1
|
Kunio K, Soboń G, Bogusławski J. Multiphoton microscopy at a microwatt level via gain-managed nonlinear amplification and pulse-picking. BIOMEDICAL OPTICS EXPRESS 2025; 16:1692-1706. [PMID: 40321988 PMCID: PMC12047729 DOI: 10.1364/boe.557132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 05/08/2025]
Abstract
We introduce a compact, all-fiber laser system with a gain-managed nonlinear (GMN) amplified Yb:fiber oscillator and an integrated pulse-picker. The system delivers 39 fs pulses with peak powers of 0.83 MW and adjustable pulse repetition rates (0.3-15 MHz), enabling multiphoton imaging at remarkably low excitation powers (as low as 66 µW). Its design simplifies integration and enhances experimental flexibility. Compatible with two- and three-photon excitation, but also second harmonic generation microscopy, this versatile system offers precise control of imaging parameters, making it an effective tool for advancing multiphoton microscopy and other imaging techniques across various experimental environments.
Collapse
Affiliation(s)
- Katarzyna Kunio
- Laser & Fiber Electronics Group, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Grzegorz Soboń
- Laser & Fiber Electronics Group, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jakub Bogusławski
- Laser & Fiber Electronics Group, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
2
|
Sirimatayanant S, Andruniów T. Tuning Two-Photon Absorption in Rhodopsin Chromophore via Backbone Modification: The Story Told by CC2 and TD-DFT. J Chem Theory Comput 2024. [PMID: 39269133 PMCID: PMC11428129 DOI: 10.1021/acs.jctc.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
We investigate here a systematic way to tune two-photon transition strengths (δ2PA) and two-photon absorption (2PA) cross sections (σ2PA) of the rhodopsin's chromophore 11-cis-retinal protonated Schiff base (RPSB) via the modulation of the methyl groups pattern along its polyene chain. Our team employed the resolution of identity, coupled cluster approximate second order (RI-CC2) method with Dunning's aug-cc-pVDZ basis set, to determine the structural impact on δ2PA, as well as its correlation to both transition dipole moments and permanent electric dipole moments. Seven structures were probed in vacuo, including five-double-bond-conjugated model of the native chromophore, shortened by the β-ionone ring (RPSB5), and its de/methylated analogues: 9-methyl, 13-methyl, planar and twisted models of 9,10-dimethyl and 9,10,13-trimethyl. Our results demonstrate that the magnitude of δ2PA is dictated by both the position and number of methylated groups attached to its polyene chain as well as the degree of dihedral twist that is introduced due to the de/methylation. In fact, a strong correlation between δ2PA enhancement and the presence of a C13-methyl group in the planar RPSB5 species is found. Trends in δ2PA values follow the trends observed in their corresponding changes in the permanent dipole moment upon the S0-S1 excitation nearly exactly. The assessment of four DFT functionals, i.e., M11, MN15, CAM-B3LYP, and BHandHLYP, previously found most successful in predicting 2PA properties in biological chromophores, points to a long-range-corrected hybrid meta-GGA M11 as the top-performing functional, albeit still delivering underestimated δ2PA and σ2PA values by a factor of 3.3-5.3 with respect to the CC2 results. In the case of global-hybrid meta-NGA (MN15), as well as CAM-B3LYP and BHandHLYP functionals, this factor deteriorates significantly to 6.7-20.9 and is mostly related to significantly lower quality of the ground- and excited-state dipole moments.
Collapse
Affiliation(s)
- Saruti Sirimatayanant
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Tadeusz Andruniów
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław 50-370, Poland
| |
Collapse
|
3
|
Kunio K, Bogusławski J, Soboń G. Efficient multiphoton microscopy with picosecond laser pulses. OPTICS LETTERS 2024; 49:4597-4600. [PMID: 39146113 DOI: 10.1364/ol.533227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Multiphoton microscopes employ femtosecond lasers as light sources because the high peak power of the ultrashort pulse allows for multiphoton excitation of fluorescence in the examined sample. However, such short pulses are susceptible to broadening in a microscope's highly dispersive optical elements and require careful dispersion management, otherwise decreasing excitation efficiency. Here, we have developed a 10 nJ Yb:fiber picosecond laser with an integrated pulse picker unit and evaluated its performance in multiphoton microscopy. Our results show that performance comparable to femtosecond pulses can be obtained with picosecond pulses only by reducing the pulse repetition rate and that such pulses are significantly less prone to the effect of chromatic dispersion. These findings proved that the temporal pulse compression is not always efficient, and it can be omitted by using a smaller and easier-to-use all-fiber setup.
Collapse
|
4
|
Kunala K, Tang JAH, Parkins K, Hunter JJ. Multispectral label-free in vivo cellular imaging of human retinal pigment epithelium using adaptive optics fluorescence lifetime ophthalmoscopy improves feasibility for low emission analysis and increases sensitivity for detecting changes with age and eccentricity. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22707. [PMID: 38962492 PMCID: PMC11221116 DOI: 10.1117/1.jbo.29.s2.s22707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024]
Abstract
Significance Adaptive optics fluorescence lifetime ophthalmoscopy (AOFLIO) provides a label-free approach to observe functional and molecular changes at cellular scale in vivo. Adding multispectral capabilities improves interpretation of lifetime fluctuations due to individual fluorophores in the retinal pigment epithelium (RPE). Aim To quantify the cellular-scale changes in autofluorescence with age and eccentricity due to variations in lipofuscin, melanin, and melanolipofuscin in RPE using multispectral AOFLIO. Approach AOFLIO was performed on six subjects at seven eccentricities. Four imaging channels (λ ex / λ em ) were used: 473/SSC, 473/LSC, 532/LSC, and 765/NIR. Cells were segmented and the timing signals of each pixel in a cell were combined into a single histogram, which were then used to compute the lifetime and phasor parameters. An ANOVA was performed to investigate eccentricity and spectral effects on each parameter. Results A repeatability analysis revealed < 11.8 % change in lifetime parameters in repeat visits for 532/LSC. The 765/NIR and 532/LSC had eccentricity and age effects similar to previous reports. The 473/LSC had a change in eccentricity with mean lifetime and a phasor component. Both the 473/LSC and 473/SSC had changes in eccentricity in the short lifetime component and its relative contribution. The 473/SSC had no trend in eccentricity in phasor. The comparison across the four channels showed differences in lifetime and phasor parameters. Conclusions Multispectral AOFLIO can provide a more comprehensive picture of changes with age and eccentricity. These results indicate that cell segmentation has the potential to allow investigations in low-photon scenarios such as in older or diseased subjects with the co-capture of an NIR channel (such as 765/NIR) with the desired spectral channel. This work represents the first multispectral, cellular-scale fluorescence lifetime comparison in vivo in the human RPE and may be a useful method for tracking diseases.
Collapse
Affiliation(s)
- Karteek Kunala
- Stanford University, Byers Eye Institute, Palo Alto, California, United States
| | - Janet A. H. Tang
- University of Rochester, Center for Visual Science, Rochester, New York, United States
- University of Rochester, The Institute of Optics, Rochester, New York, United States
| | - Keith Parkins
- University of Rochester, Center for Visual Science, Rochester, New York, United States
| | - Jennifer J. Hunter
- University of Rochester, Center for Visual Science, Rochester, New York, United States
- University of Rochester, The Institute of Optics, Rochester, New York, United States
- University of Waterloo, School of Optometry and Vision Science, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Nguyen TD, Chen YI, Nguyen AT, Yonas S, Sripati MP, Kuo YA, Hong S, Litvinov M, He Y, Yeh HC, Grady Rylander H. Two-photon autofluorescence lifetime assay of rabbit photoreceptors and retinal pigment epithelium during light-dark visual cycles in rabbit retina. BIOMEDICAL OPTICS EXPRESS 2024; 15:3094-3111. [PMID: 38855698 PMCID: PMC11161359 DOI: 10.1364/boe.511806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/11/2024]
Abstract
Two-photon excited fluorescence (TPEF) is a powerful technique that enables the examination of intrinsic retinal fluorophores involved in cellular metabolism and the visual cycle. Although previous intensity-based TPEF studies in non-human primates have successfully imaged several classes of retinal cells and elucidated aspects of both rod and cone photoreceptor function, fluorescence lifetime imaging (FLIM) of the retinal cells under light-dark visual cycle has yet to be fully exploited. Here we demonstrate a FLIM assay of photoreceptors and retinal pigment epithelium (RPE) that reveals key insights into retinal physiology and adaptation. We found that photoreceptor fluorescence lifetimes increase and decrease in sync with light and dark exposure, respectively. This is likely due to changes in all-trans-retinol and all-trans-retinal levels in the outer segments, mediated by phototransduction and visual cycle activity. During light exposure, RPE fluorescence lifetime was observed to increase steadily over time, as a result of all-trans-retinol accumulation during the visual cycle and decreasing metabolism caused by the lack of normal perfusion of the sample. Our system can measure the fluorescence lifetime of intrinsic retinal fluorophores on a cellular scale, revealing differences in lifetime between retinal cell classes under different conditions of light and dark exposure.
Collapse
Affiliation(s)
- Trung Duc Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Anh-Thu Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Siem Yonas
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Manasa P Sripati
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yu-An Kuo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Mitchell Litvinov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yujie He
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Texas Materials Institute, University of Texas at Austin, Austin, TX, USA
| | - H Grady Rylander
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Kunala K, Tang JAH, Bowles Johnson KE, Huynh KT, Parkins K, Kim HJ, Yang Q, Sparrow JR, Hunter JJ. Near Infrared Autofluorescence Lifetime Imaging of Human Retinal Pigment Epithelium Using Adaptive Optics Scanning Light Ophthalmoscopy. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 38758638 PMCID: PMC11107951 DOI: 10.1167/iovs.65.5.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Purpose To demonstrate the first near-infrared adaptive optics fluorescence lifetime imaging ophthalmoscopy (NIR-AOFLIO) measurements in vivo of the human retinal pigment epithelial (RPE) cellular mosaic and to visualize lifetime changes at different retinal eccentricities. Methods NIR reflectance and autofluorescence were captured using a custom adaptive optics scanning light ophthalmoscope in 10 healthy subjects (23-64 years old) at seven eccentricities and in two eyes with retinal abnormalities. Repeatability was assessed across two visits up to 8 weeks apart. Endogenous retinal fluorophores and hydrophobic whole retinal extracts of Abca4-/- pigmented and albino mice were imaged to probe the fluorescence origin of NIR-AOFLIO. Results The RPE mosaic was resolved at all locations in five of seven younger subjects (<35 years old). The mean lifetime across near-peripheral regions (8° and 12°) was longer compared to near-foveal regions (0° and 2°). Repeatability across two visits showed moderate to excellent correlation (intraclass correlation: 0.88 [τm], 0.75 [τ1], 0.65 [τ2], 0.98 [a1]). The mean lifetime across drusen-containing eyes was longer than in age-matched healthy eyes. Fluorescence was observed in only the extracts from pigmented Abca4-/- mouse. Conclusions NIR-AOFLIO was repeatable and allowed visualization of the RPE cellular mosaic. An observed signal in only the pigmented mouse extract infers the fluorescence signal originates predominantly from melanin. Variations observed across the retina with intermediate age-related macular degeneration suggest NIR-AOFLIO may act as a functional measure of a biomarker for in vivo monitoring of early alterations in retinal health.
Collapse
Affiliation(s)
- Karteek Kunala
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Janet A. H. Tang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- The Institute of Optics, University of Rochester, Rochester, New York, United States
| | - Kristen E. Bowles Johnson
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, California, United States
| | - Keith Parkins
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Hye-Jin Kim
- College of Pharmacy, Keimyung University, Dalseo-gu, Daegu, South Korea
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Qiang Yang
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Janet R. Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, New York, United States
- Flaum Eye Institute, University of Rochester, Rochester, New York, United States
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Fu L, Wang J, Wang S, Zhang Z, Vogel A, Liang XX, Yao C. Secondary cavitation bubble dynamics during laser-induced bubble formation in a small container. OPTICS EXPRESS 2024; 32:9747-9766. [PMID: 38571201 DOI: 10.1364/oe.516264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
We investigated secondary cavitation bubble dynamics during laser-induced bubble formation in a small container with a partially confined free surface and elastic thin walls. We employed high-speed photography to record the dynamics of sub-mm-sized laser-induced bubbles and small secondary bubble clouds. Simultaneous light scattering and acoustic measurements were used to detect the oscillation times of laser-induced bubbles. We observed that the appearance of secondary bubbles coincides with a prolonged collapse phase and with re-oscillations of the laser-induced bubble. We observed an asymmetric distribution of secondary bubbles with a preference for the upstream side of the focus, an absence of secondary bubbles in the immediate vicinity of the laser focus, and a migration of laser-induced bubble toward secondary bubbles at large pulse energies. We found that secondary bubbles are created through heating of impurities to form initial nanobubble nuclei, which are further expanded by rarefaction waves. The rarefaction waves originate from the vibration of the elastic thin walls, which are excited either directly by laser-induced bubble or by bubble-excited liquid-mass oscillations. The oscillation period of thin walls and liquid-mass were Twall = 116 µs and Tlm ≈ 160 µs, respectively. While the amplitude of the wall vibrations increases monotonically with the size of laser-induced bubbles, the amplitude of liquid-mass oscillation undulates with increasing bubble size. This can be attributed to a phase shift between the laser-induced bubble oscillation and the liquid-mass oscillator. Mutual interactions between the laser-induced bubble and secondary bubbles reveal a fast-changing pressure gradient in the liquid. Our study provides a better understanding of laser-induced bubble dynamics in a partially confined environment, which is of practical importance for microfluidics and intraluminal laser surgery.
Collapse
|
8
|
Messner A, Aranha dos Santos V, Puchner S, Stegmann H, Schlatter A, Schmidl D, Leitgeb R, Schmetterer L, Werkmeister RM. The Impact of Photopigment Bleaching on the Human Rod Photoreceptor Subretinal Space Measured Via Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 38470325 PMCID: PMC10941995 DOI: 10.1167/iovs.65.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Purpose The purpose of this study was to investigate rod photopigment bleaching-driven intrinsic optical signals (IOS) in the human outer retina and its measurement repeatability based on a commercial optical coherence tomography (OCT) platform. Methods The optical path length of the rod photoreceptor subretinal space (SRS), that is, the distance between signal bands of rod outer segment tips and retinal pigment epithelium, was measured in 15 healthy subjects in ambient light and during a long-duration bleaching white-light exposure. Results On 2 identical study days (day 1 and day 2 [D1 and D2]), light stimulation resulted in a significant decrease in rod SRS by 21.3 ± 7.6% and 19.8 ± 8.5% (both P < 0.001), respectively. The test-retest reliability of the SRS maximum change of an individual subject was moderate for single measures (intraclass correlation coefficient [ICC] = 0.730, 95% confidence interval [CI] = 0.376, 0.900, P < 0.001) and good for average measures (ICC = 0.844, 95% CI = 0.546, 0.947, P < 0.001). The mean area under the stimulus response curve with values of 14.8 ± 9.4 and 15.5 ± 7.5 µm × minutes (P = 0.782) showed excellent agreement between the stimulus response on D1 and D2. Intermittent dark adaptation of the retina led to an initial increase of the SRS by 6.1% (P = 0.018) and thereafter showed a decrease toward baseline, despite continued dark adaptation. Conclusions The data indicate the potential of commercial OCT in measuring slow IOS in the outer retina suggesting that the rod SRS could serve as a biomarker for photoreceptor function. The presented approach could provide an easily implementable clinical tool for the early detection of diseases affecting photoreceptor health.
Collapse
Affiliation(s)
- Alina Messner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Stefan Puchner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Hannes Stegmann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Andreas Schlatter
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Vienna Institute for Research in Ocular Surgery (VIROS), Department of Ophthalmology, Hanusch Hospital, Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Singapore Eye Research Institute, The Academia, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - René M. Werkmeister
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Kaushik V, Dąbrowski M, Gessa L, Kumar N, Fernandes H. Two-photon excitation fluorescence in ophthalmology: safety and improved imaging for functional diagnostics. Front Med (Lausanne) 2024; 10:1293640. [PMID: 38235268 PMCID: PMC10791900 DOI: 10.3389/fmed.2023.1293640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Two-photon excitation fluorescence (TPEF) is emerging as a powerful imaging technique with superior penetration power in scattering media, allowing for functional imaging of biological tissues at a subcellular level. TPEF is commonly used in cancer diagnostics, as it enables the direct observation of metabolism within living cells. The technique is now widely used in various medical fields, including ophthalmology. The eye is a complex and delicate organ with multiple layers of different cell types and tissues. Although this structure is ideal for visual perception, it generates aberrations in TPEF eye imaging. However, adaptive optics can now compensate for these aberrations, allowing for improved imaging of the eyes of animal models for human diseases. The eye is naturally built to filter out harmful wavelengths, but these wavelengths can be mimicked and thereby utilized in diagnostics via two-photon (2Ph) excitation. Recent advances in laser-source manufacturing have made it possible to minimize the exposure of in vivo measurements within safety, while achieving sufficient signals to detect for functional images, making TPEF a viable option for human application. This review explores recent advances in wavefront-distortion correction in animal models and the safety of use of TPEF on human subjects, both of which make TPEF a potentially powerful tool for ophthalmological diagnostics.
Collapse
Affiliation(s)
- Vineeta Kaushik
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Dąbrowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Luca Gessa
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Nelam Kumar
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Humberto Fernandes
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
11
|
Wang G, Li L, Sorrells JE, Chen J, Tu H. Gentle label-free nonlinear optical imaging relaxes linear-absorption-mediated triplet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561579. [PMID: 37873348 PMCID: PMC10592717 DOI: 10.1101/2023.10.09.561579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sample health is critical for live-cell fluorescence microscopy and has promoted light-sheet microscopy that restricts its ultraviolet-visible excitation to one plane inside a three-dimensional sample. It is thus intriguing that laser-scanning nonlinear optical microscopy, which similarly restricts its near-infrared excitation, has not broadly enabled gentle label-free molecular imaging. We hypothesize that intense near-infrared excitation induces phototoxicity via linear absorption of intrinsic biomolecules with subsequent triplet buildup, rather than the commonly assumed mechanism of nonlinear absorption. Using a reproducible phototoxicity assay based on the time-lapse elevation of auto-fluorescence (hyper-fluorescence) from a homogeneous tissue model (chicken breast), we provide strong evidence supporting this hypothesis. Our study justifies a simple imaging technique, e.g., rapidly scanned sub-80-fs excitation with full triplet-relaxation, to mitigate this ubiquitous linear-absorption-mediated phototoxicity independent of sample types. The corresponding label-free imaging can track freely moving C. elegans in real-time at an irradiance up to one-half of water optical breakdown.
Collapse
|
12
|
Tworak A, Kolesnikov AV, Hong JD, Choi EH, Luu JC, Palczewska G, Dong Z, Lewandowski D, Brooks MJ, Campello L, Swaroop A, Kiser PD, Kefalov VJ, Palczewski K. Rapid RGR-dependent visual pigment recycling is mediated by the RPE and specialized Müller glia. Cell Rep 2023; 42:112982. [PMID: 37585292 PMCID: PMC10530494 DOI: 10.1016/j.celrep.2023.112982] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023] Open
Abstract
In daylight, demand for visual chromophore (11-cis-retinal) exceeds supply by the classical visual cycle. This shortfall is compensated, in part, by the retinal G-protein-coupled receptor (RGR) photoisomerase, which is expressed in both the retinal pigment epithelium (RPE) and in Müller cells. The relative contributions of these two cellular pools of RGR to the maintenance of photoreceptor light responses are not known. Here, we use a cell-specific gene reactivation approach to elucidate the kinetics of RGR-mediated recovery of photoreceptor responses following light exposure. Electroretinographic measurements in mice with RGR expression limited to either cell type reveal that the RPE and a specialized subset of Müller glia contribute both to scotopic and photopic function. We demonstrate that 11-cis-retinal formed through photoisomerization is rapidly hydrolyzed, consistent with its role in a rapid visual pigment regeneration process. Our study shows that RGR provides a pan-retinal sink for all-trans-retinal released under sustained light conditions and supports rapid chromophore regeneration through the photic visual cycle.
Collapse
Affiliation(s)
- Aleksander Tworak
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA.
| | - Alexander V Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Elliot H Choi
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Jennings C Luu
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Grazyna Palczewska
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Polgenix, Inc., Department of Medical Devices, Cleveland, OH 44106, USA
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Dominik Lewandowski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Department of Clinical Pharmacy Practice, University of California, Irvine, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
13
|
Choi EH, Suh S, Sears AE, Hołubowicz R, Kedhar SR, Browne AW, Palczewski K. Genome editing in the treatment of ocular diseases. Exp Mol Med 2023; 55:1678-1690. [PMID: 37524870 PMCID: PMC10474087 DOI: 10.1038/s12276-023-01057-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Genome-editing technologies have ushered in a new era in gene therapy, providing novel therapeutic strategies for a wide range of diseases, including both genetic and nongenetic ocular diseases. These technologies offer new hope for patients suffering from previously untreatable conditions. The unique anatomical and physiological features of the eye, including its immune-privileged status, size, and compartmentalized structure, provide an optimal environment for the application of these cutting-edge technologies. Moreover, the development of various delivery methods has facilitated the efficient and targeted administration of genome engineering tools designed to correct specific ocular tissues. Additionally, advancements in noninvasive ocular imaging techniques and electroretinography have enabled real-time monitoring of therapeutic efficacy and safety. Herein, we discuss the discovery and development of genome-editing technologies, their application to ocular diseases from the anterior segment to the posterior segment, current limitations encountered in translating these technologies into clinical practice, and ongoing research endeavors aimed at overcoming these challenges.
Collapse
Affiliation(s)
- Elliot H Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Avery E Sears
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Rafał Hołubowicz
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Sanjay R Kedhar
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Andrew W Browne
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
14
|
Hegde KR, Ray K, Szmacinski H, Sorto S, Puche AC, Lengyel I, Thompson RB. Two-Photon Excited Fluorescence Lifetime Imaging of Tetracycline-Labeled Retinal Calcification. SENSORS (BASEL, SWITZERLAND) 2023; 23:6626. [PMID: 37514920 PMCID: PMC10386431 DOI: 10.3390/s23146626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Deposition of calcium-containing minerals such as hydroxyapatite and whitlockite in the subretinal pigment epithelial (sub-RPE) space of the retina is linked to the development of and progression to the end-stage of age-related macular degeneration (AMD). AMD is the most common eye disease causing blindness amongst the elderly in developed countries; early diagnosis is desirable, particularly to begin treatment where available. Calcification in the sub-RPE space is also directly linked to other diseases such as Pseudoxanthoma elasticum (PXE). We found that these mineral deposits could be imaged by fluorescence using tetracycline antibiotics as specific stains. Binding of tetracyclines to the minerals was accompanied by increases in fluorescence intensity and fluorescence lifetime. The lifetimes for tetracyclines differed substantially from the known background lifetime of the existing natural retinal fluorophores, suggesting that calcification could be visualized by lifetime imaging. However, the excitation wavelengths used to excite these lifetime changes were generally shorter than those approved for retinal imaging. Here, we show that tetracycline-stained drusen in post mortem human retinas may be imaged by fluorescence lifetime contrast using multiphoton (infrared) excitation. For this pilot study, ten eyes from six anonymous deceased donors (3 female, 3 male, mean age 83.7 years, range 79-97 years) were obtained with informed consent from the Maryland State Anatomy Board with ethical oversight and approval by the Institutional Review Board.
Collapse
Affiliation(s)
- Kavita R Hegde
- Department of Natural Sciences, Coppin State University, Baltimore, MD 21216, USA
| | - Krishanu Ray
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Henryk Szmacinski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sharon Sorto
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adam C Puche
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Imre Lengyel
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Richard B Thompson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Abstract
Over the last half century, the autofluorescence of the metabolic cofactors NADH (reduced nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide) has been quantified in a variety of cell types and disease states. With the spread of nonlinear optical microscopy techniques in biomedical research, NADH and FAD imaging has offered an attractive solution to noninvasively monitor cell and tissue status and elucidate dynamic changes in cell or tissue metabolism. Various tools and methods to measure the temporal, spectral, and spatial properties of NADH and FAD autofluorescence have been developed. Specifically, an optical redox ratio of cofactor fluorescence intensities and NADH fluorescence lifetime parameters have been used in numerous applications, but significant work remains to mature this technology for understanding dynamic changes in metabolism. This article describes the current understanding of our optical sensitivity to different metabolic pathways and highlights current challenges in the field. Recent progress in addressing these challenges and acquiring more quantitative information in faster and more metabolically relevant formats is also discussed.
Collapse
Affiliation(s)
- Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA;
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Kyle P Quinn
- Department of Biomedical Engineering and the Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
16
|
Bogusławski J, Tomczewski S, Dąbrowski M, Komar K, Milkiewicz J, Palczewska G, Palczewski K, Wojtkowski M. In vivo imaging of the human retina using a two-photon excited fluorescence ophthalmoscope. STAR Protoc 2023; 4:102225. [PMID: 37058404 PMCID: PMC10140148 DOI: 10.1016/j.xpro.2023.102225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/03/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
Noninvasive imaging of endogenous retinal fluorophores, including vitamin A derivatives, is vital to developing new treatments for retinal diseases. Here, we present a protocol for obtaining in vivo two-photon excited fluorescence images of the fundus in the human eye. We describe steps for laser characterization, system alignment, positioning human subjects, and data registration. We detail data processing and demonstrate analysis with example datasets. This technique allays safety concerns by allowing for the acquisition of informative images at low laser exposure. For complete details on the use and execution of this protocol, please refer to Bogusławski et al. (2022).1.
Collapse
Affiliation(s)
- Jakub Bogusławski
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Laser and Fiber Electronics Group, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Sławomir Tomczewski
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Dąbrowski
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Katarzyna Komar
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| | - Jadwiga Milkiewicz
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Grażyna Palczewska
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Department of Medical Devices, Polgenix, Inc., Cleveland, OH, USA; Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, USA; Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Chemistry, University of California, Irvine, Irvine, CA, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Maciej Wojtkowski
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230 Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
17
|
Sirimatayanant S, Andruniów T. Benchmarking two-photon absorption strengths of rhodopsin chromophore models with CC3 and CCSD methodologies: An assessment of popular density functional approximations. J Chem Phys 2023; 158:094106. [PMID: 36889953 DOI: 10.1063/5.0135594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
This work presents the investigations of the impact of an increasing electron correlation in the hierarchy of coupled-cluster methods, i.e., CC2, CCSD, and CC3, on two-photon absorption (2PA) strengths for the lowest excited state of the minimal rhodopsin's chromophore model-cis-penta-2,4-dieniminium cation (PSB3). For a larger chromophore's model [4-cis-hepta-2,4,6-trieniminium cation (PSB4)], CC2 and CCSD calculations of 2PA strengths were performed. Additionally, 2PA strengths predicted by some popular density functional theory (DFT) functionals differing in HF exchange contribution were assessed against the reference CC3/CCSD data. For PSB3, the accuracy of 2PA strengths increases in the following order: CC2 < CCSD < CC3, with the CC2 deviation from both higher-level methods exceeding 10% at 6-31+G* basis sets and 2% at aug-cc-pVDZ basis set. However, for PSB4, this trend is reversed and CC2-based 2PA strength is larger than the corresponding CCSD value. Among the DFT functionals investigated, CAM-B3LYP and BHandHLYP provide 2PA strengths in best compliance with reference data, however, with the error approaching an order of magnitude.
Collapse
Affiliation(s)
- Saruti Sirimatayanant
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
18
|
Palczewska G, Wojtkowski M, Palczewski K. From mouse to human: Accessing the biochemistry of vision in vivo by two-photon excitation. Prog Retin Eye Res 2023; 93:101170. [PMID: 36787681 PMCID: PMC10463242 DOI: 10.1016/j.preteyeres.2023.101170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The eye is an ideal organ for imaging by a multi-photon excitation approach, because ocular tissues such as the sclera, cornea, lens and neurosensory retina, are highly transparent to infrared (IR) light. The interface between the retina and the retinal pigment epithelium (RPE) is especially informative, because it reflects the health of the visual (retinoid) cycle and its changes in response to external stress, genetic manipulations, and drug treatments. Vitamin A-derived retinoids, like retinyl esters, are natural fluorophores that respond to multi-photon excitation with near IR light, bypassing the filter-like properties of the cornea, lens, and macular pigments. Also, during natural aging some retinoids form bisretinoids, like diretinoid-pyridiniumethanolamine (A2E), that are highly fluorescent. These bisretinoids appear to be elevated concurrently with aging. Vitamin A-derived retinoids and bisretinoidss are detected by two-photon ophthalmoscopy (2PO), using a new class of light sources with adjustable spatial, temporal, and spectral properties. Furthermore, the two-photon (2P) absorption of IR light by the visual pigments in rod and cone photoreceptors can initiate visual transduction by cis-trans isomerization of retinal, enabling parallel functional studies. Recently we overcame concerns about safety, data interpretation and complexity of the 2P-based instrumentation, the major roadblocks toward advancing this modality to the clinic. These imaging and retina-function assessment advancements have enabled us to conduct the first 2P studies with humans.
Collapse
Affiliation(s)
- Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Polgenix, Inc., Department of Medical Devices, Cleveland, OH, USA; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Maciej Wojtkowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; Department of Physiology & Biophysics, School of Medicine, And Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
19
|
Stability of retinol in liposomes as measured by fluorescence lifetime spectroscopy and FLIM. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
20
|
Towards a New Biomarker for Diabetic Retinopathy: Exploring RBP3 Structure and Retinoids Binding for Functional Imaging of Eyes In Vivo. Int J Mol Sci 2023; 24:ijms24054408. [PMID: 36901838 PMCID: PMC10002987 DOI: 10.3390/ijms24054408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe disease with a growing number of afflicted patients, which places a heavy burden on society, both socially and financially. While there are treatments available, they are not always effective and are usually administered when the disease is already at a developed stage with visible clinical manifestation. However, homeostasis at a molecular level is disrupted before visible signs of the disease are evident. Thus, there has been a constant search for effective biomarkers that could signal the onset of DR. There is evidence that early detection and prompt disease control are effective in preventing or slowing DR progression. Here, we review some of the molecular changes that occur before clinical manifestations are observable. As a possible new biomarker, we focus on retinol binding protein 3 (RBP3). We argue that it displays unique features that make it a very good biomarker for non-invasive, early-stage DR detection. Linking chemistry to biological function and focusing on new developments in eye imaging and two-photon technology, we describe a new potential diagnostic tool that would allow rapid and effective quantification of RBP3 in the retina. Moreover, this tool would also be useful in the future to monitor therapeutic effectiveness if levels of RBP3 are elevated by DR treatments.
Collapse
|
21
|
Samimi K, Pattnaik BR, Capowski EE, Saha K, Gamm DM, Skala MC. In situ autofluorescence lifetime assay of a photoreceptor stimulus response in mouse retina and human retinal organoids. BIOMEDICAL OPTICS EXPRESS 2022; 13:3476-3492. [PMID: 35781966 PMCID: PMC9208582 DOI: 10.1364/boe.455783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Photoreceptors are the key functional cell types responsible for the initiation of vision in the retina. Phototransduction involves isomerization and conversion of vitamin A compounds, known as retinoids, and their recycling through the visual cycle. We demonstrate a functional readout of the visual cycle in photoreceptors within stem cell-derived retinal organoids and mouse retinal explants based on spectral and lifetime changes in autofluorescence of the visual cycle retinoids after exposure to light or chemical stimuli. We also apply a simultaneous two- and three-photon excitation method that provides specific signals and increases contrast between these retinoids, allowing for reliable detection of their presence and conversion within photoreceptors. This multiphoton imaging technique resolves the slow dynamics of visual cycle reactions and can enable high-throughput functional screening of retinal tissues and organoid cultures with single-cell resolution.
Collapse
Affiliation(s)
- Kayvan Samimi
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Bikash R. Pattnaik
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Krishanu Saha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David M. Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI 53715, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
22
|
Walters S, Feeks JA, Huynh KT, Hunter JJ. Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of photoreceptors and retinal pigment epithelium in the living non-human primate eye. BIOMEDICAL OPTICS EXPRESS 2022; 13:389-407. [PMID: 35154879 PMCID: PMC8803039 DOI: 10.1364/boe.444550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 05/18/2023]
Abstract
Fluorescence lifetime imaging has demonstrated promise as a quantitative measure of cell health. Adaptive optics two-photon excited fluorescence (TPEF) ophthalmoscopy enables excitation of intrinsic retinal fluorophores involved in cellular metabolism and the visual cycle, providing in vivo visualization of retinal structure and function at the cellular scale. Combining these technologies revealed that macaque cones had a significantly longer mean TPEF lifetime than rods at 730 nm excitation. At 900 nm excitation, macaque photoreceptors had a significantly longer mean TPEF lifetime than the retinal pigment epithelium layer. AOFLIO can measure the fluorescence lifetime of intrinsic retinal fluorophores on a cellular scale, revealing differences in lifetime between retinal cell classes.
Collapse
Affiliation(s)
- Sarah Walters
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Currently with IDEX Health & Science, West Henrietta, NY 14586, USA
- These authors contributed equally
| | - James A. Feeks
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Currently with IDEX Health & Science, West Henrietta, NY 14586, USA
- These authors contributed equally
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Jennifer J. Hunter
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
23
|
Xue Y, Browne AW, Tang WC, Delgado J, McLelland BT, Nistor G, Chen JT, Chew K, Lee N, Keirstead HS, Seiler MJ. Retinal Organoids Long-Term Functional Characterization Using Two-Photon Fluorescence Lifetime and Hyperspectral Microscopy. Front Cell Neurosci 2021; 15:796903. [PMID: 34955757 PMCID: PMC8707055 DOI: 10.3389/fncel.2021.796903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022] Open
Abstract
Pluripotent stem cell-derived organoid technologies have opened avenues to preclinical basic science research, drug discovery, and transplantation therapy in organ systems. Stem cell-derived organoids follow a time course similar to species-specific organ gestation in vivo. However, heterogeneous tissue yields, and subjective tissue selection reduce the repeatability of organoid-based scientific experiments and clinical studies. To improve the quality control of organoids, we introduced a live imaging technique based on two-photon microscopy to non-invasively monitor and characterize retinal organoids’ (RtOgs’) long-term development. Fluorescence lifetime imaging microscopy (FLIM) was used to monitor the metabolic trajectory, and hyperspectral imaging was applied to characterize structural and molecular changes. We further validated the live imaging experimental results with endpoint biological tests, including quantitative polymerase chain reaction (qPCR), single-cell RNA sequencing, and immunohistochemistry. With FLIM results, we analyzed the free/bound nicotinamide adenine dinucleotide (f/b NADH) ratio of the imaged regions and found that there was a metabolic shift from glycolysis to oxidative phosphorylation. This shift occurred between the second and third months of differentiation. The total metabolic activity shifted slightly back toward glycolysis between the third and fourth months and stayed relatively stable between the fourth and sixth months. Consistency in organoid development among cell lines and production lots was examined. Molecular analysis showed that retinal progenitor genes were expressed in all groups between days 51 and 159. Photoreceptor gene expression emerged around the second month of differentiation, which corresponded to the shift in the f/b NADH ratio. RtOgs between 3 and 6 months of differentiation exhibited photoreceptor gene expression levels that were between the native human fetal and adult retina gene expression levels. The occurrence of cone opsin expression (OPN1 SW and OPN1 LW) indicated the maturation of photoreceptors in the fourth month of differentiation, which was consistent with the stabilized level of f/b NADH ratio starting from 4 months. Endpoint single-cell RNA and immunohistology data showed that the cellular compositions and lamination of RtOgs at different developmental stages followed those in vivo.
Collapse
Affiliation(s)
- Yuntian Xue
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | - Andrew W Browne
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, United States
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Jeffrey Delgado
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| | | | | | - Jacqueline T Chen
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Kaylee Chew
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Nicolas Lee
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | | | - Magdalene J Seiler
- Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
24
|
Schultz R, Schwanengel L, Klemm M, Meller D, Hammer M. Spectral fundus autofluorescence peak emission wavelength in ageing and AMD. Acta Ophthalmol 2021; 100:e1223-e1231. [PMID: 34850573 DOI: 10.1111/aos.15070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To investigate the spectral characteristics of fundus autofluorescence (FAF) in AMD patients and controls. METHODS Fundus autofluorescence spectral characteristics was described by the peak emission wavelength (PEW) of the spectra. Peak emission wavelength (PEW) was derived from the ratio of FAF recordings in two spectral channels at 500-560 nm and 560-720 nm by fluorescence lifetime imaging ophthalmoscopy. The ratio of FAF intensity in both channels was related to PEW by a calibration procedure. Peak emission wavelength (PEW) measurements were done in 44 young (mean age: 24.0 ± 3.8 years) and 18 elderly (mean age: 67.5 ± 10.2 years) healthy subjects as well as 63 patients with AMD (mean age: 74.0 ± 7.3 years) in each pixel of a 30° imaging field. The values were averaged over the central area, the inner and the outer ring of the ETDRS grid. RESULTS There was no significant difference between PEW in young and elderly controls. However, PEW was significantly shorter in AMD patients (ETDRS grid centre: 571 ± 26 nm versus 599 ± 17 nm for elderly controls, inner ring: 596 ± 17 nm versus 611 ± 11 nm, outer ring: 602 ± 16 nm versus 614 ± 11 nm). After a mean follow-up time of 50.8 ± 10.8 months, the PEW in the patients decreased significantly by 9 ± 19 nm in the inner ring of the grid. Patients, showing progression to atrophic AMD in the follow up, had significantly (p ≤ 0.018) shorter PEW at baseline than non-progressing patients. CONCLUSIONS Peak emission wavelength (PEW) is related to AMD pathology and might be a diagnostic marker in AMD. Possibly, a short PEW can predict progression to retinal and/or pigment epithelium atrophy.
Collapse
Affiliation(s)
- Rowena Schultz
- Department of Ophthalmology University Hospital Jena Jena Germany
| | | | - Matthias Klemm
- Institute of Biomedical Engineering and Informatics Technical Univ. Ilmenau Ilmenau Germany
| | - Daniel Meller
- Department of Ophthalmology University Hospital Jena Jena Germany
| | - Martin Hammer
- Department of Ophthalmology University Hospital Jena Jena Germany
- Center for Medical Optics and Photonics Univ. of Jena Jena Germany
| |
Collapse
|
25
|
Boguslawski J, Palczewska G, Tomczewski S, Milkiewicz J, Kasprzycki P, Stachowiak D, Komar K, Marzejon MJ, Sikorski BL, Hudzikowski A, Głuszek A, Łaszczych Z, Karnowski K, Soboń G, Palczewski K, Wojtkowski M. In vivo imaging of the human eye using a two-photon excited fluorescence scanning laser ophthalmoscope. J Clin Invest 2021; 132:154218. [PMID: 34847075 PMCID: PMC8759795 DOI: 10.1172/jci154218] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Noninvasive assessment of metabolic processes that sustain regeneration of human retinal visual pigments (visual cycle) is essential to improve ophthalmic diagnostics and to accelerate development of new treatments to counter retinal diseases. Fluorescent vitamin A derivatives, which are the chemical intermediates of these processes, are highly sensitive to UV light; thus, safe analyses of these processes in humans are currently beyond the reach of even the most modern ocular imaging modalities. METHODS We present a compact fluorescence scanning laser ophthalmoscope (TPEF-SLO) and spectrally resolved images of the human retina based on two-photon excitation (TPE) with near-infrared (IR) light. A custom Er:fiber laser with integrated pulse selection, along with intelligent post-processing of data, enables excitation with low laser power and precise measurement of weak signals. RESULTS We demonstrate spectrally resolved TPE fundus images of human subjects. Comparison of TPE data between human and mouse models of retinal diseases revealed similarity with mouse models that rapidly accumulate bisretinoid condensation products. Thus, visual cycle intermediates and toxic byproducts of this metabolic pathway can be measured and quantified by TPE imaging. CONCLUSION Our work establishes a TPE instrument and measurement method for noninvasive metabolic assessment of the human retina. This approach opens the possibility for monitoring eye diseases in the earliest stages before structural damage to the retina occurs. FUNDING NIH, Research to Prevent Blindness, Foundation for Polish Science, European Regional Development Fund, Polish National Agency for Academic Exchange and Polish Ministry of Science and Higher Education.
Collapse
Affiliation(s)
- Jakub Boguslawski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Palczewska
- Department of Medical Devices, Polgenix, Inc., Cleveland, United States of America
| | - Slawomir Tomczewski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Jadwiga Milkiewicz
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kasprzycki
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Stachowiak
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Komar
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin J Marzejon
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz L Sikorski
- Department of Ophthalmology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Arkadiusz Hudzikowski
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Aleksander Głuszek
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Zbigniew Łaszczych
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Karol Karnowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Soboń
- Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of California, Irvine, Irvine, United States of America
| | - Maciej Wojtkowski
- Physical Chemistry of Biological Systems, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
26
|
Forli A, Pisoni M, Printz Y, Yizhar O, Fellin T. Optogenetic strategies for high-efficiency all-optical interrogation using blue-light-sensitive opsins. eLife 2021; 10:63359. [PMID: 34032211 PMCID: PMC8177884 DOI: 10.7554/elife.63359] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
All-optical methods for imaging and manipulating brain networks with high spatial resolution are fundamental to study how neuronal ensembles drive behavior. Stimulation of neuronal ensembles using two-photon holographic techniques requires high-sensitivity actuators to avoid photodamage and heating. Moreover, two-photon-excitable opsins should be insensitive to light at wavelengths used for imaging. To achieve this goal, we developed a novel soma-targeted variant of the large-conductance blue-light-sensitive opsin CoChR (stCoChR). In the mouse cortex in vivo, we combined holographic two-photon stimulation of stCoChR with an amplified laser tuned at the opsin absorption peak and two-photon imaging of the red-shifted indicator jRCaMP1a. Compared to previously characterized blue-light-sensitive soma-targeted opsins in vivo, stCoChR allowed neuronal stimulation with more than 10-fold lower average power and no spectral crosstalk. The combination of stCoChR, tuned amplified laser stimulation, and red-shifted functional indicators promises to be a powerful tool for large-scale interrogation of neural networks in the intact brain.
Collapse
Affiliation(s)
- Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Matteo Pisoni
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Università di Genova, Genova, Italy
| | - Yoav Printz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Yizhar
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|