, oxidized by solvent assisted region-specific disulfide formation, confirmed that the correct folding and disulfide pairing could be facilitated using two different oxidative structure-promoting solvent systems. Residue specific analysis by isotope enhanced FTIR indicated that the N-terminal and C-terminal domains have well defined α-helical amino acid sequences. Using these experimentally derived measures of distance constraints and disulfide connectivity, the ensemble was further refined with molecular dynamics to provide a medium resolution, residue-specific structure for the peptide construct in a simulated synthetic lung surfactant lipid multilayer environment. The disulfide connectivity combined with the α-helical elements stabilize the peptide conformationally to form a helical hairpin structure that resembles critical elements of the Saposin protein fold of the predicted full-length Surfactant Protein B structure.
Collapse
Affiliation(s)
- Alan J. Waring
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Julian P. Whitelegge
- Jane & Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shantanu K. Sharma
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California, United States of America
| | - Larry M. Gordon
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Frans J. Walther
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Targeting a Subset of the Membrane Proteome for Top-Down Mass Spectrometry: Introducing the Proteolipidome. Proteomes 2020; 8:proteomes8010005. [PMID: 32164246 PMCID: PMC7151669 DOI: 10.3390/proteomes8010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
A subsection of integral membrane proteins partition into chloroform during a chloroform/methanol/water extraction primarily designed to extract lipids. Traditionally, these proteins were called proteolipids due to their lipid-like properties; the c-subunit of the ATP synthase integral FO component is the best known due to its abundance. In this manuscript, we investigate purification of proteolipid proteins away from lipids for high-resolution mass spectrometry. Size-exclusion chromatography on silica beads using a chloroform/methanol/aqueous formic acid (4/4/1; v/v) mobile phase allowed the separation of larger proteins (>3 kDa) from lipids (<1.5 kDa) and analysis by online electrospray ionization mass spectrometry. Fraction collection for mass spectrometry was limited by presence of plasticizers and other contaminants solubilized by chloroform. Drying down of the protein sample followed by resuspension in formic acid (70%) allowed reverse-phase chromatography on a polymeric support at elevated temperature, as described previously. Fractions collected in this way could be stored for extended periods at −80 °C without adducts or contaminants. Top–down mass spectrometry enabled the definition of PsaI as a novel proteolipid of spinach thylakoid membrane. Proteolipid preparation worked similarly when total membranes from mouse brains were extracted with chloroform. While it might be tempting to use the described extraction, we prefer to broaden the meaning of the term, whereby the proteolipidome is defined as a novel biological membrane proteome that includes the full complement of membrane proteins, their binding partners/ligands and their tightly bound structural lipids that constitute each protein–lipid complex’s functional unit; that is, a complete description of a biological membrane.
Collapse
|
3
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Lin Z, Zhang X, Yang X, Li G, Tang S, Wang S, Ding Y, Liu Z. Proteomic analysis of proteins related to rice grain chalkiness using iTRAQ and a novel comparison system based on a notched-belly mutant with white-belly. BMC PLANT BIOLOGY 2014; 14:163. [PMID: 24924297 PMCID: PMC4072481 DOI: 10.1186/1471-2229-14-163] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/06/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Grain chalkiness is a complex trait adversely affecting appearance and milling quality, and therefore has been one of principal targets for rice improvement. Eliminating chalkiness from rice has been a daunting task due to the complex interaction between genotype and environment and the lack of molecular markers. In addition, the molecular mechanisms underlying grain chalkiness formation are still imperfectly understood. RESULTS We identified a notched-belly mutant (DY1102) with high percentage of white-belly, which only occurs in the bottom part proximal to the embryo. Using this mutant, a novel comparison system that can minimize the effect of genetic background and growing environment was developed. An iTRAQ-based comparative display of the proteins between the bottom chalky part and the upper translucent part of grains of DY1102 was performed. A total of 113 proteins responsible for chalkiness formation was identified. Among them, 70 proteins are up-regulated and 43 down-regulated. Approximately half of these differentially expressed proteins involved in central metabolic or regulatory pathways including carbohydrate metabolism (especially cell wall synthesis) and protein synthesis, folding and degradation, providing proteomic confirmation of the notion that chalkiness formation involves diverse but delicately regulated pathways. Protein metabolism was the most abundant category, accounting for 27.4% of the total differentially expressed proteins. In addition, down regulation of PDIL 2-3 and BiP was detected in the chalky tissue, indicating the important role of protein metabolism in grain chalkiness formation. CONCLUSIONS Using this novel comparison system, our comprehensive survey of endosperm proteomics in the notched-belly mutant provides a valuable proteomic resource for the characterization of pathways contributing to chalkiness formation at molecular and biochemical levels.
Collapse
Affiliation(s)
- Zhaomiao Lin
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing 210095, PR China
| | - Xincheng Zhang
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing 210095, PR China
| | - Xiaoyu Yang
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing 210095, PR China
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing 210095, PR China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing 210095, PR China
| | - Shaohua Wang
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing 210095, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing 210095, PR China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
| | - Zhenghui Liu
- College of Agronomy, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing 210095, PR China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, PR China
| |
Collapse
|
5
|
Abstract
Integral membrane proteins reside within the bilayer membranes that surround cells and organelles, playing critical roles in movement of molecules across them and the transduction of energy and signals. While their extreme amphipathicity presents technical challenges, biological mass spectrometry has been applied to all aspects of membrane protein chemistry and biology, including analysis of primary, secondary, tertiary, and quaternary structures as well as the dynamics that accompany functional cycles and catalysis.
Collapse
Affiliation(s)
- Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, California 90095, United States.
| |
Collapse
|
6
|
Abstract
The study of protein-protein interactions (PPIs) is essential to uncover unknown functions of proteins at the molecular level and to gain insight into complex cellular networks. Affinity purification and mass spectrometry (AP-MS), yeast two-hybrid, imaging approaches and numerous diverse databases have been developed as strategies to analyze PPIs. The past decade has seen an increase in the number of identified proteins with the development of MS and large-scale proteome analyses. Consequently, the false-positive protein identification rate has also increased. Therefore, the general consensus is to confirm PPI data using one or more independent approaches for an accurate evaluation. Furthermore, identifying minor PPIs is fundamental for understanding the functions of transient interactions and low-abundance proteins. Besides establishing PPI methodologies, we are now seeing the development of new methods and/or improvements in existing methods, which involve identifying minor proteins by MS, multidimensional protein identification technology or OFFGEL electrophoresis analyses, one-shot analysis with a long column or filter-aided sample preparation methods. These advanced techniques should allow thousands of proteins to be identified, whereas in-depth proteomic methods should permit the identification of transient binding or PPIs with weak affinity. Here, the current status of PPI analysis is reviewed and some advanced techniques are discussed briefly along with future challenges for plant proteomics.
Collapse
Affiliation(s)
- Yoichiro Fukao
- Plant Global Educational Project, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
7
|
Catalá C, Howe KJ, Hucko S, Rose JKC, Thannhauser TW. Towards characterization of the glycoproteome of tomato (Solanum lycopersicum)
fruit using Concanavalin A lectin affinity chromatography and LC-MALDI-MS/MS analysis. Proteomics 2011; 11:1530-44. [DOI: 10.1002/pmic.201000424] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 01/03/2011] [Accepted: 01/24/2011] [Indexed: 11/09/2022]
|
8
|
Nowaczyk MM, Wulfhorst H, Ryan CM, Souda P, Zhang H, Cramer WA, Whitelegge JP. NdhP and NdhQ: two novel small subunits of the cyanobacterial NDH-1 complex. Biochemistry 2011; 50:1121-4. [PMID: 21244052 PMCID: PMC3040284 DOI: 10.1021/bi102044b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The subunit composition of the NAD(P)H dehydrogenase complex of Thermosynechococcus elongatus was analyzed by different types of mass spectrometry. All 15 known subunits (NdhA-NdhO) were identified in the purified NDH-1L complex. Moreover, two additional intact mass tags of 4902.7 and 4710.5 Da could be assigned after reannotation of the T. elongatus genome. NdhP and NdhQ are predicted to contain a single transmembrane helix each, and homologues are apparent in other cyanobacteria. Additionally, ndhP is present in some cyanophages in a cluster of PSI genes and exhibits partial similarity to NDF6, a subunit of the plant NDH-1 complex.
Collapse
Affiliation(s)
- Marc M Nowaczyk
- Department of Plant Biochemistry, Ruhr-University Bochum, D-44780 Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Mitra SK, Walters BT, Clouse SD, Goshe MB. An efficient organic solvent based extraction method for the proteomic analysis of Arabidopsis plasma membranes. J Proteome Res 2009; 8:2752-67. [PMID: 19334764 DOI: 10.1021/pr801044y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane proteins are involved in diverse cellular processes and are an integral component of many signaling cascades, but due to their highly hydrophobic nature and the complexities associated with studying these proteins in planta, alternative methods are being developed to better characterize these proteins on a proteome-wide scale. In our previous work ( Mitra , S. K. et al. J. Proteome Res. 2007 , 6 , ( 5 ), 1933 - 50 ), methanol-assisted solubilization was determined to facilitate the identification of both hydrophobic and hydrophilic membrane proteins compared to Brij-58 solubilization and was particularly effective for leucine-rich repeat receptor-like kinases (LRR RLKs). To improve peptide identification and to overcome sample losses after tryptic digestion, we have developed an effective chloroform extraction method to promote plasma membrane protein identification. The use of chloroform extraction over traditional solid-phase extraction (SPE) prior to off-line strong cation exchange liquid chromatography (SCXC) and reversed-phase liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis facilitated the removal of chlorophylls, major contaminants of plant tissue preparations that can affect downstream analysis, in addition to the effective removal of trypsin used in the digestion. On the basis of a statistically derived 5% false discovery rate, the chloroform extraction procedure increased the identification of unique peptides for plasma membrane proteins over SPE by 70% which produced nearly a 2-fold increase in detection of membrane transporters and LRR RLKs without increased identification of contaminating Rubisco and ribosomal peptides. Overall, the combined use of methanol and chloroform provides an effective method to study membrane proteins and can be readily applied to other tissues and cells types for proteomic analysis.
Collapse
Affiliation(s)
- Srijeet K Mitra
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695-7609, USA
| | | | | | | |
Collapse
|
10
|
Cho WK, Chen XY, Chu H, Rim Y, Kim S, Kim ST, Kim SW, Park ZY, Kim JY. Proteomic analysis of the secretome of rice calli. PHYSIOLOGIA PLANTARUM 2009; 135:331-41. [PMID: 19226311 DOI: 10.1111/j.1399-3054.2008.01198.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The cell wall and extracellular matrix in higher plants include secreted proteins that play critical roles in a wide range of cellular processes, such as structural integrity and biogenesis. Compared with the intensive cell wall proteomic studies in Arabidopsis, the list of cell wall proteins identified in monocot species is lacking. Therefore, we conducted a large-scale proteomic analysis of secreted proteins from rice. Highly purified secreted rice proteins were obtained from the medium of a suspension of callus culture and were analyzed with multidimensional protein identification technology (MudPIT). As a result, we could detect a total of 555 rice proteins by MudPIT analysis. Based on bioinformatic analyses, 27.7% (154 proteins) of the identified proteins are considered to be secreted proteins because they possess a signal peptide for the secretory pathway. Among the 154 identified proteins, 27% were functionally categorized as stress response proteins, followed by metabolic proteins (26%) and factors involved in protein modification (24%). Comparative analysis of cell wall proteins from Arabidopsis and rice revealed that one third of the secreted rice proteins overlapped with those of Arabidopsis. Furthermore, 25 novel rice-specific secreted proteins were found. This work presents the large scale of the rice secretory proteome from culture medium, which contributes to a deeper understanding of the rice secretome.
Collapse
Affiliation(s)
- Won Kyong Cho
- Division of Applied Life Science (BK21 Program), Graduate School, Environmental Biotechnology National Core Research Center, PMBBRC, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cho WK, Kim JY. Integrated analyses of the rice secretome. PLANT SIGNALING & BEHAVIOR 2009; 4:345-7. [PMID: 19794859 PMCID: PMC2664503 DOI: 10.4161/psb.4.4.8198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 02/17/2009] [Indexed: 05/21/2023]
Abstract
The plant cell wall contains proteins secreted from the cell. A subset of these proteins is called the secretome, which plays important roles in biological and physiological processes. To gain insight into the secretome for monocot species, we performed proteomic analysis of the rice secretome. In this addendum, we combined the results of two independent studies. For this, 154 rice secreted proteins from our study were compared to 42 non-redundant rice secreted proteins from another group. Surprisingly, only 20 proteins were commonly found in the two groups, indicating that the materials and methods are very important factors finding secreted proteins. Finally, a total of 172 rice secreted proteins were assigned molecular functions and biological processes according to gene ontology annotation. These comparative and integrative analyses of the rice secretome provide a large number of rice secreted proteins that can be used in subsequent investigations.
Collapse
Affiliation(s)
- Won Kyong Cho
- Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | | |
Collapse
|
12
|
Haynes PA, Roberts TH. Subcellular shotgun proteomics in plants: looking beyond the usual suspects. Proteomics 2007; 7:2963-75. [PMID: 17703495 DOI: 10.1002/pmic.200700216] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this review we examine the current state of analytical methods used for shotgun proteomics experiments in plants. The rapid advances in this field in recent years are discussed, and contrasted with experiments performed using current widely used procedures. We also examine the use of subcellular fractionation approaches as they apply to plant proteomics, and discuss how appropriate sample preparation can produce a great increase in proteome coverage in subsequent analysis. We conclude that the conjunction of these two techniques represents a significant advance in plant proteomics, and the future of plant biology research will continue to be enriched by the ongoing development of proteomic analytical technology.
Collapse
Affiliation(s)
- Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, Australia
| | | |
Collapse
|
13
|
Neubauer H, Fehm T, Schütz C, Speer R, Solomayer E, Schrattenholz A, Cahill MA, Kurek R. Proteomic expression profiling of breast cancer. Recent Results Cancer Res 2007; 176:89-120. [PMID: 17607919 DOI: 10.1007/978-3-540-46091-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Breast cancer is one of the most common cancers observed in women in industrialized Western countries. The development of novel diagnostic methods and the application of modern systemic therapies have significantly optimized early detection and therapy of breast cancer. However, many patients are currently overtreated. Traditionally, tumours have been categorized on the basis of histopathological criteria. However, staining pattern and intensity of cancer cells are not sufficient to reflect the molecular events driving tumour development and progression. Therefore, new genomic, transcriptomic and proteomic techniques are applied to clinical samples aiming to identify new targets for a therapy tailored for an individual patient. After an introduction to common genomic and transcriptomic profiling technologies and their relevance for clinical use, we will focus on analytical and preanalytical applications for the identification of new therapeutic targets by protein profiling, with a special emphasis on two-dimensional gel-technologies (2D-PAGE), particularly as they apply to the study of breast cancer.
Collapse
|
14
|
Abstract
Rice is not only an important agricultural resource but also a model plant for biological research. Our previous review highlighted different aspects of the construction of rice proteome database, cataloguing rice proteins of different tissues and organelle, differential proteomics using 2-DE and functional characterization of some of the proteins identified (Komatsu, S., Tanaka, N., Proteomics 2005, 5, 938-949). In this review, the powerfulness and weaknesses of proteomic technologies as a whole and limitations of the currently used techniques in rice proteomics are discussed. The information obtained from these techniques regarding proteins modification, protein-protein interaction and the development of new methods for differential proteomics will aid in deciphering more precisely the functions of known and/or unknown proteins in rice.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Department of Molecular Genetics, National Institute of Agrobiological Sciences, Tsukuba, Japan.
| | | |
Collapse
|
15
|
Sarry JE, Kuhn L, Le Lay P, Garin J, Bourguignon J. Dynamics of Arabidopsis thaliana soluble proteome in response to different nutrient culture conditions. Electrophoresis 2006; 27:495-507. [PMID: 16358359 DOI: 10.1002/elps.200500561] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In an effort to determine the best extraction procedure compatible with the high-reproducible 2-DE, different methods of soluble protein extraction from Arabidopsis cell culture suspensions grown in Gamborg B5 medium were tested. A reference 2-DE map was established for this soluble extract revealing 1184 spots. The most abundant protein spots were excised, trypsin-digested, and mass spectra obtained via MALDI-TOF and/or LC coupled to ESI-MS. Three hundred and thirty one proteins were identified and their functions were defined based on sequence comparisons and classified in different protein families. In order to analyze the impact of culture medium on the Arabidopsis proteome, we performed the 2-DE map from Arabidopsis cell suspensions cultured in another growth medium Murashige and Skoog (M-S) and 327 major spots were identified. Using PDQuest imaging analysis, significant increases in the amount of several housekeeping enzymes, stress/defense proteins, and heat shock proteins were found in M-S medium. Modified expression of certain proteins and detection of new isoforms involved in nitrate assimilation, nitrogen, and sulfur metabolism were also observed in the M-S medium. This study provides the first 2-DE maps of the soluble proteome of Arabidopsis cell suspensions. The comparative analysis of the Arabidopsis proteome in respect to different nutrient supplies shows that the culture medium may significantly influence the expression pattern of major soluble proteins in Arabidopsis cells. This work also constitutes an important step for further proteomic analysis concerning cell responses to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Jean-Emmanuel Sarry
- Laboratoire de Physiologie Cellulaire Végétale, Department Reponse & Dynamique Cellulaires, CEA, Grenoble, France
| | | | | | | | | |
Collapse
|
16
|
Komatsu S, Zang X, Tanaka N. Comparison of Two Proteomics Techniques Used to Identify Proteins Regulated by Gibberellin in Rice. J Proteome Res 2006; 5:270-6. [PMID: 16457592 DOI: 10.1021/pr0502929] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteomics has become an essential methodology for large-scale analysis of proteins in various fields of plant biology. We compared two proteomics techniques, two-dimensional liquid chromatography (2D-LC) and fluorescence two-dimensional difference gel electrophoresis (2D-DIGE), for their ability to identify proteins regulated by gibberellin (GA) in rice. Two-week-old rice seedlings were treated with or without 5 microM GA3 for 48 h and proteins extracted from the basal region of the leaf sheath. After separation of the proteins by the two techniques, the amino acid sequences of GA3-responsive proteins were analyzed using a protein sequencer and mass spectrometry. 2D-LC and 2D-DIGE were able to resolve 1248 protein fractions and 1500 proteins, respectively. Out of these, 2D-LC identified 9 proteins that were up-regulated and 9 that were down-regulated by GA treatment; 2D-DIGE identified 4 up-regulated and 4 down-regulated proteins. The two techniques detected overlapping sets of proteins. For example, cytosolic glyceraldehyde-3-phosphate dehydrogenase and photosystem II oxygen-evolving complex protein were identified as GA3-regulated proteins by both methods. In addition, these two methods uncovered GA3-regulated unknown proteins which had not been reported previously, and novel proteins which are not detected in 2D-PAGE followed by Coomassie brilliant blue staining. These results suggest that these two methods are among some of the very useful tools for detecting proteins that may function in various physiological and developmental processes in plants.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Department of Molecular Genetics, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan.
| | | | | |
Collapse
|
17
|
|
18
|
Carter C, Pan S, Zouhar J, Avila EL, Girke T, Raikhel NV. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. THE PLANT CELL 2004; 16:3285-303. [PMID: 15539469 PMCID: PMC535874 DOI: 10.1105/tpc.104.027078] [Citation(s) in RCA: 452] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Vacuoles play central roles in plant growth, development, and stress responses. To better understand vacuole function and biogenesis we have characterized the vegetative vacuolar proteome from Arabidopsis thaliana. Vacuoles were isolated from protoplasts derived from rosette leaf tissue. Total purified vacuolar proteins were then subjected either to multidimensional liquid chromatography/tandem mass spectrometry or to one-dimensional SDS-PAGE coupled with nano-liquid chromatography/tandem mass spectrometry (nano-LC MS/MS). To ensure maximum coverage of the proteome, a tonoplast-enriched fraction was also analyzed separately by one-dimensional SDS-PAGE followed by nano-LC MS/MS. Cumulatively, 402 proteins were identified. The sensitivity of our analyses is indicated by the high coverage of membrane proteins. Eleven of the twelve known vacuolar-ATPase subunits were identified. Here, we present evidence of four tonoplast-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), representing each of the four groups of SNARE proteins necessary for membrane fusion. In addition, potential cargo of the N- and C-terminal propeptide sorting pathways, association of the vacuole with the cytoskeleton, and the vacuolar localization of 89 proteins of unknown function are identified. A detailed analysis of these proteins and their roles in vacuole function and biogenesis is presented.
Collapse
Affiliation(s)
- Clay Carter
- Center for Plant Cell Biology, Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | | | | | | | |
Collapse
|
19
|
Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS. Tackling the plant proteome: practical approaches, hurdles and experimental tools. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:715-33. [PMID: 15315634 DOI: 10.1111/j.1365-313x.2004.02182.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The study of complex biological questions through comparative proteomics is becoming increasingly attractive to plant biologists as the rapidly expanding plant genomic and expressed sequence tag databases provide improved opportunities for protein identification. This review focuses on practical issues associated with comparative proteomic analysis, including the challenges of effective protein extraction and separation from plant tissues, the pros and cons of two-dimensional gel-based analysis and the problems of identifying proteins from species that are not recognized models for functional genomic studies. Specific points are illustrated using data from an ongoing study of the tomato and pepper fruit proteomes.
Collapse
Affiliation(s)
- Jocelyn K C Rose
- Department of Plant Biology, Cornell University, Ithaca, NY 147853, USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Proteomics is a leading technology for the high-throughput analysis of proteins on a genome-wide scale. With the completion of genome sequencing projects and the development of analytical methods for protein characterization, proteomics has become a major field of functional genomics. The initial objective of proteomics was the large-scale identification of all protein species in a cell or tissue. The applications are currently being extended to analyze various functional aspects of proteins such as post-translational modifications, protein-protein interactions, activities and structures. Whereas the proteomics research is quite advanced in animals and yeast as well as Escherichia coli, plant proteomics is only at the initial phase. Major studies of plant proteomics have been reported on subcellular proteomes and protein complexes (e.g. proteins in the plasma membranes, chloroplasts, mitochondria and nuclei). Here several plant proteomics studies will be presented, followed by a recent work using multidimensional protein identification technology (MudPIT).
Collapse
Affiliation(s)
- Ohkmae K Park
- Kumho Life and Environmental Science Laboratory, Gwangju 500-712, Korea.
| |
Collapse
|
21
|
Bolwell GP, Slabas AR, Whitelgge JP. Proteomics: empowering systems biology in plants. PHYTOCHEMISTRY 2004; 65:1665-1669. [PMID: 15276428 DOI: 10.1016/j.phytochem.2004.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
22
|
Whitelegge JP, Katz JE, Pihakari KA, Hale R, Aguilera R, Gómez SM, Faull KF, Vavilin D, Vermaas W. Subtle modification of isotope ratio proteomics; an integrated strategy for expression proteomics. PHYTOCHEMISTRY 2004; 65:1507-1515. [PMID: 15276448 DOI: 10.1016/j.phytochem.2004.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 05/25/2004] [Indexed: 05/24/2023]
Abstract
Use of minor modification of isotope ratio to code samples for expression proteomics is being investigated. Alteration of (13)C abundance to approximately 2% yields a measurable effect on peptide isotopic distribution and inferred isotope ratio. Elevation of (13)C abundance to 4% leads to extension of isotopic distribution and background peaks across every unit of the mass range. Assessment of isotope ratio measurement variability suggests substantial contributions from natural measurement variability. A better understanding of this variable will allow assessment of the contribution of sequence dependence. Both variables must be understood before meaningful mixing experiments for relative expression proteomics are performed. Subtle modification of isotope ratio ( approximately 1-2% increase in (13)C) had no effect upon either the ability of data-dependent acquisition software or database searching software to trigger tandem mass spectrometry or match MSMS data to peptide sequences. More severe modification of isotope ratio caused a significant drop in performance of both functionalities. Development of software for deconvolution of isotope ratio concomitant with protein identification using LC-MSMS, or any other proteomics strategy, is underway (Isosolv). The identified peptide sequence is then be used to provide elemental composition for accurate isotope ratio decoding and the potential to control for specific amino acid biases should these prove significant. It is suggested that subtle modification of isotope ratio proteomics (SMIRP) offers a convenient approach to in vivo isotope coding of plants and might ultimately be extended to mammals including humans.
Collapse
Affiliation(s)
- Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, Department of Psychiatry, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Baginsky S, Gruissem W. Chloroplast proteomics: potentials and challenges. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1213-20. [PMID: 15020636 DOI: 10.1093/jxb/erh104] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With the available Arabidopsis genome and near-completion of the rice genome sequencing project, large-scale analysis of plant proteins with mass spectrometry has now become possible. Determining the proteome of a cell is a challenging task, which is complicated by proteome dynamics and complexity. The biochemical heterogeneity of proteins constrains the use of standardized analytical procedures and requires demanding techniques for proteome analysis. Several proteome studies of plant cell organelles have been reported, including chloroplasts and mitochondria. Chloroplasts are of particular interest for plant biologists because of their complex biochemical pathways for essential metabolic functions. Information from the chloroplast proteome will therefore provide new insights into pathway compartmentalization and protein sorting. Some approaches for the analysis of the chloroplast proteome and future prospects of plastid proteome research are discussed here.
Collapse
Affiliation(s)
- Sacha Baginsky
- Institute of Plant Sciences, Swiss Federal Institute of Technology, ETH Zentrum, LFW E51.1, Universitätstrasse 2, CH-8092 Zürich, Switzerland.
| | | |
Collapse
|
24
|
Abstract
DNA and RNA quantifications are widely used in biological and biomedical research. In the last ten years, many technologies have been developed to enable automated and high-throughput analyses. In this review, we first give a brief overview of how DNA and RNA quantifications are carried out. Then, five technologies (microarrays, SAGE, differential display, real time PCR and real competitive PCR) are introduced, with an emphasis on how these technologies can be applied and what their limitations are. The technologies are also evaluated in terms of a few key aspects of nucleic acids quantification such as accuracy, sensitivity, specificity, cost and throughput.
Collapse
Affiliation(s)
- Chunming Ding
- Bioinformatics Program and Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
25
|
Abstract
Proteomics seeks to monitor the global complement of proteins within a cell or organism and accompanying plasticity with respect to development and environment. The proteome is dynamic, the product of current and past gene expression, countless protein-protein interactions and selective proteolytic systems. Consequently the snapshot that a proteomic measurement yields must be integrated into proteome flux; the flow of nutrients and energy through the protein pathways that catalyze and drive life. The thylakoid membrane proteome poses many technical challenges for proteomics. Integral membrane proteins present awkward physico-chemical properties and the abundant photosynthetic machinery conceals much less abundant and no less important proteins such as channels and transporters that control the interaction of stroma and lumen. Discussed here are contrasting approaches to thylakoid proteomics; 'shotgun' techniques that provide throughput benefits by cleaving proteins into smaller more-manageable peptide chunks versus intact protein techniques that provide more detailed and accurate pictures. A two-dimensional chromatography system directly interfaced to electrospray-ionization mass spectrometry has allowed the direct visualization of large reaction-center proteins (up to 83 kDa) from both Photosystems 1 and 2 providing an attractive avenue for characterization of thylakoid membrane proteomes under different conditions because of the ability to resolve molecular heterogeneity resulting from post-translational modifications such as phosphorylation and oxidation. A high-resolution spectrum of Bacteriorhodopsin recorded to an accuracy of 8 ppm using Fourier-transform mass spectrometry demonstrates the first application of this technique to intact polytopic integral membrane proteins.
Collapse
Affiliation(s)
- Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, Departments of Psychiatry and Biobehavioral Sciences, Chemistry and Biochemistry, and the Neuropsychiatric Institute, University of California, Los Angeles, CA, 90095, USA,
| |
Collapse
|