1
|
Liu C, Li D, Dang J, Shu J, Smit SJ, Wu Q, Lichman BR. Haplotype-resolved genome of Agastache rugosa (Huo Xiang) provides insight into monoterpenoid biosynthesis and gene cluster evolution. HORTICULTURE RESEARCH 2025; 12:uhaf034. [PMID: 40224328 PMCID: PMC11992331 DOI: 10.1093/hr/uhaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/25/2025] [Indexed: 04/15/2025]
Abstract
Monoterpenoids are small volatile molecules produced by many plants that have applications in consumer products and healthcare. Plants from the mint family (Lamiaceae) are prodigious producers of monoterpenoids, including a chemotype of Agastache rugosa (Huo Xiang), which produces pulegone and isomenthone. We sequenced, assembled and annotated a haplotype-resolved chromosome-scale genome assembly of A. rugosa with a monoterpene chemotype. This genome assembly revealed that pulegone biosynthesis genes are in a biosynthetic gene cluster, which shares a common origin with the pulegone gene cluster in Schizonepeta tenuifolia. Using phylogenetics and synteny analysis, we describe how the clusters in these two species diverged through inversions and duplications. Using Hi-C analysis, we identified tentative evidence of contact between the pulegone gene cluster and an array of pulegone reductases, with both regions also enriched in retrotransposons. This genome and its analysis add valuable and novel insights to the organization and evolution of terpenoid biosynthesis in Lamiaceae.
Collapse
Affiliation(s)
- Chanchan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - DiShuai Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingjie Dang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Shu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Samuel J Smit
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD, UK
| | - QiNan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Benjamin R Lichman
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD, UK
| |
Collapse
|
2
|
Kato-Noguchi H. Isolation and identification of allelochemicals and their activities and functions. JOURNAL OF PESTICIDE SCIENCE 2024; 49:1-14. [PMID: 38450087 PMCID: PMC10912975 DOI: 10.1584/jpestics.d23-052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 03/08/2024]
Abstract
Allelopathy is the interaction between donor plants and receiver plants through allelochemicals. According to a great number of publications, allelopathy may be involved in several ecological aspects such as the formation of monospecific stands and sparse understory vegetation for certain plant species. Allelopathy also contributes to the naturalization of invasive plant species in introduced ranges. Autotoxicity is a particular type of allelopathy involving certain compounds. Many medicinal plants have been reported to show relatively high allelopathic activity. We selected plant species that show high allelopathic activity and isolated allelochemicals through the bioassay-guided purification process. More than 100 allelochemicals, including novel compounds have been identified in some medicinal and invasive plants, plants forming monospecific stands, plants with sparse understory vegetation, and plants showing autotoxicity. The allelopathic activity of benzoxazinones and related compounds was also determined.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| |
Collapse
|
3
|
Kato-Noguchi H. Defensive Molecules Momilactones A and B: Function, Biosynthesis, Induction and Occurrence. Toxins (Basel) 2023; 15:toxins15040241. [PMID: 37104180 PMCID: PMC10140866 DOI: 10.3390/toxins15040241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Labdane-related diterpenoids, momilactones A and B were isolated and identified in rice husks in 1973 and later found in rice leaves, straws, roots, root exudate, other several Poaceae species and the moss species Calohypnum plumiforme. The functions of momilactones in rice are well documented. Momilactones in rice plants suppressed the growth of fungal pathogens, indicating the defense function against pathogen attacks. Rice plants also inhibited the growth of adjacent competitive plants through the root secretion of momilactones into their rhizosphere due to the potent growth-inhibitory activity of momilactones, indicating a function in allelopathy. Momilactone-deficient mutants of rice lost their tolerance to pathogens and allelopathic activity, which verifies the involvement of momilactones in both functions. Momilactones also showed pharmacological functions such as anti-leukemia and anti-diabetic activities. Momilactones are synthesized from geranylgeranyl diphosphate through cyclization steps, and the biosynthetic gene cluster is located on chromosome 4 of the rice genome. Pathogen attacks, biotic elicitors such as chitosan and cantharidin, and abiotic elicitors such as UV irradiation and CuCl2 elevated momilactone production through jasmonic acid-dependent and independent signaling pathways. Rice allelopathy was also elevated by jasmonic acid, UV irradiation and nutrient deficiency due to nutrient competition with neighboring plants with the increased production and secretion of momilactones. Rice allelopathic activity and the secretion of momilactones into the rice rhizosphere were also induced by either nearby Echinochloa crus-galli plants or their root exudates. Certain compounds from Echinochloa crus-galli may stimulate the production and secretion of momilactones. This article focuses on the functions, biosynthesis and induction of momilactones and their occurrence in plant species.
Collapse
|
4
|
Wang Z, Nelson DR, Zhang J, Wan X, Peters RJ. Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat Prod Rep 2023; 40:452-469. [PMID: 36472136 PMCID: PMC9945934 DOI: 10.1039/d2np00054g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2014-2022.Diterpenoid biosynthesis in plants builds on the necessary production of (E,E,E)-geranylgeranyl diphosphate (GGPP) for photosynthetic pigment production, with diterpenoid biosynthesis arising very early in land plant evolution, enabling stockpiling of the extensive arsenal of (di)terpenoid natural products currently observed in this kingdom. This review will build upon that previously published in the Annual Review of Plant Biology, with a stronger focus on enzyme structure-function relationships, as well as additional insights into the evolution of (di)terpenoid metabolism since generated.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.,Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Juan Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|
5
|
Bryson AE, Lanier ER, Lau KH, Hamilton JP, Vaillancourt B, Mathieu D, Yocca AE, Miller GP, Edger PP, Buell CR, Hamberger B. Uncovering a miltiradiene biosynthetic gene cluster in the Lamiaceae reveals a dynamic evolutionary trajectory. Nat Commun 2023; 14:343. [PMID: 36670101 PMCID: PMC9860074 DOI: 10.1038/s41467-023-35845-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
The spatial organization of genes within plant genomes can drive evolution of specialized metabolic pathways. Terpenoids are important specialized metabolites in plants with diverse adaptive functions that enable environmental interactions. Here, we report the genome assemblies of Prunella vulgaris, Plectranthus barbatus, and Leonotis leonurus. We investigate the origin and subsequent evolution of a diterpenoid biosynthetic gene cluster (BGC) together with other seven species within the Lamiaceae (mint) family. Based on core genes found in the BGCs of all species examined across the Lamiaceae, we predict a simplified version of this cluster evolved in an early Lamiaceae ancestor. The current composition of the extant BGCs highlights the dynamic nature of its evolution. We elucidate the terpene backbones generated by the Callicarpa americana BGC enzymes, including miltiradiene and the terpene (+)-kaurene, and show oxidization activities of BGC cytochrome P450s. Our work reveals the fluid nature of BGC assembly and the importance of genome structure in contributing to the origin of metabolites.
Collapse
Affiliation(s)
- Abigail E Bryson
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Emily R Lanier
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Kin H Lau
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Davis Mathieu
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Garret P Miller
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Björn Hamberger
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Valletta A, Iozia LM, Fattorini L, Leonelli F. Rice Phytoalexins: Half a Century of Amazing Discoveries; Part I: Distribution, Biosynthesis, Chemical Synthesis, and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:260. [PMID: 36678973 PMCID: PMC9862927 DOI: 10.3390/plants12020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Cultivated rice is a staple food for more than half of the world's population, providing approximately 20% of the world's food energy needs. A broad spectrum of pathogenic microorganisms causes rice diseases leading to huge yield losses worldwide. Wild and cultivated rice species are known to possess a wide variety of antimicrobial secondary metabolites, known as phytoalexins, which are part of their active defense mechanisms. These compounds are biosynthesized transiently by rice in response to pathogens and certain abiotic stresses. Rice phytoalexins have been intensively studied for over half a century, both for their biological role and their potential application in agronomic and pharmaceutical fields. In recent decades, the growing interest of the research community, combined with advances in chemical, biological, and biomolecular investigation methods, has led to a notable acceleration in the growth of knowledge on rice phytoalexins. This review provides an overview of the knowledge gained in recent decades on the diversity, distribution, biosynthesis, chemical synthesis, and bioactivity of rice phytoalexins, with particular attention to the most recent advances in this research field.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Maria Iozia
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
7
|
Wu D, Hu Y, Akashi S, Nojiri H, Guo L, Ye C, Zhu Q, Okada K, Fan L. Lateral transfers lead to the birth of momilactone biosynthetic gene clusters in grass. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1354-1367. [PMID: 35781905 PMCID: PMC9544640 DOI: 10.1111/tpj.15893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 05/31/2023]
Abstract
Momilactone A, an important plant labdane-related diterpenoid, functions as a phytoalexin against pathogens and an allelochemical against neighboring plants. The genes involved in the biosynthesis of momilactone A are found in clusters, i.e., momilactone A biosynthetic gene clusters (MABGCs), in the rice and barnyardgrass genomes. In addition, we know little about the origin and evolution of MABGCs. Here, we integrated results from comprehensive phylogeny and comparative genomic analyses of the core genes of MABGC-like clusters and MABGCs in 40 monocot plant genomes, providing convincing evidence for the birth and evolution of MABGCs in grass species. The MABGCs found in the PACMAD clade of the core grass lineage (including Panicoideae and Chloridoideae) originated from a MABGC-like cluster in Triticeae (BOP clade) via lateral gene transfer (LGT) and followed by recruitment of MAS1/2 and CYP76L1 genes. The MABGCs in Oryzoideae originated from PACMAD through another LGT event and lost CYP76L1 afterwards. The Oryza MABGC and another Oryza diterpenoid cluster c2BGC are two distinct clusters, with the latter originating from gene duplication and relocation within Oryzoideae. Further comparison of the expression patterns of the MABGC genes between rice and barnyardgrass in response to pathogen infection and allelopathy provides novel insights into the functional innovation of MABGCs in plants. Our results demonstrate LGT-mediated origination of MABGCs in grass and shed lights into the evolutionary innovation and optimization of plant biosynthetic pathways.
Collapse
Affiliation(s)
- Dongya Wu
- Hainan Institute of Zhejiang UniversityYonyou Industrial ParkSanya572025China
- Institute of Crop Science & Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Yiyu Hu
- Institute of Crop Science & Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Shota Akashi
- Biotechnology Research CenterUniversity of Tokyo113‐8657TokyoJapan
| | - Hideaki Nojiri
- Biotechnology Research CenterUniversity of Tokyo113‐8657TokyoJapan
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhou310006China
| | - Chu‐Yu Ye
- Institute of Crop Science & Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Qian‐Hao Zhu
- CSIRO Agriculture and Food, Black Mountain LaboratoriesCanberraACT2601Australia
| | - Kazunori Okada
- Biotechnology Research CenterUniversity of Tokyo113‐8657TokyoJapan
| | - Longjiang Fan
- Hainan Institute of Zhejiang UniversityYonyou Industrial ParkSanya572025China
- Institute of Crop Science & Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| |
Collapse
|
8
|
Sirirungruang S, Markel K, Shih PM. Plant-based engineering for production of high-valued natural products. Nat Prod Rep 2022; 39:1492-1509. [PMID: 35674317 DOI: 10.1039/d2np00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to March 2022Plants are a unique source of complex specialized metabolites, many of which play significant roles in human society. In many cases, however, the availability of these metabolites from naturally occurring sources fails to meet current demands. Thus, there is much interest in expanding the production capacity of target plant molecules. Traditionally, plant breeding, chemical synthesis, and microbial fermentation are considered the primary routes towards large scale production of natural products. Here, we explore the advances, challenges, and future of plant engineering as a complementary path. Although plants are an integral part of our food and agricultural systems and sustain an extensive array of chemical constituents, their complex genetics and physiology have prevented the optimal exploitation of plants as a production chassis. We highlight emerging engineering tools and scientific advances developed in recent years that have improved the prospects of using plants as a sustainable and scalable production platform. We also discuss technological limitations and overall economic outlook of plant-based production of natural products.
Collapse
Affiliation(s)
- Sasilada Sirirungruang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
9
|
Smit SJ, Lichman BR. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat Prod Rep 2022; 39:1465-1482. [PMID: 35441651 PMCID: PMC9298681 DOI: 10.1039/d2np00005a] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Covering: up to 2022Plants produce a wide range of structurally and biosynthetically diverse natural products to interact with their environment. These specialised metabolites typically evolve in limited taxonomic groups presumably in response to specific selective pressures. With the increasing availability of sequencing data, it has become apparent that in many cases the genes encoding biosynthetic enzymes for specialised metabolic pathways are not randomly distributed on the genome. Instead they are physically linked in structures such as arrays, pairs and clusters. The exact function of these clusters is debated. In this review we take a broad view of gene arrangement in plant specialised metabolism, examining types of structures and variation. We discuss the evolution of biosynthetic gene clusters in the wider context of metabolism, populations and epigenetics. Finally, we synthesise our observations to propose a new hypothesis for biosynthetic gene cluster formation in plants.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
10
|
Bharadwaj R, Kumar SR, Sharma A, Sathishkumar R. Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:697318. [PMID: 34490002 PMCID: PMC8418127 DOI: 10.3389/fpls.2021.697318] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 05/21/2023]
Abstract
Plants are a remarkable source of high-value specialized metabolites having significant physiological and ecological functions. Genes responsible for synthesizing specialized metabolites are often clustered together for a coordinated expression, which is commonly observed in bacteria and filamentous fungi. Similar to prokaryotic gene clustering, plants do have gene clusters encoding enzymes involved in the biosynthesis of specialized metabolites. More than 20 gene clusters involved in the biosynthesis of diverse metabolites have been identified across the plant kingdom. Recent studies demonstrate that gene clusters are evolved through gene duplications and neofunctionalization of primary metabolic pathway genes. Often, these clusters are tightly regulated at nucleosome level. The prevalence of gene clusters related to specialized metabolites offers an attractive possibility of an untapped source of highly useful biomolecules. Accordingly, the identification and functional characterization of novel biosynthetic pathways in plants need to be worked out. In this review, we summarize insights into the evolution of gene clusters and discuss the organization and importance of specific gene clusters in the biosynthesis of specialized metabolites. Regulatory mechanisms which operate in some of the important gene clusters have also been briefly described. Finally, we highlight the importance of gene clusters to develop future metabolic engineering or synthetic biology strategies for the heterologous production of novel metabolites.
Collapse
Affiliation(s)
- Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Sarma R. Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, Querétaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
11
|
Dong L, Almeida A, Pollier J, Khakimov B, Bassard JE, Miettinen K, Stærk D, Mehran R, Olsen CE, Motawia MS, Goossens A, Bak S. An independent evolutionary origin for insect deterrent cucurbitacins in Iberis amara. Mol Biol Evol 2021; 38:4659-4673. [PMID: 34264303 PMCID: PMC8557398 DOI: 10.1093/molbev/msab213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pieris rapae and Phyllotreta nemorum are Brassicaceae specialists, but do not feed on Iberis amara spp. that contain cucurbitacins. The cucurbitacins are highly oxygenated triterpenoid, occurring widespread in cucurbitaceous species and in a few other plant families. Using de-novo assembled transcriptomics from I. amara, gene co-expression analysis and comparative genomics, we unraveled the evolutionary origin of the insect deterrent cucurbitacins in I. amara. Phylogenetic analysis of five oxidosqualene cyclases and heterologous expression allowed us to identify the first committed enzyme in cucurbitacin biosynthesis in I. amara, cucurbitadienol synthase (IaCPQ). In addition, two species-specific cytochrome P450s (CYP708A16 and CYP708A15) were identified that catalyse the unique C16 and C22 hydroxylation of the cucurbitadienol backbone, enzymatic steps that have not been reported before. Furthermore, the draft genome assembly of I. amara showed that the IaCPQ was localized to the same scaffold together with CYP708A15 but spanning over 100 kb, this contrasts with the highly organized cucurbitacin gene cluster in the cucurbits. These results reveal that cucurbitacin biosynthesis has evolved convergently via different biosynthetic routes in different families rather than through divergence from an ancestral pathway. This study thus provides new insight into the mechanism of recurrent evolution and diversification of a plant defensive chemical.
Collapse
Affiliation(s)
- Lemeng Dong
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.,Plant Hormone Biology group, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Aldo Almeida
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jacob Pollier
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Jean-Etienne Bassard
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Karel Miettinen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dan Stærk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Rahimi Mehran
- Plant Hormone Biology group, Swammerdam Institute for Life Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Carl Erik Olsen
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Mohammed Saddik Motawia
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Søren Bak
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Liang J, Shen Q, Wang L, Liu J, Fu J, Zhao L, Xu M, Peters RJ, Wang Q. Rice contains a biosynthetic gene cluster associated with production of the casbane-type diterpenoid phytoalexin ent-10-oxodepressin. THE NEW PHYTOLOGIST 2021; 231:85-93. [PMID: 33892515 PMCID: PMC9044444 DOI: 10.1111/nph.17406] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/14/2021] [Indexed: 05/03/2023]
Abstract
Diterpenoids play important roles in rice microbial disease resistance as phytoalexins, as well as acting in allelopathy and abiotic stress responses. Recently, the casbane-type phytoalexin ent-10-oxodepressin was identified in rice, but its biosynthesis has not yet been elucidated. Here ent-10-oxodepressin biosynthesis was investigated via co-expression analysis and biochemical characterisation, with use of the CRISPR/Cas9 technology for genetic analysis. The results identified a biosynthetic gene cluster (BGC) on rice chromosome 7 (c7BGC), containing the relevant ent-casbene synthase (OsECBS), and four cytochrome P450 (CYP) genes from the CYP71Z subfamily. Three of these CYPs were shown to act on ent-casbene, with CYP71Z2 able to produce a keto group at carbon-5 (C5), while the closely related paralogues CYP71Z21 and CYP71Z22 both readily produce a keto group at C10. Together these C5 and C10 oxidases can elaborate ent-casbene to ent-10-oxodepressin (5,10-diketo-ent-casbene). OsECBS knockout lines no longer produce casbane-type diterpenoids and exhibit impaired resistance to the rice fungal blast pathogen Magnaporthe oryzae. Elucidation of ent-10-oxodepressin biosynthesis and the associated c7BGC provides not only a potential target for molecular breeding, but also, gives the intriguing parallels to the independently assembled BGCs for casbene-derived diterpenoids in the Euphorbiaceae, further insight into plant BGC evolution, as discussed here.
Collapse
Affiliation(s)
- Jin Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Le Zhao
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
13
|
Serra Serra N, Shanmuganathan R, Becker C. Allelopathy in rice: a story of momilactones, kin recognition, and weed management. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4022-4037. [PMID: 33647935 DOI: 10.1093/jxb/erab084] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
In the struggle to secure nutrient access and to outperform competitors, some plant species have evolved a biochemical arsenal with which they inhibit the growth or development of neighbouring plants. This process, known as allelopathy, exists in many of today's major crops, including rice. Rice synthesizes momilactones, diterpenoids that are released into the rhizosphere and inhibit the growth of numerous plant species. While the allelopathic potential of rice was recognized decades ago, many questions remain unresolved regarding the biosynthesis, exudation, and biological activity of momilactones. Here, we review current knowledge on momilactones, their role in allelopathy, and their potential to serve as a basis for sustainable weed management. We emphasize the gaps in our current understanding of when and how momilactones are produced and of how they act in plant cells, and outline what we consider the next steps in momilactone and rice allelopathy research.
Collapse
Affiliation(s)
- Núria Serra Serra
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Reshi Shanmuganathan
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- Genetics, LMU Biocenter, Ludwig-Maximilians University, D-82152 Martinsried, Germany
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- Genetics, LMU Biocenter, Ludwig-Maximilians University, D-82152 Martinsried, Germany
| |
Collapse
|
14
|
Kitaoka N, Zhang J, Oyagbenro RK, Brown B, Wu Y, Yang B, Li Z, Peters RJ. Interdependent evolution of biosynthetic gene clusters for momilactone production in rice. THE PLANT CELL 2021; 33:290-305. [PMID: 33793769 PMCID: PMC8136919 DOI: 10.1093/plcell/koaa023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
Plants can contain biosynthetic gene clusters (BGCs) that nominally resemble those found in microbes. However, while horizontal gene transmission is often observed in microbes, plants are limited to vertical gene transmission, implying that their BGCs may exhibit distinct inheritance patterns. Rice (Oryza sativa) contains two unlinked BGCs involved in diterpenoid phytoalexin metabolism, with one clearly required for momilactone biosynthesis, while the other is associated with production of phytocassanes. Here, in the process of elucidating momilactone biosynthesis, genetic evidence was found demonstrating a role for a cytochrome P450 (CYP) from the other "phytocassane" BGC. This CYP76M8 acts after the CYP99A2/3 from the "momilactone" BGC, producing a hemiacetal intermediate that is oxidized to the eponymous lactone by a short-chain alcohol dehydrogenase also from this BGC. Thus, the "momilactone" BGC is not only incomplete, but also fractured by the need for CYP76M8 to act in between steps catalyzed by enzymes from this BGC. Moreover, as supported by similar activity observed with orthologs from the momilactone-producing wild-rice species Oryza punctata, the presence of CYP76M8 in the other "phytocassane" BGC indicates interdependent evolution of these two BGCs, highlighting the distinct nature of BGC assembly in plants.
Collapse
Affiliation(s)
- Naoki Kitaoka
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Juan Zhang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
- State Key Laboratory of Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Richard K Oyagbenro
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Benjamin Brown
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Yisheng Wu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Bing Yang
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| | - Zhaohu Li
- State Key Laboratory of Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Authors for correspondence: ,
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
- Authors for correspondence: ,
| |
Collapse
|
15
|
Affiliation(s)
- Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada.
| |
Collapse
|
16
|
Feuermann M, Boutet E, Morgat A, Axelsen KB, Bansal P, Bolleman J, de Castro E, Coudert E, Gasteiger E, Géhant S, Lieberherr D, Lombardot T, Neto TB, Pedruzzi I, Poux S, Pozzato M, Redaschi N, Bridge A, on behalf of the UniProt Consortium. Diverse Taxonomies for Diverse Chemistries: Enhanced Representation of Natural Product Metabolism in UniProtKB. Metabolites 2021; 11:48. [PMID: 33445429 PMCID: PMC7827101 DOI: 10.3390/metabo11010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 01/28/2023] Open
Abstract
The UniProt Knowledgebase UniProtKB is a comprehensive, high-quality, and freely accessible resource of protein sequences and functional annotation that covers genomes and proteomes from tens of thousands of taxa, including a broad range of plants and microorganisms producing natural products of medical, nutritional, and agronomical interest. Here we describe work that enhances the utility of UniProtKB as a support for both the study of natural products and for their discovery. The foundation of this work is an improved representation of natural product metabolism in UniProtKB using Rhea, an expert-curated knowledgebase of biochemical reactions, that is built on the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Knowledge of natural products and precursors is captured in ChEBI, enzyme-catalyzed reactions in Rhea, and enzymes in UniProtKB/Swiss-Prot, thereby linking chemical structure data directly to protein knowledge. We provide a practical demonstration of how users can search UniProtKB for protein knowledge relevant to natural products through interactive or programmatic queries using metabolite names and synonyms, chemical identifiers, chemical classes, and chemical structures and show how to federate UniProtKB with other data and knowledge resources and tools using semantic web technologies such as RDF and SPARQL. All UniProtKB data are freely available for download in a broad range of formats for users to further mine or exploit as an annotation source, to enrich other natural product datasets and databases.
Collapse
Affiliation(s)
- Marc Feuermann
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Emmanuel Boutet
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Anne Morgat
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Kristian B. Axelsen
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Parit Bansal
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Jerven Bolleman
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Edouard de Castro
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Elisabeth Coudert
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Elisabeth Gasteiger
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Sébastien Géhant
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Damien Lieberherr
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Thierry Lombardot
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Teresa B. Neto
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Ivo Pedruzzi
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Sylvain Poux
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Monica Pozzato
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Nicole Redaschi
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - Alan Bridge
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
| | - on behalf of the UniProt Consortium
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; (A.M.); (K.B.A.); (P.B.); (J.B.); (E.d.C.); (E.C.); (E.G.); (S.G.); (D.L.); (T.L.); (T.B.N.); (I.P.); (S.P.); (M.P.); (N.R.); (A.B.)
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Protein Information Resource, University of Delaware, 15 Innovation Way, Suite 205, Newark, DE 19711, USA
- Protein Information Resource, Georgetown University Medical Center, 3300 Whitehaven Street NorthWest, Suite 1200, Washington, DC 20007, USA
| |
Collapse
|