1
|
Chong SW, Shen Y, Palomba S, Vigolo D. Nanofluidic Lab-On-A-Chip Systems for Biosensing in Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407478. [PMID: 39491535 DOI: 10.1002/smll.202407478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Biosensing plays a vital role in healthcare monitoring, disease detection, and treatment planning. In recent years, nanofluidic technology has been increasingly explored to be developed into lab-on-a-chip biosensing systems. Given now the possibility of fabricating geometrically defined nanometric channels that are commensurate with the size of many biomolecules, nanofluidic-based devices are likely to become a key technology for the analysis of various clinical biomarkers, including DNA (deoxyribonucleic acid) and proteins in liquid biopsies. This review summarizes the fundamentals and technological advances of nanofluidics from the purview of single-molecule analysis, detection of low-abundance molecules, and single-cell analysis at the subcellular level. The extreme confinement and dominant surface charge effects in nanochannels provide unique advantages to nanofluidic devices for the manipulation and transport of target biomarkers. When coupled to a microfluidic network to facilitate sample introduction, integrated micro-nanofluidic biosensing devices are proving to be more sensitive and specific in molecular analysis compared to conventional assays in many cases. Based on recent progress in nanofluidics and current clinical trends, the review concludes with a discussion of near-term challenges and future directions for the development of nanofluidic-based biosensing systems toward enabling a new wave of lab-on-a-chip technology for personalized and preventive medicine.
Collapse
Affiliation(s)
- Shin Wei Chong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yi Shen
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefano Palomba
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Daniele Vigolo
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Riehn R. Probing protein-DNA interactions and compaction in nanochannels. Curr Opin Struct Biol 2024; 88:102914. [PMID: 39163794 DOI: 10.1016/j.sbi.2024.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
DNA confined to nanofluidic channels with a cross-section from tens to hundreds of nm wide and hundreds of microns long stretches in an equilibrium process free of flow or end tethering. Because DNA is free to move along the channel axis, its extension is exquisitely sensitive to DNA-DNA interactions and the DNA persistence length, as well as the contour length. We discuss how this sensitivity has been used to probe DNA-protein interactions at physiological concentrations of both DNA and proteins.
Collapse
Affiliation(s)
- Robert Riehn
- Department of Physics, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Ceppi I, Dello Stritto MR, Mütze M, Braunshier S, Mengoli V, Reginato G, Võ HMP, Jimeno S, Acharya A, Roy M, Sanchez A, Halder S, Howard SM, Guérois R, Huertas P, Noordermeer SM, Seidel R, Cejka P. Mechanism of BRCA1-BARD1 function in DNA end resection and DNA protection. Nature 2024; 634:492-500. [PMID: 39261728 PMCID: PMC11464378 DOI: 10.1038/s41586-024-07909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
DNA double-strand break (DSB) repair by homologous recombination is initiated by DNA end resection, a process involving the controlled degradation of the 5'-terminated strands at DSB sites1,2. The breast cancer suppressor BRCA1-BARD1 not only promotes resection and homologous recombination, but it also protects DNA upon replication stress1,3-9. BRCA1-BARD1 counteracts the anti-resection and pro-non-homologous end-joining factor 53BP1, but whether it functions in resection directly has been unclear10-16. Using purified recombinant proteins, we show here that BRCA1-BARD1 directly promotes long-range DNA end resection pathways catalysed by the EXO1 or DNA2 nucleases. In the DNA2-dependent pathway, BRCA1-BARD1 stimulates DNA unwinding by the Werner or Bloom helicase. Together with MRE11-RAD50-NBS1 and phosphorylated CtIP, BRCA1-BARD1 forms the BRCA1-C complex17,18, which stimulates resection synergistically to an even greater extent. A mutation in phosphorylated CtIP (S327A), which disrupts its binding to the BRCT repeats of BRCA1 and hence the integrity of the BRCA1-C complex19-21, inhibits resection, showing that BRCA1-C is a functionally integrated ensemble. Whereas BRCA1-BARD1 stimulates resection in DSB repair, it paradoxically also protects replication forks from unscheduled degradation upon stress, which involves a homologous recombination-independent function of the recombinase RAD51 (refs. 4-6,8). We show that in the presence of RAD51, BRCA1-BARD1 instead inhibits DNA degradation. On the basis of our data, the presence and local concentration of RAD51 might determine the balance between the pronuclease and the DNA protection functions of BRCA1-BARD1 in various physiological contexts.
Collapse
Affiliation(s)
- Ilaria Ceppi
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Maria Rosaria Dello Stritto
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Martin Mütze
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Stefan Braunshier
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Valentina Mengoli
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Hồ Mỹ Phúc Võ
- Leiden University Medical Center, Leiden, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Sonia Jimeno
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Ananya Acharya
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Megha Roy
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Aurore Sanchez
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
- Institut Curie, Paris Sciences and Lettres University, Sorbonne Université, CNRS UMR 3244, Dynamics of Genetic Information, Paris, France
| | - Swagata Halder
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
- Biological Systems Engineering, Plaksha University, Mohali, India
| | - Sean Michael Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pablo Huertas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Leiden, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland.
| |
Collapse
|
4
|
Lokanathan Balaji S, De Bragança S, Balaguer-Pérez F, Northall S, Wilkinson OJ, Aicart-Ramos C, Seetaloo N, Sobott F, Moreno-Herrero F, Dillingham MS. DNA binding and bridging by human CtIP in the healthy and diseased states. Nucleic Acids Res 2024; 52:8303-8319. [PMID: 38922686 DOI: 10.1093/nar/gkae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The human DNA repair factor CtIP helps to initiate the resection of double-stranded DNA breaks for repair by homologous recombination, in part through its ability to bind and bridge DNA molecules. However, CtIP is a natively disordered protein that bears no apparent similarity to other DNA-binding proteins and so the structural basis for these activities remains unclear. In this work, we have used bulk DNA binding, single molecule tracking, and DNA bridging assays to study wild-type and variant CtIP proteins to better define the DNA binding domains and the effects of mutations associated with inherited human disease. Our work identifies a monomeric DNA-binding domain in the C-terminal region of CtIP. CtIP binds non-specifically to DNA and can diffuse over thousands of nucleotides. CtIP-mediated bridging of distant DNA segments is observed in single-molecule magnetic tweezers experiments. However, we show that binding alone is insufficient for DNA bridging, which also requires tetramerization via the N-terminal domain. Variant CtIP proteins associated with Seckel and Jawad syndromes display impaired DNA binding and bridging activities. The significance of these findings in the context of facilitating DNA break repair is discussed.
Collapse
Affiliation(s)
- Shreya Lokanathan Balaji
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Francisco Balaguer-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Sarah Northall
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Oliver John Wilkinson
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Neeleema Seetaloo
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
5
|
Möller C, Sharma R, Öz R, Reginato G, Cannavo E, Ceppi I, Sriram KK, Cejka P, Westerlund F. Xrs2/NBS1 promote end-bridging activity of the MRE11-RAD50 complex. Biochem Biophys Res Commun 2024; 695:149464. [PMID: 38217957 DOI: 10.1016/j.bbrc.2023.149464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
DNA double strand breaks (DSBs) can be detrimental to the cell and need to be efficiently repaired. A first step in DSB repair is to bring the free ends in close proximity to enable ligation by non-homologous end-joining (NHEJ), while the more precise, but less available, repair by homologous recombination (HR) requires close proximity of a sister chromatid. The human MRE11-RAD50-NBS1 (MRN) complex, Mre11-Rad50-Xrs2 (MRX) in yeast, is involved in both repair pathways. Here we use nanofluidic channels to study, on the single DNA molecule level, how MRN, MRX and their constituents interact with long DNA and promote DNA bridging. Nanofluidics is a suitable method to study reactions on DNA ends since no anchoring of the DNA end(s) is required. We demonstrate that NBS1 and Xrs2 play important, but differing, roles in the DNA tethering by MRN and MRX. NBS1 promotes DNA bridging by MRN consistent with tethering of a repair template. MRX shows a "synapsis-like" DNA end-bridging, stimulated by the Xrs2 subunit. Our results highlight the different ways MRN and MRX bridge DNA, and the results are in agreement with their key roles in HR and NHEJ, respectively, and contribute to the understanding of the roles of NBS1 and Xrs2 in DSB repair.
Collapse
Affiliation(s)
- Carl Möller
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Rajhans Sharma
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Robin Öz
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Giordano Reginato
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana, Bellinzona, CH 6500, Switzerland
| | - Elda Cannavo
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana, Bellinzona, CH 6500, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana, Bellinzona, CH 6500, Switzerland
| | - K K Sriram
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden
| | - Petr Cejka
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana, Bellinzona, CH 6500, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, SE, 41296, Sweden.
| |
Collapse
|
6
|
Kk S, Persson F, Fritzsche J, Beech JP, Tegenfeldt JO, Westerlund F. Fluorescence Microscopy of Nanochannel-Confined DNA. Methods Mol Biol 2024; 2694:175-202. [PMID: 37824005 DOI: 10.1007/978-1-0716-3377-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level, and the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments, and analyze the data.
Collapse
Affiliation(s)
- Sriram Kk
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Jason P Beech
- NanoLund and Department of Physics, Lund University, Lund, Sweden
| | | | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
7
|
De Bragança S, Dillingham MS, Moreno-Herrero F. Recent insights into eukaryotic double-strand DNA break repair unveiled by single-molecule methods. Trends Genet 2023; 39:924-940. [PMID: 37806853 DOI: 10.1016/j.tig.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Genome integrity and maintenance are essential for the viability of all organisms. A wide variety of DNA damage types have been described, but double-strand breaks (DSBs) stand out as one of the most toxic DNA lesions. Two major pathways account for the repair of DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). Both pathways involve complex DNA transactions catalyzed by proteins that sequentially or cooperatively work to repair the damage. Single-molecule methods allow visualization of these complex transactions and characterization of the protein:DNA intermediates of DNA repair, ultimately allowing a comprehensive breakdown of the mechanisms underlying each pathway. We review current understanding of the HR and NHEJ responses to DSBs in eukaryotic cells, with a particular emphasis on recent advances through the use of single-molecule techniques.
Collapse
Affiliation(s)
- Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain.
| |
Collapse
|
8
|
Deshpande RA, Marin-Gonzalez A, Barnes HK, Woolley PR, Ha T, Paull TT. Genome-wide analysis of DNA-PK-bound MRN cleavage products supports a sequential model of DSB repair pathway choice. Nat Commun 2023; 14:5759. [PMID: 37717054 PMCID: PMC10505227 DOI: 10.1038/s41467-023-41544-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex recognizes and processes DNA double-strand breaks for homologous recombination by performing short-range removal of 5' strands. Endonucleolytic processing by MRN requires a stably bound protein at the break site-a role we postulate is played by DNA-dependent protein kinase (DNA-PK) in mammals. Here we interrogate sites of MRN-dependent processing by identifying sites of CtIP association and by sequencing DNA-PK-bound DNA fragments that are products of MRN cleavage. These intermediates are generated most efficiently when DNA-PK is catalytically blocked, yielding products within 200 bp of the break site, whereas DNA-PK products in the absence of kinase inhibition show greater dispersal. Use of light-activated Cas9 to induce breaks facilitates temporal resolution of DNA-PK and Mre11 binding, showing that both complexes bind to DNA ends before release of DNA-PK-bound products. These results support a sequential model of double-strand break repair involving collaborative interactions between homologous and non-homologous repair complexes.
Collapse
Affiliation(s)
| | - Alberto Marin-Gonzalez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Hannah K Barnes
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Phillip R Woolley
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Tanya T Paull
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
9
|
Mao X, Wu J, Zhang Q, Zhang S, Chen X, Liu X, Wei M, Wan X, Qiu L, Zeng M, Lei X, Liu C, Han J. Requirement of WDR70 for POLE3-mediated DNA double-strand breaks repair. SCIENCE ADVANCES 2023; 9:eadh2358. [PMID: 37682991 PMCID: PMC10491287 DOI: 10.1126/sciadv.adh2358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
H2BK120ub1 triggers several prominent downstream histone modification pathways and changes in chromatin structure, therefore involving it into multiple critical cellular processes including DNA transcription and DNA damage repair. Although it has been reported that H2BK120ub1 is mediated by RNF20/40 and CRL4WDR70, less is known about the underlying regulation mechanism for H2BK120ub1 by WDR70. By using a series of biochemical and cell-based studies, we find that WDR70 promotes H2BK120ub1 by interacting with RNF20/40 complex, and deposition of H2BK120ub1 and H3K79me2 in POLE3 loci is highly sensitive to POLE3 transcription. Moreover, we demonstrate that POLE3 interacts CHRAC1 to promote DNA repair by regulation on the expression of homology-directed repair proteins and KU80 recruitment and identify CHRAC1 D121Y mutation in colorectal cancer, which leads to the defect in DNA repair due to attenuated the interaction with POLE3. These findings highlight a previously unknown role for WDR70 in maintenance of genomic stability and imply POLE3 and CHRAC1 as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Xiaobing Mao
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Wu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoshuang Chen
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Liu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Zeng
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University hospital, Sichuan University, Chengdu 610041, China
| | - Xue Lei
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cong Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Vertemara J, Tisi R. Dynamic Properties of the DNA Damage Response Mre11/Rad50 Complex. Int J Mol Sci 2023; 24:12377. [PMID: 37569756 PMCID: PMC10418313 DOI: 10.3390/ijms241512377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
DNA double-strand breaks (DSBs) are a significant threat to cell viability due to the induction of genome instability and the potential loss of genetic information. One of the key players for early DNA damage response is the conserved Mre11/Rad50 Nbs1/Xrs2 (MRN/X) complex, which is quickly recruited to the DNA's ruptured ends and is required for their tethering and their subsequent repair via different pathways. The MRN/X complex associates with several other proteins to exert its functions, but it also exploits sophisticated internal dynamic properties to orchestrate the several steps required to address the damage. In this review, we summarize the intrinsic molecular features of the MRN/X complex through biophysical, structural, and computational analyses in order to describe the conformational transitions that allow for this complex to accomplish its multiple functions.
Collapse
Affiliation(s)
| | - Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
| |
Collapse
|
11
|
Liu M, Pan H, Kaur P, Wang LJ, Jin M, Detwiler AC, Opresko PL, Tao YJ, Wang H, Riehn R. Assembly path dependence of telomeric DNA compaction by TRF1, TIN2, and SA1. Biophys J 2023; 122:1822-1832. [PMID: 37081787 PMCID: PMC10209029 DOI: 10.1016/j.bpj.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023] Open
Abstract
Telomeres, complexes of DNA and proteins, protect ends of linear chromosomes. In humans, the two shelterin proteins TRF1 and TIN2, along with cohesin subunit SA1, were proposed to mediate telomere cohesion. Although the ability of the TRF1-TIN2 and TRF1-SA1 systems to compact telomeric DNA by DNA-DNA bridging has been reported, the function of the full ternary TRF1-TIN2-SA1 system has not been explored in detail. Here, we quantify the compaction of nanochannel-stretched DNA by the ternary system, as well as its constituents, and obtain estimates of the relative impact of its constituents and their interactions. We find that TRF1, TIN2, and SA1 work synergistically to cause a compaction of the DNA substrate, and that maximal compaction occurs if all three proteins are present. By altering the sequence with which DNA substrates are exposed to proteins, we establish that compaction by TRF1 and TIN2 can proceed through binding of TRF1 to DNA, followed by compaction as TIN2 recognizes the previously bound TRF1. We further establish that SA1 alone can also lead to a compaction, and that compaction in a combined system of all three proteins can be understood as an additive effect of TRF1-TIN2 and SA1-based compaction. Atomic force microscopy of intermolecular aggregation confirms that a combination of TRF1, TIN2, and SA1 together drive strong intermolecular aggregation as it would be required during chromosome cohesion.
Collapse
Affiliation(s)
- Ming Liu
- Department of Physics, NC State University, Raleigh, North Carolina
| | - Hai Pan
- Department of Physics, NC State University, Raleigh, North Carolina
| | - Parminder Kaur
- Department of Physics, NC State University, Raleigh, North Carolina
| | - Lucia J Wang
- Department of Physics, NC State University, Raleigh, North Carolina
| | - Miao Jin
- Department of BioSciences, Rice University, Houston, Texas
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas
| | - Hong Wang
- Department of Physics, NC State University, Raleigh, North Carolina
| | - Robert Riehn
- Department of Physics, NC State University, Raleigh, North Carolina.
| |
Collapse
|
12
|
Bai W, Zhao B, Gu M, Dong J. Alternative end-joining in BCR gene rearrangements and translocations. Acta Biochim Biophys Sin (Shanghai) 2022; 54:782-795. [PMID: 35593472 PMCID: PMC9828324 DOI: 10.3724/abbs.2022051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Programmed DNA double-strand breaks (DSBs) occur during antigen receptor gene recombination, namely V(D)J recombination in developing B lymphocytes and class switch recombination (CSR) in mature B cells. Repair of these DSBs by classical end-joining (c-NHEJ) enables the generation of diverse BCR repertoires for efficient humoral immunity. Deletion of or mutation in c-NHEJ genes in mice and humans confer various degrees of primary immune deficiency and predisposition to lymphoid malignancies that often harbor oncogenic chromosomal translocations. In the absence of c-NHEJ, alternative end-joining (A-EJ) catalyzes robust CSR and to a much lesser extent, V(D)J recombination, but the mechanisms of A-EJ are only poorly defined. In this review, we introduce recent advances in the understanding of A-EJ in the context of V(D)J recombination and CSR with emphases on DSB end processing, DNA polymerases and ligases, and discuss the implications of A-EJ to lymphoid development and chromosomal translocations.
Collapse
Affiliation(s)
- Wanyu Bai
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Bo Zhao
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Mingyu Gu
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China
| | - Junchao Dong
- Department of ImmunologyZhongshan School of MedicineSun Yat-sen UniversityGuangzhou510080China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University)Ministry of EducationGuangzhou510080China,Correspondence address. Tel: +86-20-87330571; E-mail:
| |
Collapse
|
13
|
Mojumdar A, Adam N, Cobb JA. Nej1 interacts with Sae2 at DNA double-stranded breaks to inhibit DNA resection. J Biol Chem 2022; 298:101937. [PMID: 35429499 PMCID: PMC9117546 DOI: 10.1016/j.jbc.2022.101937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The two major pathways of DNA double-strand break repair, nonhomologous end-joining and homologous recombination, are highly conserved from yeast to mammals. The regulation of 5′-DNA resection controls repair pathway choice and influences repair outcomes. Nej1 was first identified as a canonical NHEJ factor involved in stimulating the ligation of broken DNA ends, and more recently, it was shown to participate in DNA end-bridging and in the inhibition of 5′-resection mediated by the nuclease/helicase complex Dna2–Sgs1. Here, we show that Nej1 interacts with Sae2 to impact DSB repair in three ways. First, we show that Nej1 inhibits interaction of Sae2 with the Mre11–Rad50–Xrs2 complex and Sae2 localization to DSBs. Second, we found that Nej1 inhibits Sae2-dependent recruitment of Dna2 independently of Sgs1. Third, we determined that NEJ1 and SAE2 showed an epistatic relationship for end-bridging, an event that restrains broken DNA ends and reduces the frequency of genomic deletions from developing at the break site. Finally, we demonstrate that deletion of NEJ1 suppressed the synthetic lethality of sae2Δ sgs1Δ mutants, and that triple mutant viability was dependent on Dna2 nuclease activity. Taken together, these findings provide mechanistic insight to how Nej1 functionality inhibits the initiation of DNA resection, a role that is distinct from its involvement in end-joining repair at DSBs.
Collapse
Affiliation(s)
- Aditya Mojumdar
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| | - Nancy Adam
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| | - Jennifer A Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine; University of Calgary; 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
14
|
Gao J, Ye C, Cheng J, Jiang L, Yuan X, Lian J. Enhancing Homologous Recombination Efficiency in Pichia pastoris for Multiplex Genome Integration Using Short Homology Arms. ACS Synth Biol 2022; 11:547-553. [PMID: 35061355 DOI: 10.1021/acssynbio.1c00366] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is a growing interest in establishing the methylotrophic yeast Pichia pastoris as microbial cell factories for producing fuels, chemicals, and natural products, particularly with methanol as the feedstock. Although CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) based genome editing technology has been established for the integration of multigene biosynthetic pathways, long (500-1000 bp) homology arms are generally required, probably due to low homologous recombination (HR) efficiency in P. pastoris. To achieve efficient genome integration of heterologous genes with short homology arms, we aimed to enhance HR efficiency by introducing the recombination machinery from Saccharomyces cerevisiae. First, we overexpressed HR related genes, including RAD52, RAD59, MRE11, and SAE2, and evaluated their effects on genome integration efficiency. Then, we constructed HR efficiency enhanced P. pastoris, which enabled single-, two-, and three-loci integration of heterologous gene expression cassettes with ∼40 bp homology arms with efficiencies as high as 100%, ∼98%, and ∼81%, respectively. Finally, we demonstrated the construction of β-carotene producing strain and the optimization of betaxanthin producing strain in a single step. The HR efficiency enhanced P. pastoris strains can be used for the construction of robust cell factories, and our machinery engineering strategy can be employed for the modification of other nonconventional yeasts.
Collapse
Affiliation(s)
- Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Jintao Cheng
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinghao Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Fernandez-Cuesta I, Llobera A, Ramos-Payán M. Optofluidic systems enabling detection in real samples: A review. Anal Chim Acta 2022; 1192:339307. [DOI: 10.1016/j.aca.2021.339307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
|
16
|
Sun X, Bai J, Xu J, Xi X, Gu M, Zhu C, Xue H, Chen C, Dong J. Multiple DSB Resection Activities Redundantly Promote Alternative End Joining-Mediated Class Switch Recombination. Front Cell Dev Biol 2021; 9:767624. [PMID: 34926456 PMCID: PMC8671047 DOI: 10.3389/fcell.2021.767624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/13/2023] Open
Abstract
Alternative end joining (A-EJ) catalyzes substantial level of antibody class switch recombination (CSR) in B cells deficient for classical non-homologous end joining, featuring increased switch (S) region DSB resection and junctional microhomology (MH). While resection has been suggested to initiate A-EJ in model DSB repair systems using engineered endonucleases, the contribution of resection factors to A-EJ-mediated CSR remains unclear. In this study, we systematically dissected the requirement for individual DSB resection factors in A-EJ-mediated class switching with a cell-based assay system and high-throughput sequencing. We show that while CtIP and Mre11 both are mildly required for CSR in WT cells, they play more critical roles in mediating A-EJ CSR, which depend on the exonuclease activity of Mre11. While DNA2 and the helicase/HRDC domain of BLM are required for A-EJ by mediating long S region DSB resection, in contrast, Exo1's resection-related function does not play any obvious roles for class switching in either c-NHEJ or A-EJ cells, or mediated in an AID-independent manner by joining of Cas9 breaks. Furthermore, ATM and its kinase activity functions at least in part independent of CtIP/Mre11 to mediate A-EJ switching in Lig4-deficient cells. In stark contrast to Lig4 deficiency, 53BP1-deficient cells do not depend on ATM/Mre11/CtIP for residual joining. We discuss the roles for each resection factor in A-EJ-mediated CSR and suggest that the extent of requirements for resection is context dependent.
Collapse
Affiliation(s)
- Xikui Sun
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jingning Bai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiejie Xu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiaoli Xi
- Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyu Gu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Chengming Zhu
- Research Center of the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongman Xue
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
17
|
van de Kamp G, Heemskerk T, Kanaar R, Essers J. DNA Double Strand Break Repair Pathways in Response to Different Types of Ionizing Radiation. Front Genet 2021; 12:738230. [PMID: 34659358 PMCID: PMC8514742 DOI: 10.3389/fgene.2021.738230] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 01/12/2023] Open
Abstract
The superior dose distribution of particle radiation compared to photon radiation makes it a promising therapy for the treatment of tumors. However, the cellular responses to particle therapy and especially the DNA damage response (DDR) is not well characterized. Compared to photons, particles are thought to induce more closely spaced DNA lesions instead of isolated lesions. How this different spatial configuration of the DNA damage directs DNA repair pathway usage, is subject of current investigations. In this review, we describe recent insights into induction of DNA damage by particle radiation and how this shapes DNA end processing and subsequent DNA repair mechanisms. Additionally, we give an overview of promising DDR targets to improve particle therapy.
Collapse
Affiliation(s)
- Gerarda van de Kamp
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tim Heemskerk
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
18
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
19
|
ATM controls the extent of DNA end resection by eliciting sequential posttranslational modifications of CtIP. Proc Natl Acad Sci U S A 2021; 118:2022600118. [PMID: 33723063 DOI: 10.1073/pnas.2022600118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA end resection is a critical step in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR). However, the mechanisms governing the extent of resection at DSB sites undergoing homology-directed repair remain unclear. Here, we show that, upon DSB induction, the key resection factor CtIP is modified by the ubiquitin-like protein SUMO at lysine 578 in a PIAS4-dependent manner. CtIP SUMOylation occurs on damaged chromatin and requires prior hyperphosphorylation by the ATM protein kinase. SUMO-modified hyperphosphorylated CtIP is targeted by the SUMO-dependent E3 ubiquitin ligase RNF4 for polyubiquitination and subsequent degradation. Consequently, disruption of CtIP SUMOylation results in aberrant accumulation of CtIP at DSBs, which, in turn, causes uncontrolled excessive resection, defective HR, and increased cellular sensitivity to DSB-inducing agents. These findings reveal a previously unidentified regulatory mechanism that regulates CtIP activity at DSBs and thus the extent of end resection via ATM-dependent sequential posttranslational modification of CtIP.
Collapse
|
20
|
Morton CR, Rzechorzek NJ, Maman JD, Kuramochi M, Sekiguchi H, Rambo R, Sasaki YC, Davies OR, Pellegrini L. Structural basis for the coiled-coil architecture of human CtIP. Open Biol 2021; 11:210060. [PMID: 34129781 PMCID: PMC8205527 DOI: 10.1098/rsob.210060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The DNA repair factor CtIP has a critical function in double-strand break (DSB) repair by homologous recombination, promoting the assembly of the repair apparatus at DNA ends and participating in DNA-end resection. However, the molecular mechanisms of CtIP function in DSB repair remain unclear. Here, we present an atomic model for the three-dimensional architecture of human CtIP, derived from a multi-disciplinary approach that includes X-ray crystallography, small-angle X-ray scattering (SAXS) and diffracted X-ray tracking (DXT). Our data show that CtIP adopts an extended dimer-of-dimers structure, in agreement with a role in bridging distant sites on chromosomal DNA during the recombinational repair. The zinc-binding motif in the CtIP N-terminus alters dynamically the coiled-coil structure, with functional implications for the long-range interactions of CtIP with DNA. Our results provide a structural basis for the three-dimensional arrangement of chains in the CtIP tetramer, a key aspect of CtIP function in DNA DSB repair.
Collapse
Affiliation(s)
- C R Morton
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - N J Rzechorzek
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - J D Maman
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - M Kuramochi
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Kashiwa, Japan
| | - H Sekiguchi
- Centre for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - R Rambo
- Diamond Light Source, Didcot, Oxfordshire OX11 0DE, UK
| | - Y C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Kashiwa, Japan.,Centre for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - O R Davies
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - L Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
21
|
Jiang K, Humbert N, K K S, Rouzina I, Mely Y, Westerlund F. The HIV-1 nucleocapsid chaperone protein forms locally compacted globules on long double-stranded DNA. Nucleic Acids Res 2021; 49:4550-4563. [PMID: 33872352 PMCID: PMC8096146 DOI: 10.1093/nar/gkab236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 01/14/2023] Open
Abstract
The nucleocapsid (NC) protein plays key roles in Human Immunodeficiency Virus 1 (HIV-1) replication, notably by condensing and protecting the viral RNA genome and by chaperoning its reverse transcription into double-stranded DNA (dsDNA). Recent findings suggest that integration of viral dsDNA into the host genome, and hence productive infection, is linked to a small subpopulation of viral complexes where reverse transcription was completed within the intact capsid. Therefore, the synthesized dsDNA has to be tightly compacted, most likely by NC, to prevent breaking of the capsid in these complexes. To investigate NC’s ability to compact viral dsDNA, we here characterize the compaction of single dsDNA molecules under unsaturated NC binding conditions using nanofluidic channels. Compaction is shown to result from accumulation of NC at one or few compaction sites, which leads to small dsDNA condensates. NC preferentially initiates compaction at flexible regions along the dsDNA, such as AT-rich regions and DNA ends. Upon further NC binding, these condensates develop into a globular state containing the whole dsDNA molecule. These findings support NC’s role in viral dsDNA compaction within the mature HIV-1 capsid and suggest a possible scenario for the gradual dsDNA decondensation upon capsid uncoating and NC loss.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 412 96, Sweden
| | - Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch F 67401, France
| | - Sriram K K
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 412 96, Sweden
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, The Ohio State University, Center for Retroviral Research, and Center for RNA Biology, Columbus, OH 43210, USA
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch F 67401, France
| | - Fredrik Westerlund
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE 412 96, Sweden
| |
Collapse
|