1
|
Lu Q, Zhang Z, Ding X. Isolation Techniques of Micro/Nano-Scaled Species for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414109. [PMID: 40411414 DOI: 10.1002/advs.202414109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/04/2025] [Indexed: 05/26/2025]
Abstract
Isolation of micro/nano-scaled bioparticles, such as circulating tumor cells (CTCs), exosomes, bacteria, white blood cells (WBCs), platelets, and viruses, from the sample is essential for cancer diagnosis and treatment, preventing bacterial infections, and monitoring human health. Numerous separation techniques, including magnetophoresis, dielectrophoresis, acoustophoresis, optophoresis, and fluorescence-activated sorting (FAS) have been developed to isolate the target bioparticles from complex samples accurately. However, these active methods usually rely on sophisticated instruments which are expensive and bulky. Passive platforms with high throughput, low cost, and small volume have gradually become alternative methods. Alongside this context, this review paper is no longer confined to one specific category of isolation techniques, advanced systems that have been developed in recent years are comprehensively introduced. Characteristics and limitations of each technology are discussed according to the critical performance parameters including purity, recovery rate, throughput, resolution, size, and convenience. Specific biomedical applications of separation techniques are summarized to provide practical implications for disease diagnosis, treatment, and mechanism research. This review also addresses the current challenges, potential solutions, and prospects in this field, laying the foundation for further optimization, innovation, and cross-integration of isolation techniques in the future.
Collapse
Affiliation(s)
- Qing Lu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhinan Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
2
|
Yu Z, Dong J, Lin J, Yang W, Li T, Zhou J, Huang L. Effect of Cell-Cell Interaction on Single-Cell Behavior Revealed by a Deep Learning-Aided High-Throughput Addressable Single-Cell Coculture System. Anal Chem 2025; 97:9866-9875. [PMID: 40298933 DOI: 10.1021/acs.analchem.5c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cell-cell interactions are crucial for understanding various physiological and pathological processes, yet conventional population-level methods fail to disclose the heterogeneity at a single-cell resolution. Single-cell coculture systems that isolate and cultivate single-cell pairs can help reveal heterogeneous interactions between different types of individual cells. However, precise and high-throughput pairing of individual cells for long-term coculture remains challenging. Meanwhile, tools for analyzing single-cell data sets have lagged due to the increased data throughput. Herein, we report a deep learning-assisted high-throughput addressable single-cell coculture system (DL-HASCCS), enabling fast pairing of individual heterogeneous cells and quantitative analysis of single-cell interactions in a high-throughput manner by integrating high-throughput single-cell cocultivation and automated data processing. By analyzing the interaction between single breast cancer cells and single endothelial cells under normal and chemotherapy conditions, the effect of cell-cell interactions on cell proliferation and migration is revealed at the single-cell level, providing valuable insights into cellular heterogeneity.
Collapse
Affiliation(s)
- Ziming Yu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jianpei Dong
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jingxiong Lin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Yang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tengyun Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Lu Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
3
|
Pan C, Wang X, Yang C, Fu K, Wang F, Fu L. The culture and application of circulating tumor cell-derived organoids. Trends Cell Biol 2025; 35:364-380. [PMID: 39523200 DOI: 10.1016/j.tcb.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Circulating tumor cells (CTCs), which have the heterogeneity and histological properties of the primary tumor and metastases, are shed from the primary tumor and/or metastatic lesions into the vasculature and initiate metastases at remote sites. In the clinic, CTCs are used extensively in liquid biopsies for early screening, diagnosis, treatment, and prognosis. Current research focuses on using CTC-derived models to study tumor heterogeneity and metastasis, with 3D organoids emerging as a promising tool in cancer research and precision oncology. However, isolating and enriching CTCs from blood remains challenging due to their scarcity, exacerbated by the lack of an optimized culture medium for CTC-derived organoids (CTCDOs). In this review, we summarize the origin, isolation, enrichment, culture, validation, and clinical application of CTCs and CTCDOs.
Collapse
Affiliation(s)
- Can Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
4
|
Ou X, Chen P, Liu BF. Liquid Biopsy on Microfluidics: From Existing Endogenous to Emerging Exogenous Biomarkers Analysis. Anal Chem 2025; 97:8625-8640. [PMID: 40247704 DOI: 10.1021/acs.analchem.4c05407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Liquid biopsy is an appealing approach for early diagnosis and assessment of treatment efficacy in cancer. Typically, liquid biopsy involves the detection of endogenous biomarkers, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), and proteins. The levels of these endogenous biomarkers are higher in cancer patients compared to those in healthy individuals. However, the clinical application of liquid biopsy using endogenous biomarker analysis faces challenges due to its low abundance and poor stability in circulation. Recently, a promising strategy involving the engineering of exogenous probes has been developed to overcome these limitations. These exogenous probes are activated within the tumor microenvironment, generating distinct exogenous markers that can be easily distinguished from background biological signals. Alternatively, these exogenous probes can be labeled with intrinsic endogenous biomarkers in vivo and detected in vitro after metabolic processes. In this review, we primarily focus on microfluidic-based liquid biopsy techniques that allow for the transition from analyzing existing endogenous biomarkers to emerging exogenous ones. First, we introduce common endogenous biomarkers, as well as synthetic exogenous ones. Next, we discuss recent advancements in microfluidic-based liquid biopsy techniques for analyzing both existing endogenous and emerging exogenous biomarkers. Lastly, we provide insights into future directions for liquid biopsy on microfluidic systems.
Collapse
Affiliation(s)
- Xiaowen Ou
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Department of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Cha H, Ouyang L, Chen X, Wu Y, Kang X, An H, Li W, Nguyen NT, Zhang J. Leveraging dielectrophoresis in inertial flow for versatile manipulation of micro and nanoparticles. LAB ON A CHIP 2025. [PMID: 40177729 DOI: 10.1039/d4lc01037j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The manipulation of micro and nanoparticles has extensive applications in biomedical research, clinical diagnostics, environmental monitoring, drug discovery, and the mining industry. Dielectrophoresis (DEP) utilises nonuniform electric fields to manipulate particles, offering a label-free, high-precision, and non-invasive method for both natural and synthetic particles. DEP manipulation has been well studied in the Stokes flow region with ultra-low Reynolds numbers (Re ≪ 1), where viscous effects dominate. However, its application in the inertial flow regime remains largely unexplored. This study aims to bridge the gap by coupling DEP and inertial flow for the manipulation of particles across micro and nano scales. First, we theoretically analysed the physical coupling of DEP and inertial lift forces along the vertical direction in microchannels, utilising symmetrical interdigitated electrode (IDE) arrays patterned on the top and bottom channel surfaces. We then experimentally investigated how the vertical coupling of DEP and inertial lift forces affects particle lateral focusing properties. The effects of DEP along the vertical direction were leveraged and amplified by the inertial effects along the lateral direction. Finally, we applied DEP in the inertial flow regime for size-based and dielectric property-based separation of particles and cells, as well as nanoparticle focusing and filtration. We believe that leveraging DEP in inertial flow will advance the field by providing a versatile and powerful method for the manipulation of micro and nanoparticles.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Xiangxun Chen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Xiaoyue Kang
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
- School of Environment Science, Griffith University, 170 Kessel Road, Nathan, QLD 4111, Australia
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, 2522 Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
6
|
Salomon R, Razavi Bazaz S, Mutafopulos K, Gallego-Ortega D, Warkiani M, Weitz D, Jin D. Challenges in blood fractionation for cancer liquid biopsy: how can microfluidics assist? LAB ON A CHIP 2025; 25:1097-1127. [PMID: 39775440 DOI: 10.1039/d4lc00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers. With advances in the next generation sequencing (NGS) and single-cell genomics, simultaneous analysis of both circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) is now a real possibility. To realise this, however, we need to overcome issues with current blood collection and fractionation processes. These include overcoming the need to add a preservative to the collection tube or the need to rapidly send blood tubes to a centralised processing lab with the infrastructure required to fractionate and process the blood samples. This review focuses on outlining the current state of liquid biopsy and how microfluidic blood fractionation tools can be used in cancer liquid biopsy. We describe microfluidic devices that can separate plasma for ctDNA analysis, and devices that are important in isolating the cellular component(s) in liquid biopsy, i.e., individual CTCs and CTC clusters. To facilitate a better understanding of these devices, we propose a new categorisation system based on how these devices operate. The three categories being 1) solid Interaction devices, 2) fluid Interaction devices and 3) external force/active devices. Finally, we conclude that whilst some assays and some cancers are well suited to current microfluidic techniques, new tools are necessary to support broader, clinically relevant multiomic workflows in cancer liquid biopsy.
Collapse
Affiliation(s)
- Robert Salomon
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| | - Sajad Razavi Bazaz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| | - Kirk Mutafopulos
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - David Gallego-Ortega
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Majid Warkiani
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - David Weitz
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| |
Collapse
|
7
|
Zhang Y, Scholten D, Qiang W, Platanias LC, Gradishar WJ, Kelley SO, Liu H. Circulation tumor cell isolation and enrichment technologies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2025; 392:119-149. [PMID: 40287218 DOI: 10.1016/bs.ircmb.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
During cancer metastasis, tumor cells migrate from the primary tumor site and spread to distant tissue or organs through the circulatory system of the body. While it is challenging to track metastatic tumor cells, circulating tumor cells (CTCs) via liquid biopsy provide a unique and important opportunity for longitudinal monitoring of residual cancer diseases and progression, showing great potential to facilitate precision medicine in cancer patients. The enumeration and characterization of CTCs represent prognostic and predictive biomarkers, which can be used to monitor the response to and efficacy of various therapies. Along with molecular and cellular features of CTCs, this data can inform the detection of early micro-metastases and assess progression of advanced disease in a more sensitive manner than traditional imaging modalities, serving as a complementary approach with added value. Nevertheless, comprehensive multiomic analyses of CTCs at inter-cellular (cluster), single-cell, and subcellular levels to elucidate relevant CTC cancer biology, tumor immune ecosystem biology, and clinical outcomes have yet to be achieved, demanding multidisciplinary collaboration to advance the field. Complementary to the published chapter on multiomic analyses and functional properties of CTCs, this chapter summarizes key methods and integrated strategies in CTC isolation, highlighting an accelerated evolution in high-throughput analysis of CTCs.
Collapse
Affiliation(s)
- Youbin Zhang
- Circulating Tumor Cell Core, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States; Hematology & Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - David Scholten
- Driskill Graduate Program (DGP) in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Wenan Qiang
- Chemistry of Life Processes, Chicago, IL, United States
| | - Leonidas C Platanias
- Circulating Tumor Cell Core, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States; Hematology & Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - William J Gradishar
- Circulating Tumor Cell Core, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States; Hematology & Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Shana O Kelley
- Chemistry of Life Processes, Chicago, IL, United States; Department of Chemistry, Northwestern University, Chicago, IL, United States; Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States; Chan Zuckerberg Biohub Chicago, Chicago, IL, United States
| | - Huiping Liu
- Circulating Tumor Cell Core, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States; Hematology & Oncology Division, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Chan Zuckerberg Biohub Chicago, Chicago, IL, United States.
| |
Collapse
|
8
|
Wang Z, Kelley SO. Microfluidic technologies for enhancing the potency, predictability and affordability of adoptive cell therapies. Nat Biomed Eng 2025:10.1038/s41551-024-01315-2. [PMID: 39953325 DOI: 10.1038/s41551-024-01315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/31/2024] [Indexed: 02/17/2025]
Abstract
The development and wider adoption of adoptive cell therapies is constrained by complex and costly manufacturing processes and by inconsistent efficacy across patients. Here we discuss how microfluidic and other fluidic devices can be implemented at each stage of cell manufacturing for adoptive cell therapies, from the harvesting and isolation of the cells to their editing, culturing and functional selection. We suggest that precise and controllable microfluidic systems can streamline the development of these therapies by offering scalability in cell production, bolstering the efficacy and predictability of the therapies and improving their cost-effectiveness and accessibility for broader populations of patients with cancer.
Collapse
Affiliation(s)
- Zongjie Wang
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Shana O Kelley
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA.
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Bergmann L, Afflerbach AK, Yuan T, Pantel K, Smit DJ. Lessons (to be) learned from liquid biopsies: assessment of circulating cells and cell-free DNA in cancer and pregnancy-acquired microchimerism. Semin Immunopathol 2025; 47:14. [PMID: 39893314 PMCID: PMC11787191 DOI: 10.1007/s00281-025-01042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Tumors constantly shed cancer cells that are considered the mediators of metastasis via the blood stream. Analysis of circulating cells and circulating cell-free DNA (cfDNA) in liquid biopsies, mostly taken from peripheral blood, have emerged as powerful biomarkers in oncology, as they enable the detection of genomic aberrations. Similarly, liquid biopsies taken from pregnant women serve as prenatal screening test for an abnormal number of chromosomes in the fetus, e.g., via the analysis of microchimeric fetal cells and cfDNA circulating in maternal blood. Liquid biopsies are minimally invasive and, consequently, associated with reduced risks for the patients. However, different challenges arise in oncology and pregnancy-acquired liquid biopsies with regard to the analyte concentration and biological (background) noise among other factors. In this review, we highlight the unique biological properties of circulating tumor cells (CTC), summarize the various techniques that have been developed for the enrichment, detection and analysis of CTCs as well as for analysis of genetic and epigenetic aberrations in cfDNA and highlight the range of possible clinical applications. Lastly, the potential, but also the challenges of liquid biopsies in oncology as well as their translational value for the analysis of pregnancy-acquired microchimerism are discussed.
Collapse
Affiliation(s)
- Lina Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Ann-Kristin Afflerbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Tingjie Yuan
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
10
|
Mishra A, Huang SB, Dubash T, Burr R, Edd JF, Wittner BS, Cunneely QE, Putaturo VR, Deshpande A, Antmen E, Gopinathan KA, Otani K, Miyazawa Y, Kwak JE, Guay SY, Kelly J, Walsh J, Nieman LT, Galler I, Chan P, Lawrence MS, Sullivan RJ, Bardia A, Micalizzi DS, Sequist LV, Lee RJ, Franses JW, Ting DT, Brunker PAR, Maheswaran S, Miyamoto DT, Haber DA, Toner M. Tumor cell-based liquid biopsy using high-throughput microfluidic enrichment of entire leukapheresis product. Nat Commun 2025; 16:32. [PMID: 39746954 PMCID: PMC11696112 DOI: 10.1038/s41467-024-55140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Circulating Tumor Cells (CTCs) in blood encompass DNA, RNA, and protein biomarkers, but clinical utility is limited by their rarity. To enable tumor epitope-agnostic interrogation of large blood volumes, we developed a high-throughput microfluidic device, depleting hematopoietic cells through high-flow channels and force-amplifying magnetic lenses. Here, we apply this technology to analyze patient-derived leukapheresis products, interrogating a mean blood volume of 5.83 liters from seven patients with metastatic cancer. High CTC yields (mean 10,057 CTCs per patient; range 100 to 58,125) reveal considerable intra-patient heterogeneity. CTC size varies within patients, with 67% overlapping in diameter with WBCs. Paired single-cell DNA and RNA sequencing identifies subclonal patterns of aneuploidy and distinct signaling pathways within CTCs. In prostate cancers, a subpopulation of small aneuploid cells lacking epithelial markers is enriched for neuroendocrine signatures. Pooling of CNV-confirmed CTCs enables whole exome sequencing with high mutant allele fractions. High-throughput CTC enrichment thus enables cell-based liquid biopsy for comprehensive monitoring of cancer.
Collapse
Affiliation(s)
- Avanish Mishra
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shih-Bo Huang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Howard Hughes Medical Institute, Bethesda, MD, 20815, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Risa Burr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jon F Edd
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ben S Wittner
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Quinn E Cunneely
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Victor R Putaturo
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Akansha Deshpande
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ezgi Antmen
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kaustav A Gopinathan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Keisuke Otani
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yoshiyuki Miyazawa
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ji Eun Kwak
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sara Y Guay
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Justin Kelly
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - John Walsh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Linda T Nieman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Isabella Galler
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - PuiYee Chan
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Michael S Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Ryan J Sullivan
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Aditya Bardia
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
- Hematology/Oncology, University of California, Los Angeles, USA
| | - Douglas S Micalizzi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Lecia V Sequist
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Richard J Lee
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Joseph W Franses
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - David T Ting
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Patricia A R Brunker
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA
| | - David T Miyamoto
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA.
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, 02129, USA.
- Howard Hughes Medical Institute, Bethesda, MD, 20815, USA.
- Division of Hematology Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, 02114, USA.
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Shriners Children's Boston, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Zhang Y, Wang B, Cai J, Yang Y, Tang C, Zheng X, Li H, Xu F. Enrichment and separation technology for evaluation of circulating tumor cells. Talanta 2025; 282:127025. [PMID: 39406084 DOI: 10.1016/j.talanta.2024.127025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
Circulating tumor cells (CTCs) are tumor cells that exist in human peripheral blood, which could spread to other tissues or organs via the blood circulation system and develop into metastatic foci, leading to tumor recurrence or metastasis in postoperative patients and thereby increasing the mortality of malignant tumor patients. Evaluation of CTC levels can be used for tumor metastasis prediction, prognosis evaluation, drug exploitation, individualized treatment, liquid biopsy, etc., which exhibit outstanding clinical application prospects. In recent years, accurately capturing and analyzing CTCs has become a research hotspot in the early diagnosis and precise treatment of tumors. This review summarized various enrichment and isolation technologies for evaluating CTCs based on the design principle and discussed the challenges and perspectives in this field.
Collapse
Affiliation(s)
- Yanjun Zhang
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Bing Wang
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junwen Cai
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuting Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chen Tang
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaoqun Zheng
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, 110000, China
| | - Feng Xu
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
12
|
Qiu Y, Gao T, Smith BR. Mechanical deformation and death of circulating tumor cells in the bloodstream. Cancer Metastasis Rev 2024; 43:1489-1510. [PMID: 38980581 PMCID: PMC11900898 DOI: 10.1007/s10555-024-10198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
The circulation of tumor cells through the bloodstream is a significant step in tumor metastasis. To better understand the metastatic process, circulating tumor cell (CTC) survival in the circulation must be explored. While immune interactions with CTCs in recent decades have been examined, research has yet to sufficiently explain some CTC behaviors in blood flow. Studies related to CTC mechanical responses in the bloodstream have recently been conducted to further study conditions under which CTCs might die. While experimental methods can assess the mechanical properties and death of CTCs, increasingly sophisticated computational models are being built to simulate the blood flow and CTC mechanical deformation under fluid shear stresses (FSS) in the bloodstream.Several factors contribute to the mechanical deformation and death of CTCs as they circulate. While FSS can damage CTC structure, diverse interactions between CTCs and blood components may either promote or hinder the next metastatic step-extravasation at a remote site. Overall understanding of how these factors influence the deformation and death of CTCs could serve as a basis for future experiments and simulations, enabling researchers to predict CTC death more accurately. Ultimately, these efforts can lead to improved metastasis-specific therapeutics and diagnostics specific in the future.
Collapse
Affiliation(s)
- Yunxiu Qiu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tong Gao
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computational Mathematics, Science, and Engineering, East Lansing, MI, 48824, USA
| | - Bryan Ronain Smith
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
13
|
Sun H, Xie C, Kaw HY, Cai T, Liu L, Liu H, Shang HB, Li D. Gravity-assisted gradient size exclusion separation of microparticles by gap-modifiable silicon nanowire arrays. Talanta 2024; 280:126728. [PMID: 39191107 DOI: 10.1016/j.talanta.2024.126728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
The separation and detection of microparticles within complex samples pose substantial challenges due to the intricate variations in size and concentration. A strategy employing gravity-assisted gradient size exclusion principle based on controllable gap sizes on the surface of silicon nanowire arrays (SiNWAs) has been established to achieve the separation of microparticles with diverse sizes. The formation of gradient gap sizes was accomplished by meticulously investigating the impact of oxidation-reduction reactions through metal-assisted chemical etching. Particles of different sizes were initially aggregated at the accumulation base, followed by a sequential size exclusion process within the finely regulated 0.9-12.5 μm gradient-gap-sized separation region facilitated with gravity-assisted, leading to a comprehensive separation of microparticles based on their respective size differences, progressing from small to large. The effective separation of four model-sized microparticles demonstrated a separation degree of ≥2.7, purity of ≥96.1 %, RSDs of ≤4.6 %, and a separation capacity of up to 107 particles. The separation efficacy of this gradient-sized chip was verified by evaluating the more complex atmospheric particulates with varying sizes, which exhibited separation degree ranging between 2 and 10. This method offers a precise separation range, easily adjustable separation sizes, and simple operation, rendering it a versatile tool for separating complex samples.
Collapse
Affiliation(s)
- Huaze Sun
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Chenchen Xie
- Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Han Yeong Kaw
- NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Tianpei Cai
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Lu Liu
- Pathology and Pathophysiology, Medical College, Yanbian University, Park Road 977, Yanji City, 133002, Jilin Province, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, China
| | - Hai-Bo Shang
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Donghao Li
- Department of Chemistry, Yanbian University, Yanji, 133002, Jilin Province, China; Interdisciplinary of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
14
|
Molinski JH, Parwal S, Zhang JXJ. Laser-Patterning of Micromagnets for Immuno-Magnetophoretic Exosome Capture. SMALL METHODS 2024; 8:e2400388. [PMID: 39003624 DOI: 10.1002/smtd.202400388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/23/2024] [Indexed: 07/15/2024]
Abstract
Efficient isolation and patterning of biomolecules is a vital step within sample preparation for biomolecular analysis, with numerous diagnostic and therapeutic applications. For exosomes, nanoscale lipid-bound biomolecules, efficient isolation is challenging due to their minute size and resultant behavior within biofluids. This study presents a method for the rapid isolation and patterning of magnetically tagged exosomes via rationally designed micromagnets. Micromagnet fabrication utilizes a novel, scalable, and high-throughput laser-based fabrication approach that enables patterning at microscale lateral resolution (<50 µm) without lithographic processing and is agnostic to micromagnet geometry. Laser-based processing allows for flexible and tunable device configurations, and herein magnetophoretic capture within both an open-air microwell and an enclosed microfluidic system is demonstrated. Patterned micromagnets enhance localized gradient fields throughout the fluid medium, resulting in rapid and high efficiency magnetophoretic separation, with capture efficiencies nearing 70% after just 1s within open-air microwells, and throughputs upward of 3 mL h-1 within enclosed microfluidic systems. Using this microchip architecture, immunomagnetic exosome isolation and patterning directly from undiluted plasma samples is further achieved. Lastly, a FEA-based modeling workflow is introduced to characterize and optimize micromagnet unit cells, simulating magnetophoretic capture zones for a given micromagnet geometry.
Collapse
Affiliation(s)
- John H Molinski
- Thayer School of Engineering at Dartmouth, Hanover, NH, 03755, USA
| | - Siddhant Parwal
- Thayer School of Engineering at Dartmouth, Hanover, NH, 03755, USA
| | - John X J Zhang
- Thayer School of Engineering at Dartmouth, Hanover, NH, 03755, USA
- Dartmouth Cancer Center, Dartmouth Health, Lebanon, NH, 03766, USA
| |
Collapse
|
15
|
Lin SH, Tsai YJ, Su TC, Lai SL, Jen CP. Separation of Lung Cancer Cells From Mixed Cell Samples Using Aptamer-Modified Magnetic Beads and Permalloy Micromagnets. Electrophoresis 2024; 45:2054-2064. [PMID: 39498696 DOI: 10.1002/elps.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024]
Abstract
This study involved the design and fabrication of a microfluidic chip integrated with permalloy micromagnets. The device was used with aptamer-modified magnetic beads (MBs) of various sizes to successfully separate lung cancer cells from a mixture of other cells. The overall separation efficiency was evaluated based on the ratios of cells in the different outlets and inlets of the chip. The results showed efficiencies ranging from 43.4% to 50.2% for MB sizes between 1.36 and 4.50 µm. Interestingly, efficiency slightly decreased as the size of the MBs increased, contrary to predictions. Further examination revealed that larger MBs exerted gravitational force on the cell-bound MBs at low flow rates, causing the targets to settle before reaching the main microchannel region. This was attributed to fluidic resistance caused by a size mismatch between the inlet tube and the microfluidic conduit. An increase in cell accumulation at the inlet was observed with larger MB sizes due to gravity. Therefore, the definition of effective separation efficiency was revised to exclude the effect of cell accumulation at the inlet. Effective separation efficiencies were found to be 71.6%, 76.4%, and 79.4% for MB sizes of 1.36, 3.00, and 4.50 µm, respectively. The study concluded that larger MBs interacted more with the magnetic force, resulting in better separation. However, cells with smaller MBs were more likely to evade the magnetic force. The investigation provides valuable insights into isolating lung cancer cells using this method, with the potential for clinical application in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan (ROC)
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan (ROC)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan (ROC)
| | - Yun-Jung Tsai
- Translational Pathology Core Laboratory, Changhua Christian Hospital, Changhua, Taiwan (ROC)
| | - Tzu-Cheng Su
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan (ROC)
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan (ROC)
| | - Shih-Lun Lai
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan (ROC)
| | - Chun-Ping Jen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan (ROC)
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (ROC)
| |
Collapse
|
16
|
He N, Bao H, Meng J, Song Y, Xu LP, Wang S. Immunomagnetic particles exhibiting programmable hierarchical flower-like nanostructures for enhanced separation of tumor cells. NANOSCALE 2024; 16:19245-19253. [PMID: 39330982 DOI: 10.1039/d4nr02929a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Immunomagnetic particles are extensively used for the separation of biological molecules and particles, and have exhibited great potential in many fields including biosensors, disease diagnosis and biomedical engineering. However, most immunomagnetic particles exhibit a smooth surface, resulting in a limited separation efficiency for biological particles featuring enormous surface nanostructures, such as tumor cells. Here we report flower-like immunomagnetic particles (FIMPs) prepared by streptavidin (SA)-assisted biomineralization and one-step antibody modification, and demonstrate their superior capability for highly efficient and selective separation of circulating tumor cells (CTCs). SA can link inorganic nanosheets and magnetic nanoparticles together to obtain FIMPs with programmable hierarchical flower-like nanostructures and provide enormous binding sites for post-antibody modification. The synergetic effect of nano-sized petals and micro-sized particles in the hierarchical nanostructure enhances the interaction between the cells and the matrix, thus enabling FIMPs to separate CTCs with high selectivity and high efficiency. Our study provides a promising platform for the selective separation of trace biological molecules and particles from complex samples and shows great potential for downstream detection and diagnosis.
Collapse
Affiliation(s)
- Na He
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Han Bao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Zhan L, Edd J, Mishra A, Toner M. Label-Free Microfluidic Apheresis of Circulating Tumor Cell Clusters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405853. [PMID: 39199012 PMCID: PMC11515904 DOI: 10.1002/advs.202405853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Screening liters of blood (i.e., apheresis) represents a generalized approach to promote the reliable access to circulating tumor cell clusters (CTCCs), which are known to be highly metastasis-competent, yet ultrarare. However, no existing CTCC sorting technology has demonstrated high throughput, high yield, low shear stress, and minimal blood dilution simultaneously as required in apheresis. Here, a label-free method is introduced termed Precision Apheresis for Non-invasive Debulking of cell Aggregates (PANDA) to continuously isolate CTCCs from undiluted blood to clean buffer through size sorting, processing 1.4 billion cells per second. The cell focusing is optimized within whole blood leveraging secondary transverse flow and margination. The PANDA chip recovers >90% of spiked ≈24 rare HeLa cell clusters from 100 mL undiluted blood samples (equivalent to ≈500 billion blood cells) at 1 L h-1 throughput, with ≤20s device residence time, ≤15 Pa shear stress, and >99.9% return of blood components. The technology lays the groundwork for future routine isolation to increase the recovery of these ultrarare yet clinically significant tumor cell populations from large volumes of blood to advance cancer research, early detection, and treatment.
Collapse
Affiliation(s)
- Li Zhan
- Center for Engineering in Medicine and SurgeryMassachusetts General HospitalBostonMA02129USA
- Harvard Medical SchoolBostonMA02115USA
| | - Jon Edd
- Center for Engineering in Medicine and SurgeryMassachusetts General HospitalBostonMA02129USA
- Cancer CenterMassachusetts General HospitalBostonMA12129USA
| | - Avanish Mishra
- Center for Engineering in Medicine and SurgeryMassachusetts General HospitalBostonMA02129USA
- Harvard Medical SchoolBostonMA02115USA
- Cancer CenterMassachusetts General HospitalBostonMA12129USA
| | - Mehmet Toner
- Center for Engineering in Medicine and SurgeryMassachusetts General HospitalBostonMA02129USA
- Harvard Medical SchoolBostonMA02115USA
- Shriners Hospitals for ChildrenBostonMA02114USA
| |
Collapse
|
18
|
Zhu Z, Zhang Y, Zhang W, Tang D, Zhang S, Wang L, Zou X, Ni Z, Zhang S, Lv Y, Xiang N. High-throughput enrichment of portal venous circulating tumor cells for highly sensitive diagnosis of CA19-9-negative pancreatic cancer patients using inertial microfluidics. Biosens Bioelectron 2024; 259:116411. [PMID: 38781696 DOI: 10.1016/j.bios.2024.116411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The carbohydrate antigen 19-9 (CA19-9) is commonly used as a representative biomarker for pancreatic cancer (PC); however, it lacks sensitivity and specificity for early-stage PC diagnosis. Furthermore, some patients with PC are negative for CA19-9 (<37 U/mL), which introduces additional limitations to their accurate diagnosis and treatment. Hence, improved methods to accurately detect PC stages in CA19-9-negative patients are warranted. In this study, tumor-proximal liquid biopsy and inertial microfluidics were coupled to enable high-throughput enrichment of portal venous circulating tumor cells (CTCs) and support the effective diagnosis of patients with early-stage PC. The proposed inertial microfluidic system was shown to provide size-based enrichment of CTCs using inertial focusing and Dean flow effects in slanted spiral channels. Notably, portal venous blood samples were found to have twice the yield of CTCs (21.4 cells per 5 mL) compared with peripheral blood (10.9 CTCs per 5 mL). A combination of peripheral and portal CTC data along with CA19-9 results showed to greatly improve the average accuracy of CA19-9-negative PC patients from 47.1% with regular CA19-9 tests up to 87.1%. Hence, portal venous CTC-based microfluidic biopsy can be used with high sensitivity and specificity for the diagnosis of early-stage PC, particularly in CA19-9-negative patients.
Collapse
Affiliation(s)
- Zhixian Zhu
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China; Nanjing University Institute of Pancreatology, China
| | - Wenjun Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Dezhi Tang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Song Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China; Nanjing University Institute of Pancreatology, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China; Nanjing University Institute of Pancreatology, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China; Nanjing University Institute of Pancreatology, China
| | - Zhonghua Ni
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China; Nanjing University Institute of Pancreatology, China.
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China; Nanjing University Institute of Pancreatology, China.
| | - Nan Xiang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
19
|
Chen HC, Ma Y, Cheng J, Chen YC. Advances in Single-Cell Techniques for Linking Phenotypes to Genotypes. CANCER HETEROGENEITY AND PLASTICITY 2024; 1:0004. [PMID: 39156821 PMCID: PMC11328949 DOI: 10.47248/chp2401010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Single-cell analysis has become an essential tool in modern biological research, providing unprecedented insights into cellular behavior and heterogeneity. By examining individual cells, this approach surpasses conventional population-based methods, revealing critical variations in cellular states, responses to environmental cues, and molecular signatures. In the context of cancer, with its diverse cell populations, single-cell analysis is critical for investigating tumor evolution, metastasis, and therapy resistance. Understanding the phenotype-genotype relationship at the single-cell level is crucial for deciphering the molecular mechanisms driving tumor development and progression. This review highlights innovative strategies for selective cell isolation based on desired phenotypes, including robotic aspiration, laser detachment, microraft arrays, optical traps, and droplet-based microfluidic systems. These advanced tools facilitate high-throughput single-cell phenotypic analysis and sorting, enabling the identification and characterization of specific cell subsets, thereby advancing therapeutic innovations in cancer and other diseases.
Collapse
Affiliation(s)
- Hsiao-Chun Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
20
|
Gu H, Chen Y, Lüders A, Bertrand T, Hanedan E, Nielaba P, Bechinger C, Nelson BJ. Scalable high-throughput microfluidic separation of magnetic microparticles. DEVICE 2024; 2:100403. [PMID: 39081390 PMCID: PMC11285115 DOI: 10.1016/j.device.2024.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 08/02/2024]
Abstract
Surface-engineered magnetic microparticles are used in chemical and biomedical engineering due to their ease of synthesis, high surface-to-volume ratio, selective binding, and magnetic separation. To separate them from fluid suspensions, existing methods rely on the magnetic force introduced by the local magnetic field gradient. However, this strategy has poor scalability because the magnetic field gradient decreases rapidly as one moves away from the magnets. Here, we present a scalable high-throughput magnetic separation strategy using a rotating permanent magnet and two-dimensional arrays of micromagnets. Under a dynamic magnetic field, nickel micromagnets allow the surrounding magnetic microparticles to self-assemble into large clusters and effectively propel themselves through the flow. The collective speed of the microparticle swarm reaches about two orders of magnitude higher than the gradient-based separation method over a wide range of operating frequencies and distances from a rotating magnet.
Collapse
Affiliation(s)
- Hongri Gu
- Department of Physics, University of Konstanz, Konstanz 78464, Germany
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Yonglin Chen
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Anton Lüders
- Department of Physics, University of Konstanz, Konstanz 78464, Germany
| | - Thibaud Bertrand
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Emre Hanedan
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Peter Nielaba
- Department of Physics, University of Konstanz, Konstanz 78464, Germany
| | - Clemens Bechinger
- Department of Physics, University of Konstanz, Konstanz 78464, Germany
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| |
Collapse
|
21
|
Iyer RR, Applegate CC, Arogundade OH, Bangru S, Berg IC, Emon B, Porras-Gomez M, Hsieh PH, Jeong Y, Kim Y, Knox HJ, Moghaddam AO, Renteria CA, Richard C, Santaliz-Casiano A, Sengupta S, Wang J, Zambuto SG, Zeballos MA, Pool M, Bhargava R, Gaskins HR. Inspiring a convergent engineering approach to measure and model the tissue microenvironment. Heliyon 2024; 10:e32546. [PMID: 38975228 PMCID: PMC11226808 DOI: 10.1016/j.heliyon.2024.e32546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine C. Applegate
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Opeyemi H. Arogundade
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian C. Berg
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pei-Hsuan Hsieh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yongdeok Kim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hailey J. Knox
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amir Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Carlos A. Renteria
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Craig Richard
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sourya Sengupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha G. Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria A. Zeballos
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marcia Pool
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biochemical Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - H. Rex Gaskins
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
22
|
Chen K, He Y, Wang W, Yuan X, Carbone DP, Yang F. Development of new techniques and clinical applications of liquid biopsy in lung cancer management. Sci Bull (Beijing) 2024; 69:1556-1568. [PMID: 38641511 DOI: 10.1016/j.scib.2024.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 04/21/2024]
Abstract
Lung cancer is an exceedingly malignant tumor reported as having the highest morbidity and mortality of any cancer worldwide, thus posing a great threat to global health. Despite the growing demand for precision medicine, current methods for early clinical detection, treatment and prognosis monitoring in lung cancer are hampered by certain bottlenecks. Studies have found that during the formation and development of a tumor, molecular substances carrying tumor-related genetic information can be released into body fluids. Liquid biopsy (LB), a method for detecting these tumor-related markers in body fluids, maybe a way to make progress in these bottlenecks. In recent years, LB technology has undergone rapid advancements. Therefore, this review will provide information on technical updates to LB and its potential clinical applications, evaluate its effectiveness for specific applications, discuss the existing limitations of LB, and present a look forward to possible future clinical applications. Specifically, this paper will introduce technical updates from the prospectives of engineering breakthroughs in the detection of membrane-based LB biomarkers and other improvements in sequencing technology. Additionally, it will summarize the latest applications of liquid biopsy for the early detection, diagnosis, treatment, and prognosis of lung cancer. We will present the interconnectedness of clinical and laboratory issues and the interplay of technology and application in LB today.
Collapse
Affiliation(s)
- Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China
| | - Yue He
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China
| | - Wenxiang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China
| | - Xiaoqiu Yuan
- Peking University Health Science Center, Beijing 100191, China
| | - David P Carbone
- Thoracic Oncology Center, Ohio State University, Columbus 43026, USA.
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China.
| |
Collapse
|
23
|
Wang J, Liu X, Li J, Chen W. Digital Circulating Tumor Cells Quantification. Anal Chem 2024; 96:6881-6888. [PMID: 38659346 DOI: 10.1021/acs.analchem.3c02769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Circulating tumor cells (CTCs) are an emerging but vital biomarker for cancer management. An efficient methodology for accurately quantifying CTCs remains challenging due to their rareness. Here, we develop a digital CTC detection strategy using partitioning instead of enrichment to quantify CTCs. By utilizing the characteristics of droplet microfluidics that can rapidly generate a large number of parallel independent reactors, combined with Poisson distribution, we realize the quantification of CTCs in the blood directly. The limit of detection of our digital CTCs quantification assay is five cells per 5 mL of whole blood. By simultaneously detecting multiple genetic mutations, our approach achieves highly sensitive and specific detection of CTCs in peripheral blood from NSCLC patients (AUC = 1). Our digital platform offers a potential approach and strategy for the quantification of CTCs, which could contribute to the advancement of cancer medical management.
Collapse
Affiliation(s)
- Jidong Wang
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the Sixth Affiliated Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen 518052, People's Republic of China
| | - Xiaolei Liu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Jiang Li
- Gynecology Department, Huazhong University of Science and Technology Union Shenzhen Hospital, the Sixth Affiliated Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen 518052, People's Republic of China
| | - Wenwen Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
24
|
Dong Z, Wang Y, Xu G, Liu B, Wang Y, Reboud J, Jajesniak P, Yan S, Ma P, Liu F, Zhou Y, Jin Z, Yang K, Huang Z, Zhuo M, Jia B, Fang J, Zhang P, Wu N, Yang M, Cooper JM, Chang L. Genetic and phenotypic profiling of single living circulating tumor cells from patients with microfluidics. Proc Natl Acad Sci U S A 2024; 121:e2315168121. [PMID: 38683997 PMCID: PMC11087790 DOI: 10.1073/pnas.2315168121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non-small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction.
Collapse
Affiliation(s)
- Zaizai Dong
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
- School of Engineering Medicine, Beihang University, Beijing100191, China
| | - Yusen Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Gaolian Xu
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai200438, China
| | - Bing Liu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
- School of Engineering Medicine, Beihang University, Beijing100191, China
| | - Julien Reboud
- Division of Biomedical Engineering, University of Glasgow, G12 8LTGlasgow, United Kingdom
| | - Pawel Jajesniak
- Division of Biomedical Engineering, University of Glasgow, G12 8LTGlasgow, United Kingdom
| | - Shi Yan
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Pingchuan Ma
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Yuhao Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Zhiyuan Jin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Kuan Yang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Zhaocun Huang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Bo Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Jian Fang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Panpan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Nan Wu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Mingzhu Yang
- Beijing Research Institute of Mechanical Equipment, Beijing100143, China
| | - Jonathan M. Cooper
- Division of Biomedical Engineering, University of Glasgow, G12 8LTGlasgow, United Kingdom
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei230032, China
| |
Collapse
|
25
|
Mohammadi M, Ahmed Qadir S, Mahmood Faraj A, Hamid Shareef O, Mahmoodi H, Mahmoudi F, Moradi S. Navigating the future: Microfluidics charting new routes in drug delivery. Int J Pharm 2024:124142. [PMID: 38648941 DOI: 10.1016/j.ijpharm.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Microfluidics has emerged as a transformative force in the field of drug delivery, offering innovative avenues to produce a diverse range of nano drug delivery systems. Thanks to its precise manipulation of small fluid volumes and its exceptional command over the physicochemical characteristics of nanoparticles, this technology is notably able to enhance the pharmacokinetics of drugs. It has initiated a revolutionary phase in the domain of drug delivery, presenting a multitude of compelling advantages when it comes to developing nanocarriers tailored for the delivery of poorly soluble medications. These advantages represent a substantial departure from conventional drug delivery methodologies, marking a paradigm shift in pharmaceutical research and development. Furthermore, microfluidic platformsmay be strategically devised to facilitate targeted drug delivery with the objective of enhancing the localized bioavailability of pharmaceutical substances. In this paper, we have comprehensively investigated a range of significant microfluidic techniques used in the production of nanoscale drug delivery systems. This comprehensive review can serve as a valuable reference and offer insightful guidance for the development and optimization of numerous microfluidics-fabricated nanocarriers.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Syamand Ahmed Qadir
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Aryan Mahmood Faraj
- Department of Medical Laboratory Sciences, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Halabja, Iraq
| | - Osama Hamid Shareef
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Hassan Mahmoodi
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
26
|
Abusamra SM, Barber R, Sharafeldin M, Edwards CM, Davis JJ. The integrated on-chip isolation and detection of circulating tumour cells. SENSORS & DIAGNOSTICS 2024; 3:562-584. [PMID: 38646187 PMCID: PMC11025039 DOI: 10.1039/d3sd00302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024]
Abstract
Circulating tumour cells (CTCs) are cancer cells shed from a primary tumour which intravasate into the blood stream and have the potential to extravasate into distant tissues, seeding metastatic lesions. As such, they can offer important insight into cancer progression with their presence generally associated with a poor prognosis. The detection and enumeration of CTCs is, therefore, critical to guiding clinical decisions during treatment and providing information on disease state. CTC isolation has been investigated using a plethora of methodologies, of which immunomagnetic capture and microfluidic size-based filtration are the most impactful to date. However, the isolation and detection of CTCs from whole blood comes with many technical barriers, such as those presented by the phenotypic heterogeneity of cell surface markers, with morphological similarity to healthy blood cells, and their low relative abundance (∼1 CTC/1 billion blood cells). At present, the majority of reported methods dissociate CTC isolation from detection, a workflow which undoubtedly contributes to loss from an already sparse population. This review focuses on developments wherein isolation and detection have been integrated into a single-step, microfluidic configuration, reducing CTC loss, increasing throughput, and enabling an on-chip CTC analysis with minimal operator intervention. Particular attention is given to immune-affinity, microfluidic CTC isolation, coupled to optical, physical, and electrochemical CTC detection (quantitative or otherwise).
Collapse
Affiliation(s)
- Sophia M Abusamra
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
| | - Robert Barber
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| | | | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford Oxford OX3 9DU UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Systems, University of Oxford Oxford UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford Oxford OX1 3QZ UK
| |
Collapse
|
27
|
Wu Y, Gai J, Zhao Y, Liu Y, Liu Y. Acoustofluidic Actuation of Living Cells. MICROMACHINES 2024; 15:466. [PMID: 38675277 PMCID: PMC11052308 DOI: 10.3390/mi15040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Acoutofluidics is an increasingly developing and maturing technical discipline. With the advantages of being label-free, non-contact, bio-friendly, high-resolution, and remote-controllable, it is very suitable for the operation of living cells. After decades of fundamental laboratory research, its technical principles have become increasingly clear, and its manufacturing technology has gradually become popularized. Presently, various imaginative applications continue to emerge and are constantly being improved. Here, we introduce the development of acoustofluidic actuation technology from the perspective of related manipulation applications on living cells. Among them, we focus on the main development directions such as acoustofluidic sorting, acoustofluidic tissue engineering, acoustofluidic microscopy, and acoustofluidic biophysical therapy. This review aims to provide a concise summary of the current state of research and bridge past developments with future directions, offering researchers a comprehensive overview and sparking innovation in the field.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Junyang Gai
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Yuwen Zhao
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671000, China
| | - Yaling Liu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| |
Collapse
|
28
|
Bae SY, Kamalanathan KJ, Galeano-Garces C, Konety BR, Antonarakis ES, Parthasarathy J, Hong J, Drake JM. Dissemination of Circulating Tumor Cells in Breast and Prostate Cancer: Implications for Early Detection. Endocrinology 2024; 165:bqae022. [PMID: 38366552 PMCID: PMC10904107 DOI: 10.1210/endocr/bqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Burgeoning evidence suggests that circulating tumor cells (CTCs) may disseminate into blood vessels at an early stage, seeding metastases in various cancers such as breast and prostate cancer. Simultaneously, the early-stage CTCs that settle in metastatic sites [termed disseminated tumor cells (DTCs)] can enter dormancy, marking a potential source of late recurrence and therapy resistance. Thus, the presence of these early CTCs poses risks to patients but also holds potential benefits for early detection and treatment and opportunities for possibly curative interventions. This review delves into the role of early DTCs in driving latent metastasis within breast and prostate cancer, emphasizing the importance of early CTC detection in these diseases. We further explore the correlation between early CTC detection and poor prognoses, which contribute significantly to increased cancer mortality. Consequently, the detection of CTCs at an early stage emerges as a critical imperative for enhancing clinical diagnostics and allowing for early interventions.
Collapse
Affiliation(s)
| | | | | | - Badrinath R Konety
- Astrin Biosciences, St. Paul, MN 55114, USA
- Allina Health Cancer Institute, Minneapolis, MN 55407, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55454, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jiarong Hong
- Astrin Biosciences, St. Paul, MN 55114, USA
- Department of Mechanical Engineering and St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN 55414, USA
| | - Justin M Drake
- Astrin Biosciences, St. Paul, MN 55114, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Myles J, Castaño N, Kim S, Zhu Z, Tang SK. Parallelized Immunomagnetic Isolation of Basophils Directly from Whole Blood. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300122. [PMID: 39005942 PMCID: PMC11244651 DOI: 10.1002/anbr.202300122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Basophils are the rarest circulating white blood cells (WBCs), but they play important roles in allergic disorders and other diseases. To enhance diagnostic capabilities, it would be desirable to isolate and analyze basophils efficiently from small blood samples. In 100 μL of whole blood, there are typically ~103 basophils, outnumbered by ~105 WBCs and ~108 red blood cells (RBCs). Basophils' low abundance has therefore presented a significant challenge in their isolation from whole blood. Conventional in-bulk basophil isolation methods require lengthy processing steps and cannot work with small volumes of blood. Here we report a parallelized integrated basophil isolation device (pi-BID) for the negative immunomagnetic selection of basophils directly from 4 samples of 100 μL of whole blood, in parallel, within 14 minutes including sample preparation time. The pi-BID interfaces directly with standard sample tubes, and uses a single pressure source to drive the flow in parallel microfluidic channels. Compared with conventional in-bulk basophil isolation, the pi-BID is >3× faster, and has higher purity (~93%) and similar recovery (~67%). Compared with other microfluidic devices for the immunomagnetic isolation of WBC sub-types, our pi-BID achieves 10× higher enrichment of target cells from whole blood, with no prior removal of RBCs necessary.
Collapse
Affiliation(s)
- Justin Myles
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | - Sindy K.Y. Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Stoecklein NH, Oles J, Franken A, Neubauer H, Terstappen LWMM, Neves RPL. Clinical application of circulating tumor cells. MED GENET-BERLIN 2023; 35:237-250. [PMID: 38835741 PMCID: PMC11110132 DOI: 10.1515/medgen-2023-2056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This narrative review aims to provide a comprehensive overview of the current state of circulating tumor cell (CTC) analysis and its clinical significance in patients with epithelial cancers. The review explores the advancements in CTC detection methods, their clinical applications, and the challenges that lie ahead. By examining the important research findings in this field, this review offers the reader a solid foundation to understand the evolving landscape of CTC analysis and its potential implications for clinical practice. The comprehensive analysis of CTCs provides valuable insights into tumor biology, treatment response, minimal residual disease detection, and prognostic evaluation. Furthermore, the review highlights the potential of CTCs as a non-invasive biomarker for personalized medicine and the monitoring of treatment efficacy. Despite the progress made in CTC research, several challenges such as standardization, validation, and integration into routine clinical practice remain. The review concludes by discussing future directions and the potential impact of CTC analysis on improving patient outcomes and guiding therapeutic decision-making in epithelial cancers.
Collapse
Affiliation(s)
- Nikolas H Stoecklein
- Heinrich-Heine University Düsseldorf General, Visceral and Pediatric Surgery University Hospital and Medical Faculty Düsseldorf Deutschland
| | - Julia Oles
- Heinrich-Heine University Düsseldorf General, Visceral and Pediatric Surgery University Hospital and Medical Faculty Düsseldorf Deutschland
| | - Andre Franken
- University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf Department of Obstetrics and Gynecology Düsseldorf Deutschland
| | - Hans Neubauer
- University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf Department of Obstetrics and Gynecology Düsseldorf Deutschland
| | - Leon W M M Terstappen
- Heinrich-Heine University Düsseldorf General, Visceral and Pediatric Surgery University Hospital and Medical Faculty Düsseldorf Deutschland
| | - Rui P L Neves
- Heinrich-Heine University Düsseldorf General, Visceral and Pediatric Surgery University Hospital and Medical Faculty Düsseldorf Deutschland
| |
Collapse
|
31
|
Stoecklein NH, Fluegen G, Guglielmi R, Neves RPL, Hackert T, Birgin E, Cieslik SA, Sudarsanam M, Driemel C, van Dalum G, Franken A, Niederacher D, Neubauer H, Fehm T, Rox JM, Böhme P, Häberle L, Göring W, Esposito I, Topp SA, Coumans FAW, Weitz J, Knoefel WT, Fischer JC, Bork U, Rahbari NN. Ultra-sensitive CTC-based liquid biopsy for pancreatic cancer enabled by large blood volume analysis. Mol Cancer 2023; 22:181. [PMID: 37957606 PMCID: PMC10641981 DOI: 10.1186/s12943-023-01880-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
The limited sensitivity of circulating tumor cell (CTC) detection in pancreatic adenocarcinoma (PDAC) stems from their extremely low concentration in the whole circulating blood, necessitating enhanced detection methodologies. This study sought to amplify assay-sensitivity by employing diagnostic leukapheresis (DLA) to screen large blood volumes. Sixty patients were subjected to DLA, with a median processed blood volume of ~ 2.8 L and approximately 5% of the resulting DLA-product analyzed using CellSearch (CS). Notably, DLA significantly increased CS-CTC detection to 44% in M0-patients and 74% in M1-patients, yielding a 60-fold increase in CS-CTC enumeration. DLA also provided sufficient CS-CTCs for genomic profiling, thereby delivering additional genomic information compared to tissue biopsy samples. DLA CS-CTCs exhibited a pronounced negative prognostic impact on overall survival (OS), evidenced by a reduction in OS from 28.6 to 8.5 months (univariate: p = 0.002; multivariable: p = 0.043). Additionally, a marked enhancement in sensitivity was achieved (by around 3-4-times) compared to peripheral blood (PB) samples, with positive predictive values for OS being preserved at around 90%. Prognostic relevance of CS-CTCs in PDAC was further validated in PB-samples from 228 PDAC patients, consolidating the established association between CTC-presence and reduced OS (8.5 vs. 19.0 months, p < 0.001). In conclusion, DLA-derived CS-CTCs may serve as a viable tool for identifying high-risk PDAC-patients and aiding the optimization of multimodal treatment strategies. Moreover, DLA enables comprehensive diagnostic profiling by providing ample CTC material, reinforcing its utility as a reliable liquid-biopsy approach. This high-volume liquid-biopsy strategy presents a potential pathway for enhancing clinical management in this malignancy.
Collapse
Affiliation(s)
- Nikolas H Stoecklein
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Georg Fluegen
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Rosa Guglielmi
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Rui P L Neves
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Thilo Hackert
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Emrullah Birgin
- Department of Surgery, Medical Faculty Mannheim, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Stefan A Cieslik
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Monica Sudarsanam
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Christiane Driemel
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Guus van Dalum
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Jutta M Rox
- Department of Transplantation Diagnostics and Cell Therapeutics, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Petra Böhme
- Institute of Forensic Medicine Düsseldorf, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Lena Häberle
- Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Wolfgang Göring
- Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Stefan A Topp
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Frank A W Coumans
- Decisive Science, Ertskade 10, 1019 BB, Amsterdam, The Netherlands
- Current Affiliation: Department for General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Jürgen Weitz
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Wolfram T Knoefel
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Johannes C Fischer
- Department of Transplantation Diagnostics and Cell Therapeutics, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Ulrich Bork
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus of the Technical University Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Nuh N Rahbari
- Department of Surgery, Medical Faculty Mannheim, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
- Current Affiliation: Department for General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
32
|
Nguyen TNA, Huang PS, Chu PY, Hsieh CH, Wu MH. Recent Progress in Enhanced Cancer Diagnosis, Prognosis, and Monitoring Using a Combined Analysis of the Number of Circulating Tumor Cells (CTCs) and Other Clinical Parameters. Cancers (Basel) 2023; 15:5372. [PMID: 38001632 PMCID: PMC10670359 DOI: 10.3390/cancers15225372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Analysis of circulating tumor cells (CTCs) holds promise to diagnose cancer or monitor its development. Among the methods, counting CTC numbers in blood samples could be the simplest way to implement it. Nevertheless, its clinical utility has not yet been fully accepted. The reasons could be due to the rarity and heterogeneity of CTCs in blood samples that could lead to misleading results from assays only based on single CTC counts. To address this issue, a feasible direction is to combine the CTC counts with other clinical data for analysis. Recent studies have demonstrated the use of this new strategy for early detection and prognosis evaluation of cancers, or even for the distinguishment of cancers with different stages. Overall, this approach could pave a new path to improve the technical problems in the clinical applications of CTC counting techniques. In this review, the information relevant to CTCs, including their characteristics, clinical use of CTC counting, and technologies for CTC enrichment, were first introduced. This was followed by discussing the challenges and new perspectives of CTC counting techniques for clinical applications. Finally, the advantages and the recent progress in combining CTC counts with other clinical parameters for clinical applications have been discussed.
Collapse
Affiliation(s)
- Thi Ngoc Anh Nguyen
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.N.A.N.); (P.-S.H.); (P.-Y.C.)
| | - Po-Shuan Huang
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.N.A.N.); (P.-S.H.); (P.-Y.C.)
| | - Po-Yu Chu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.N.A.N.); (P.-S.H.); (P.-Y.C.)
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei City Municipal TuCheng Hospital, New Taipei City 23652, Taiwan;
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
| | - Min-Hsien Wu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.N.A.N.); (P.-S.H.); (P.-Y.C.)
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei City Municipal TuCheng Hospital, New Taipei City 23652, Taiwan;
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
| |
Collapse
|
33
|
Zhang Y, Zhang F, Song Y, Shen X, Bu F, Su D, Luo C, Ge L, Deng S, Wu Z, Zhang Z, Duan P, Li N, Min L, Zhang S, Wang S. Interfacial Polymerization Produced Magnetic Particles with Nano-Filopodia for Highly Accurate Liquid Biopsy in the PSA Gray Zone. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303821. [PMID: 37643459 DOI: 10.1002/adma.202303821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Magnetic particles are leading separation materials for biological purification and detection. Existing magnetic particles, which almost rely on molecule-level interactions, however, often encounter bottlenecks in highly efficient cell-level separation due to the underestimate of surface structure effects. Here, immune cell-inspired magnetic particles with nano-filopodia (NFMPs) produced by interfacial polymerization for highly efficient capture of circulating tumor cells (CTCs) and further accurate clinical diagnosis of prostate cancer are reported . The unprecedented construction of nano-filopodia on polymer-based magnetic particles is achieved by introducing electrostatic interactions in emulsion interfacial polymerization. Due to the unique nano-filopodia, the NFMPs allow remarkably enhanced CTCs capture efficiency (86.5% ± 2.8%) compared with smooth magnetic particles (SMPs, 35.7% ± 5.7%). Under the assistance of machine learning by combining with prostate-specific antigen (PSA) and free to total PSA (F/T-PSA), the NFMPs strategy demonstrates high sensitivity (100%), high specificity (93.3%), and a high area under the curve (AUC) value (98.1%) for clinical diagnosis of prostate cancer in the PSA gray zone. The NFMPs are anticipated as an efficient platform for CTCs-based liquid biopsy toward early cancer diagnosis and prognosis evaluation.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fan Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyi Shen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Dandan Su
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Chen Luo
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Liyuan Ge
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Shaohui Deng
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Zonglong Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Zhanyi Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Peichen Duan
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Nan Li
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Shudong Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P. R. China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Liu X, Wu H, Wu S, Qin H, Zhang T, Lin Y, Zheng X, Li B. Optically Programmable Living Microrouter in Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304103. [PMID: 37749869 PMCID: PMC10646234 DOI: 10.1002/advs.202304103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Indexed: 09/27/2023]
Abstract
With high reconfigurability and swarming intelligence, programmable medical micromachines (PMMs) represent a revolution in microrobots for executing complex coordinated tasks, especially for dynamic routing of various targets along their respective routes. However, it is difficult to achieve a biocompatible implantation into the body due to their exogenous building blocks. Herein, a living microrouter based on an organic integration of endogenous red blood cells (RBCs), programmable scanning optical tweezers and flexible optofluidic strategy is reported. By harvesting energy from a designed optical force landscape, five RBCs are optically rotated in a controlled velocity and direction, under which, a specific actuation flow is achieved to exert the well-defined hydrodynamic forces on various biological targets, thus enabling a selective routing by integrating three successive functions, i.e., dynamic input, inner processing, and controlled output. Benefited from the optofluidic manipulation, various blood cells, such as the platelets and white blood cells, are transported toward the damaged vessel and cell debris for the dynamic hemostasis and targeted clearance, respectively. Moreover, the microrouter enables a precise transport of nanodrugs for active and targeted delivery in a large quantity. The proposed RBC microrouter might provide a biocompatible medical platform for cell separation, drug delivery, and immunotherapy.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Huaying Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Shuai Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Haifeng Qin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Tiange Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Yufeng Lin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| |
Collapse
|
35
|
Tang M, Feng J, Xia HF, Xu CM, Wu LL, Wu M, Hong SL, Chen G, Zhang ZL. Continuous magnetic separation microfluidic chip for tumor cell in vivo detection. Chem Commun (Camb) 2023; 59:11955-11958. [PMID: 37727113 DOI: 10.1039/d3cc04062c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Continuously recording the dynamic changes of circulating tumor cells (CTCs) is crucial for tumor metastasis. This paper creates a continuous magnetic separation microfluidic chip that enables rapid and continuous in vivo cell detection. The chip shows its potential to study tumor cell circulation in the blood, offering a new platform for studying the cellular mechanism of tumor metastasis.
Collapse
Affiliation(s)
- Man Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Jiao Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Chun-Miao Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Ling-Ling Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Min Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Shao-Li Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
36
|
Shin HS, Park J, Lee SY, Yun HG, Kim B, Kim J, Han S, Cho D, Doh J, Choi S. Integrative Magneto-Microfluidic Separation of Immune Cells Facilitates Clinical Functional Assays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302809. [PMID: 37365959 DOI: 10.1002/smll.202302809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Accurately analyzing the functional activities of natural killer (NK) cells in clinical diagnosis remains challenging due to their coupling with other immune effectors. To address this, an integrated immune cell separator is required, which necessitates a streamlined sample preparation workflow including immunological cell isolation, removal of excess red blood cells (RBCs), and buffer exchange for downstream analysis. Here, a self-powered integrated magneto-microfluidic cell separation (SMS) chip is presented, which outputs high-purity target immune cells by simply inputting whole blood. The SMS chip intensifies the magnetic field gradient using an iron sphere-filled inlet reservoir for high-performance immuno-magnetic cell selection and separates target cells size-selectively using a microfluidic lattice for RBC removal and buffer exchange. In addition, the chip incorporates self-powered microfluidic pumping through a degassed polydimethylsiloxane chip, enabling the rapid isolation of NK cells at the place of blood collection within 40 min. This chip is used to isolate NK cells from whole blood samples of hepatocellular cancer patients and healthy volunteers and examined their functional activities to identify potential abnormalities in NK cell function. The SMS chip is simple to use, rapid to sort, and requires small blood volumes, thus facilitating the use of immune cell subtypes for cell-based diagnosis.
Collapse
Affiliation(s)
- Hee Sik Shin
- Department of Electrical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jeehun Park
- Soft Foundry Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung Yeop Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyo Geun Yun
- Department of Electrical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Byeongyeon Kim
- Department of Electrical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 25-2, Seonggyungwan-ro, Jongno-gu, Seoul, 03063, Republic of Korea
| | - Sangbin Han
- Department of Anesthesiology and Pain Medicine Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Duck Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 25-2, Seonggyungwan-ro, Jongno-gu, Seoul, 03063, Republic of Korea
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, 81, Irwon-Ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Junsang Doh
- Soft Foundry Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Institute of Engineering Research, BioMAX, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sungyoung Choi
- Department of Electrical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
37
|
Chen K, Wang Z. A Micropillar Array Based Microfluidic Device for Rare Cell Detection and Single-Cell Proteomics. Methods Protoc 2023; 6:80. [PMID: 37736963 PMCID: PMC10514859 DOI: 10.3390/mps6050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Advancements in single-cell-related technologies have opened new possibilities for analyzing rare cells, such as circulating tumor cells (CTCs) and rare immune cells. Among these techniques, single-cell proteomics, particularly single-cell mass spectrometric analysis (scMS), has gained significant attention due to its ability to directly measure transcripts without the need for specific reagents. However, the success of single-cell proteomics relies heavily on efficient sample preparation, as protein loss in low-concentration samples can profoundly impact the analysis. To address this challenge, an effective handling system for rare cells is essential for single-cell proteomic analysis. Herein, we propose a microfluidics-based method that offers highly efficient isolation, detection, and collection of rare cells (e.g., CTCs). The detailed fabrication process of the micropillar array-based microfluidic device is presented, along with its application for CTC isolation, identification, and collection for subsequent proteomic analysis.
Collapse
Affiliation(s)
- Kangfu Chen
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA;
- Chan Zuckerberg Biohub Chicago, Chicago, IL 60607, USA
| | - Zongjie Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA;
- Chan Zuckerberg Biohub Chicago, Chicago, IL 60607, USA
| |
Collapse
|
38
|
Luo H, Fang X, Li C, Dai X, Ru N, You M, He T, Wu PC, Wang Z, Shi Y, Cheng X. 1 nm-Resolution Sorting of Sub-10 nm Nanoparticles Using a Dielectric Metasurface with Toroidal Responses. SMALL SCIENCE 2023; 3:2300100. [PMID: 40212970 PMCID: PMC11935857 DOI: 10.1002/smsc.202300100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Indexed: 05/11/2025] Open
Abstract
Sorting nanoparticles is of paramount importance in numerous physical, chemical, and biomedical applications. Current technologies for sorting dielectric nanoparticles have a common size limit and resolution approximately of 20 and 10 nm, respectively. It remains a grand challenge to push the limit. Herein, the new physics that deploys toroidal and multipole responses in a dielectric metasurface to exert strong and distinguishable optical forces on sub-10 nm nanoparticles is unravelled. The electric toroidal dipole, electric dipole, and quadrupole emerge with distinct light and force patterns, which can be leveraged to promise unprecedented high-precision manipulations, such as sorting sub-10 nm polystyrene nanoparticles at 1 nm resolution, sorting 20 nm proteins/exsomes at 3 nm resolution, conveying, and concentrating 100 nm gold nanoparticles. Remarkably, the design can also be employed to screen out medium-sized nanoparticles from a mixture of nanoparticles with over three sizes. This optofluidic manipulation platform opens the new way to explore intriguing optical modes for the powerful manipulation of nanoparticles with nanometer precisions and low laser powers.
Collapse
Affiliation(s)
- Hong Luo
- Institute of Precision Optical EngineeringSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- MOE Key Laboratory of Advanced Micro-Structured MaterialsShanghai200092China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Frontiers Science Center of Digital OpticsShanghai200092China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market RegulationCenter for Advanced Measurement ScienceNational Institute of MetrologyBeijing100029China
| | - Chengfeng Li
- Institute of Precision Optical EngineeringSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- MOE Key Laboratory of Advanced Micro-Structured MaterialsShanghai200092China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Frontiers Science Center of Digital OpticsShanghai200092China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market RegulationCenter for Advanced Measurement ScienceNational Institute of MetrologyBeijing100029China
| | - Ning Ru
- Technology Innovation Center of Mass Spectrometry for State Market RegulationCenter for Advanced Measurement ScienceNational Institute of MetrologyBeijing100029China
| | - Minmin You
- National Key Laboratory of Advanced Micro and Nano Manufacture TechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Tao He
- Institute of Precision Optical EngineeringSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- MOE Key Laboratory of Advanced Micro-Structured MaterialsShanghai200092China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Frontiers Science Center of Digital OpticsShanghai200092China
| | - Pin Chieh Wu
- Department of PhotonicsNational Cheng Kung UniversityTainan70101Taiwan
- Center for Quantum Frontiers of Research & Technology (QFort)National Cheng Kung UniversityTainan70101Taiwan
| | - Zhanshan Wang
- Institute of Precision Optical EngineeringSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- MOE Key Laboratory of Advanced Micro-Structured MaterialsShanghai200092China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Frontiers Science Center of Digital OpticsShanghai200092China
| | - Yuzhi Shi
- Institute of Precision Optical EngineeringSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- MOE Key Laboratory of Advanced Micro-Structured MaterialsShanghai200092China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Frontiers Science Center of Digital OpticsShanghai200092China
| | - Xinbin Cheng
- Institute of Precision Optical EngineeringSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- MOE Key Laboratory of Advanced Micro-Structured MaterialsShanghai200092China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Frontiers Science Center of Digital OpticsShanghai200092China
| |
Collapse
|
39
|
Yeh PY, Chen JY, Shen MY, Che TF, Lim SC, Wang J, Tsai WS, Frank CW, Huang CJ, Chang YC. Liposome-tethered supported lipid bilayer platform for capture and release of heterogeneous populations of circulating tumor cells. J Mater Chem B 2023; 11:8159-8169. [PMID: 37313622 DOI: 10.1039/d3tb00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Because of scarcity, vulnerability, and heterogeneity in the population of circulating tumor cells (CTCs), the CTC isolation system relying on immunoaffinity interaction exhibits inconsistent efficiencies for all types of cancers and even CTCs with different phenotypes in individuals. Moreover, releasing viable CTCs from an isolation system is of importance for molecular analysis and drug screening in precision medicine, which remains a challenge for current systems. In this work, a new CTC isolation microfluidic platform was developed and contains a coating of the antibody-conjugated liposome-tethered-supported lipid bilayer in a developed chaotic-mixing microfluidic system, referred to as the "LIPO-SLB" platform. The biocompatible, soft, laterally fluidic, and antifouling properties of the LIPO-SLB platform offer high CTC capture efficiency, viability, and selectivity. We successfully demonstrated the capability of the LIPO-SLB platform to recapitulate different cancer cell lines with different antigen expression levels. In addition, the captured CTCs in the LIPO-SLB platform can be detached by air foam to destabilize the physically assembled bilayer structures due to a large water/air interfacial area and strong surface tension. More importantly, the LIPO-SLB platform was constructed and used for the verification of clinical samples from 161 patients with different primary cancer types. The mean values of both single CTCs and CTC clusters correlated well with the cancer stages. Moreover, a considerable number of CTCs were isolated from patients' blood samples in the early/localized stages. The clinical validation demonstrated the enormous potential of the universal LIPO-SLB platform as a tool for prognostic and predictive purposes in precision medicine.
Collapse
Affiliation(s)
- Po-Ying Yeh
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jia-Yang Chen
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Mo-Yuan Shen
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ting-Fang Che
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
| | - Syer Choon Lim
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
| | - Jocelyn Wang
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Wen-Sy Tsai
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University, Linkou, Taoyuan, Taiwan
| | - Curtis W Frank
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chun-Jen Huang
- Department of Chemical & Materials Engineering, and NCU-Covestro Research Center, National Central University, Jhong-Li, Taoyuan 320, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li City 32023, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, 128, Sec 2, Academic Rd., Nankang, Taipei 115, Taiwan.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Isiksacan Z, D’Alessandro A, Wolf SM, McKenna DH, Tessier SN, Kucukal E, Gokaltun AA, William N, Sandlin RD, Bischof J, Mohandas N, Busch MP, Elbuken C, Gurkan UA, Toner M, Acker JP, Yarmush ML, Usta OB. Assessment of stored red blood cells through lab-on-a-chip technologies for precision transfusion medicine. Proc Natl Acad Sci U S A 2023; 120:e2115616120. [PMID: 37494421 PMCID: PMC10410732 DOI: 10.1073/pnas.2115616120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the "first-in-first-out" principle to avoid wastage, whereas most healthcare providers prefer the "last-in-first-out" approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.
Collapse
Affiliation(s)
- Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO80045
| | - Susan M. Wolf
- Law School, Medical School, Consortium on Law and Values in Health, Environment & the Life Sciences, University of Minnesota, Minneapolis, MN55455
| | - David H. McKenna
- Division of Transfusion Medicine, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | | | - A. Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
- Department of Chemical Engineering, Hacettepe University, Ankara06532, Turkey
| | - Nishaka William
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, ABT6G 2R8, Canada
| | - Rebecca D. Sandlin
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - John Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | | | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA94105
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA94105
| | - Caglar Elbuken
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara06800, Turkey
- Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, 90014Oulu, Finland
- Valtion Teknillinen Tutkimuskeskus Technical Research Centre of Finland Ltd., 90570Oulu, Finland
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH44106
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH44106
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| | - Jason P. Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, ABT6G 2R8, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, ABT6G 2R8, Canada
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ08854
| | - O. Berk Usta
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Shriners Children’s, Boston, MA02114
| |
Collapse
|
41
|
Blaney G, Ivich F, Sassarolia A, Niedre M, Fantini S. Dual-ratio approach for detection of point fluorophores in biological tissue. ARXIV 2023:arXiv:2305.14436v2. [PMID: 37292468 PMCID: PMC10246068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SIGNIFICANCE Diffuse in-vivo Flow Cytometry (DiFC) is an emerging fluorescence sensing method to non-invasively detect labeled circulating cells in-vivo. However, due to Signal-to-Noise Ratio (SNR) constraints largely attributed to background tissue autofluorescence, DiFC's measurement depth is limited. multiplies Aim: The Dual-Ratio (DR) / dual-slope is a new optical measurement method that aims to suppress noise and enhance SNR to deep tissue regions. We aim to investigate the combination of DR and Near-InfraRed (NIR) DiFC to improve circulating cells' maximum detectable depth and SNR. APPROACH Phantom experiments were used to estimate the key parameters in a diffuse fluorescence excitation and emission model. This model and parameters were implemented in Monte-Carlo to simulate DR DiFC while varying noise and autofluorescence parameters to identify the advantages and limitations of the proposed technique. RESULTS Two key factors must be true to give DR DiFC an advantage over traditional DiFC; first, the fraction of noise that DR methods cannot cancel cannot be above the order of 10% for acceptable SNR. Second, DR DiFC has an advantage, in terms of SNR, if the distribution of tissue autofluorescence contributors is surface-weighted. CONCLUSIONS DR cancelable noise may be designed for (e.g. through the use of source multiplexing), and indications point to the autofluorescence contributors' distribution being truly surface-weighted in-vivo. Successful and worthwhile implementation of DR DiFC depends on these considerations, but results point to DR DiFC having possible advantages over traditional DiFC.
Collapse
Affiliation(s)
- Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, MA USA, 02155
| | - Fernando Ivich
- Northeastern University, Department of Bioengineering, Boston, MA USA, 02120
| | - Angelo Sassarolia
- Tufts University, Department of Biomedical Engineering, Medford, MA USA, 02155
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, MA USA, 02120
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, MA USA, 02155
| |
Collapse
|
42
|
Cui M, Dutcher S, Bayly P, Meacham J. Robust acoustic trapping and perturbation of single-cell microswimmers illuminate three-dimensional swimming and ciliary coordination. Proc Natl Acad Sci U S A 2023; 120:e2218951120. [PMID: 37307440 PMCID: PMC10290211 DOI: 10.1073/pnas.2218951120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/18/2023] [Indexed: 06/14/2023] Open
Abstract
We report a label-free acoustic microfluidic method to confine single, cilia-driven swimming cells in space without limiting their rotational degrees of freedom. Our platform integrates a surface acoustic wave (SAW) actuator and bulk acoustic wave (BAW) trapping array to enable multiplexed analysis with high spatial resolution and trapping forces that are strong enough to hold individual microswimmers. The hybrid BAW/SAW acoustic tweezers employ high-efficiency mode conversion to achieve submicron image resolution while compensating for parasitic system losses to immersion oil in contact with the microfluidic chip. We use the platform to quantify cilia and cell body motion for wildtype biciliate cells, investigating effects of environmental variables like temperature and viscosity on ciliary beating, synchronization, and three-dimensional helical swimming. We confirm and expand upon the existing understanding of these phenomena, for example determining that increasing viscosity promotes asynchronous beating. Motile cilia are subcellular organelles that propel microorganisms or direct fluid and particulate flow. Thus, cilia are critical to cell survival and human health. The unicellular alga Chlamydomonas reinhardtii is widely used to investigate the mechanisms underlying ciliary beating and coordination. However, freely swimming cells are difficult to image with sufficient resolution to capture cilia motion, necessitating that the cell body be held during experiments. Acoustic confinement is a compelling alternative to use of a micropipette, or to magnetic, electrical, and optical trapping that may modify the cells and affect their behavior. Beyond establishing our approach to studying microswimmers, we demonstrate a unique ability to mechanically perturb cells via rapid acoustic positioning.
Collapse
Affiliation(s)
- Mingyang Cui
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Philip V. Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| | - J. Mark Meacham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| |
Collapse
|
43
|
Wang W, He Y, Yang F, Chen K. Current and emerging applications of liquid biopsy in pan-cancer. Transl Oncol 2023; 34:101720. [PMID: 37315508 DOI: 10.1016/j.tranon.2023.101720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Cancer morbidity and mortality are growing rapidly worldwide and it is urgent to develop a convenient and effective method that can identify cancer patients at an early stage and predict treatment outcomes. As a minimally invasive and reproducible tool, liquid biopsy (LB) offers the opportunity to detect, analyze and monitor cancer in any body fluids including blood, complementing the limitations of tissue biopsy. In liquid biopsy, circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are the two most common biomarkers, displaying great potential in the clinical application of pan-cancer. In this review, we expound the samples, targets, and newest techniques in liquid biopsy and summarize current clinical applications in several specific cancers. Besides, we put forward a bright prospect for further exploring the emerging application of liquid biopsy in the field of pan-cancer precision medicine.
Collapse
Affiliation(s)
- Wenxiang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China
| | - Yue He
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China
| | - Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, 11 Xizhimen South Street, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute, Beijing 100044, China.
| |
Collapse
|
44
|
Iyer V, Issadore DA, Aflatouni F. The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. LAB ON A CHIP 2023; 23:2553-2576. [PMID: 37114950 DOI: 10.1039/d2lc01163h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Since the field's inception, pioneers in microfluidics have made significant progress towards realizing complete lab-on-chip systems capable of sophisticated sample analysis and processing. One avenue towards this goal has been to join forces with the related field of microelectronics, using integrated circuits (ICs) to perform on-chip actuation and sensing. While early demonstrations focused on using microfluidic-IC hybrid chips to miniaturize benchtop instruments, steady advancements in the field have enabled a new generation of devices that expand past miniaturization into high-performance applications that would not be possible without IC hybrid integration. In this review, we identify recent examples of labs-on-chip that use high-resolution, high-speed, and multifunctional electronic and photonic chips to expand the capabilities of conventional sample analysis. We focus on three particularly active areas: a) high-throughput integrated flow cytometers; b) large-scale microelectrode arrays for stimulation and multimodal sensing of cells over a wide field of view; c) high-speed biosensors for studying molecules with high temporal resolution. We also discuss recent advancements in IC technology, including on-chip data processing techniques and lens-free optics based on integrated photonics, that are poised to further advance microfluidic-IC hybrid chips.
Collapse
Affiliation(s)
- Vasant Iyer
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - David A Issadore
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Firooz Aflatouni
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
45
|
Seyfoori A, Seyyed Ebrahimi SA, Samandari M, Samiei E, Stefanek E, Garnis C, Akbari M. Microfluidic-Assisted CTC Isolation and In Situ Monitoring Using Smart Magnetic Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205320. [PMID: 36720798 DOI: 10.1002/smll.202205320] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Capturing rare disease-associated biomarkers from body fluids can offer an early-stage diagnosis of different cancers. Circulating tumor cells (CTCs) are one of the major cancer biomarkers that provide insightful information about the cancer metastasis prognosis and disease progression. The most common clinical solutions for quantifying CTCs rely on the immunomagnetic separation of cells in whole blood. Microfluidic systems that perform magnetic particle separation have reported promising outcomes in this context, however, most of them suffer from limited efficiency due to the low magnetic force generated which is insufficient to trap cells in a defined position within microchannels. In this work, a novel method for making soft micromagnet patterns with optimized geometry and magnetic material is introduced. This technology is integrated into a bilayer microfluidic chip to localize an external magnetic field, consequently enhancing the capture efficiency (CE) of cancer cells labeled with the magnetic nano/hybrid microgels that are developed in the previous work. A combined numerical-experimental strategy is implemented to design the microfluidic device and optimize the capturing efficiency and to maximize the throughput. The proposed design enables high CE and purity of target cells and real-time time on-chip monitoring of their behavior. The strategy introduced in this paper offers a simple and low-cost yet robust opportunity for early-stage diagnosis and monitoring of cancer-associated biomarkers.
Collapse
Affiliation(s)
- Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Advanced Magnetic Materials Research Center, College of Engineering, University of Tehran, Tehran, Iran
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | | | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ehsan Samiei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Evan Stefanek
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
- Bitechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90024, USA
| |
Collapse
|
46
|
Clack K, Soda N, Kasetsirikul S, Mahmudunnabi RG, Nguyen NT, Shiddiky MJA. Toward Personalized Nanomedicine: The Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Analysis in Liquid Biopsy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205856. [PMID: 36631277 DOI: 10.1002/smll.202205856] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Liquid biopsy for the analysis of circulating cancer biomarkers (CBs) is a major advancement toward the early detection of cancer. In comparison to tissue biopsy techniques, liquid biopsy is relatively painless, offering multiple sampling opportunities across easily accessible bodily fluids such as blood, urine, and saliva. Liquid biopsy is also relatively inexpensive and simple, avoiding the requirement for specialized laboratory equipment or trained medical staff. Major advances in the field of liquid biopsy are attributed largely to developments in nanotechnology and microfabrication that enables the creation of highly precise chip-based platforms. These devices can overcome detection limitations of an individual biomarker by detecting multiple markers simultaneously on the same chip, or by featuring integrated and combined target separation techniques. In this review, the major advances in the field of portable and semi-portable micro, nano, and multiplexed platforms for CB detection for the early diagnosis of cancer are highlighted. A comparative discussion is also provided, noting merits and drawbacks of the platforms, especially in terms of portability. Finally, key challenges toward device portability and possible solutions, as well as discussing the future direction of the field are highlighted.
Collapse
Affiliation(s)
- Kimberley Clack
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Surasak Kasetsirikul
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Rabbee G Mahmudunnabi
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| |
Collapse
|
47
|
Natalia A, Zhang L, Sundah NR, Zhang Y, Shao H. Analytical device miniaturization for the detection of circulating biomarkers. NATURE REVIEWS BIOENGINEERING 2023; 1:1-18. [PMID: 37359772 PMCID: PMC10064972 DOI: 10.1038/s44222-023-00050-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
Diverse (sub)cellular materials are secreted by cells into the systemic circulation at different stages of disease progression. These circulating biomarkers include whole cells, such as circulating tumour cells, subcellular extracellular vesicles and cell-free factors such as DNA, RNA and proteins. The biophysical and biomolecular state of circulating biomarkers carry a rich repertoire of molecular information that can be captured in the form of liquid biopsies for disease detection and monitoring. In this Review, we discuss miniaturized platforms that allow the minimally invasive and rapid detection and analysis of circulating biomarkers, accounting for their differences in size, concentration and molecular composition. We examine differently scaled materials and devices that can enrich, measure and analyse specific circulating biomarkers, outlining their distinct detection challenges. Finally, we highlight emerging opportunities in biomarker and device integration and provide key future milestones for their clinical translation.
Collapse
Affiliation(s)
- Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Noah R. Sundah
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
48
|
Wang J, Dallmann R, Lu R, Yan J, Charmet J. Flow Rate-Independent Multiscale Liquid Biopsy for Precision Oncology. ACS Sens 2023; 8:1200-1210. [PMID: 36802518 PMCID: PMC10043932 DOI: 10.1021/acssensors.2c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
Immunoaffinity-based liquid biopsies of circulating tumor cells (CTCs) hold great promise for cancer management but typically suffer from low throughput, relative complexity, and postprocessing limitations. Here, we address these issues simultaneously by decoupling and independently optimizing the nano-, micro-, and macro-scales of an enrichment device that is simple to fabricate and operate. Unlike other affinity-based devices, our scalable mesh approach enables optimum capture conditions at any flow rate, as demonstrated with constant capture efficiencies, above 75% between 50 and 200 μL min-1. The device achieved 96% sensitivity and 100% specificity when used to detect CTCs in the blood of 79 cancer patients and 20 healthy controls. We demonstrate its postprocessing capacity with the identification of potential responders to immune checkpoint inhibition (ICI) therapy and the detection of HER2 positive breast cancer. The results compare well with other assays, including clinical standards. This suggests that our approach, which overcomes major limitations associated with affinity-based liquid biopsies, could help improve cancer management.
Collapse
Affiliation(s)
- Jie Wang
- Institute
for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Robert Dallmann
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, U. K.
| | - Renquan Lu
- Department
of Clinical Laboratory, Fudan University
Shanghai Cancer Center, Shanghai 200032, China
| | - Jing Yan
- Holosensor
Medical Technology Ltd., Suzhou 215000, China
| | - Jérôme Charmet
- Division
of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, U. K.
- WMG
University of Warwick, Coventry CV4 7AL, U.K.
- School of
Engineering − HE-Arc Ingénierie, HES-SO University of Applied Sciences Western Switzerland, 2000 Neuchâtel, Switzerland
| |
Collapse
|
49
|
Vidlarova M, Rehulkova A, Stejskal P, Prokopova A, Slavik H, Hajduch M, Srovnal J. Recent Advances in Methods for Circulating Tumor Cell Detection. Int J Mol Sci 2023; 24:3902. [PMID: 36835311 PMCID: PMC9959336 DOI: 10.3390/ijms24043902] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Circulating tumor cells (CTCs) are released from primary tumors and transported through the body via blood or lymphatic vessels before settling to form micrometastases under suitable conditions. Accordingly, several studies have identified CTCs as a negative prognostic factor for survival in many types of cancer. CTCs also reflect the current heterogeneity and genetic and biological state of tumors; so, their study can provide valuable insights into tumor progression, cell senescence, and cancer dormancy. Diverse methods with differing specificity, utility, costs, and sensitivity have been developed for isolating and characterizing CTCs. Additionally, novel techniques with the potential to overcome the limitations of existing ones are being developed. This primary literature review describes the current and emerging methods for enriching, detecting, isolating, and characterizing CTCs.
Collapse
Affiliation(s)
- Monika Vidlarova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Alona Rehulkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Pavel Stejskal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Andrea Prokopova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
| | - Hanus Slavik
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 67000 Strasbourg, France
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, 779 00 Olomouc, Czech Republic
- Laboratory of Experimental Medicine, University Hospital in Olomouc, 779 00 Olomouc, Czech Republic
| |
Collapse
|
50
|
Lin SY, Lu LK, Hsu WF, Peng WC, Tseng HW, Li CC, Chen CL, Huang GS, Lee CN, Wo AM. A Systemic Approach to Isolate, Retrieve, and Characterize Trophoblasts from the Maternal Circulation Using a Centrifugal Microfluidic Disc and a Multiple Single-Cell Retrieval Strategy. Anal Chem 2023; 95:3274-3282. [PMID: 36736312 DOI: 10.1021/acs.analchem.2c04260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rare cells in the blood often have rich clinical significance. Although their isolation is highly desirable, this goal remains elusive due to their rarity. This paper presents a systemic approach to isolate and characterize trophoblasts from the maternal circulation. A microfluidic rare cell disc assay (RaCDA) was designed to process an extremely large volume of up to 15 mL of blood in 30 min, depleting red blood cells (RBCs) and RBC-bound white blood cells (WBC) while isolating trophoblasts in the collection chip. To minimize cell loss, on-disc labeling of cells with fluorescent immuno-staining identified the trophoblasts. Retrieval of trophoblasts utilized an optimized strategy in which multiple single cells were retrieved within the same micropipette column, with each cell encapsulated in a fluid volume (50 nL) separated by an air pocket (10 nL). Further, whole-genome amplification (WGA) amplified contents from a few retrieved cells, followed by quality control (QC) on the success of WGA via housekeeping genes. For definitive confirmation of trophoblasts, short-tandem repeat (STR) of the WGA-amplified content was compared against STR from maternal WBC and amniocytes from amniocentesis. Results showed a mean recovery rate (capture efficiency) of 91.0% for spiked cells with a WBC depletion rate of 99.91%. The retrieval efficiency of single target cells of 100% was achieved for up to four single cells retrieved per micropipette column. Comparison of STR signatures revealed that the RaCDA can retrieve trophoblasts from the maternal circulation.
Collapse
Affiliation(s)
- Shin-Yu Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan
| | - Li-Kuo Lu
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Fan Hsu
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan.,Reliance Biosciences, Inc., New Taipei City 23141, Taiwan
| | - Wei-Chieh Peng
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan.,Reliance Biosciences, Inc., New Taipei City 23141, Taiwan
| | - Hua-Wei Tseng
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Chi Li
- Reliance Biosciences, Inc., New Taipei City 23141, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Lin Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - Guan-Syuan Huang
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan.,Reliance Biosciences, Inc., New Taipei City 23141, Taiwan
| | - Chien-Nan Lee
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan.,Department of Obstetrics and Gynecology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Andrew M Wo
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan.,Reliance Biosciences, Inc., New Taipei City 23141, Taiwan
| |
Collapse
|