1
|
Mujahid, Waqas A, Almazni IA, Zaman G, Alam Q, Eid TM, Alanazi MA, Hamadi A, Afsar T, Razak S, Umair M. A Novel Loss of Function Variant in HCN1 Gene Underlies Early Infantile Epileptic Encephalopathy 24 [EIEE24]. Mol Syndromol 2025; 16:152-164. [PMID: 40176840 PMCID: PMC11961093 DOI: 10.1159/000541117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 01/05/2025] Open
Abstract
Background Early infantile epileptic encephalopathy (EIEE) is a rare neurological condition characterized by frequent seizures in the early stages of life, resulting in severely impaired cognitive and motor development. Although the specific causes of EIEE remain unknown, one of the primary causes is gene pathogenicity (even in the absence of consanguinity). Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) are essential for proper brain function. They are regulated by multiple genes, and mutations in these genes induce channel malfunction, which can result in various severe conditions, including EIEE. Herein, we have reported a patient presenting hallmarks of EIEE. Methods The patient underwent clinical, radiographic, and genetic analysis. A thorough clinical examination and molecular study were conducted utilizing whole exome sequencing and Sanger sequencing. Results Whole exome sequencing of the proband revealed a novel de novo nonsynonymous/nonsense variant (c.1468A>T; (p.Lys490Ter) in exon 6 of the HCN1 gene. This variant may cause channel dysfunction via nonsynonymous/nonsense-mediated decay or aberrant protein, which may be associated with EIEE phenotypes. Conclusions This evidence backs the idea that HCN1 has a vital role in brain development and lose of function can cause a range of debilitating conditions. Still, the functional characterization study of the HCN1 variants will be the fundamental tool for a better understanding of EIEE in the near future.
Collapse
Affiliation(s)
- Mujahid
- Center of Animal Nutrition, Directorate General of Livestock & Dairy Development, Peshawar, Pakistan
| | - Ahmed Waqas
- Department of Zoology, Emerson University, Multan, Pakistan
| | - Ibrahim A. Almazni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Gohar Zaman
- Department of Computer Science, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Qamre Alam
- Molecular Genomics and Precision Department, ExpressMed Diagnostics and Research, Zinj, Bahrain
| | - Thamir M. Eid
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad A. Alanazi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdullah Hamadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Tayyaba Afsar
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Umair
- King Salman Center for Disability Research, Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| |
Collapse
|
2
|
Wojciechowski M, Jokiel J, Kuss H, Bermúdez M, Jose J. Combination of Autodisplay and Dynamic Pharmacophore Modeling Reveals New Insights into Cyclic Nucleotide Binding in Hyperpolarization-Activated and Cyclic Nucleotide-Gated Ion Channel 4 (HCN4). ACS Pharmacol Transl Sci 2024; 7:4010-4020. [PMID: 39698292 PMCID: PMC11651207 DOI: 10.1021/acsptsci.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 12/20/2024]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play a critical role in regulating neuronal and cardiac rhythmicity, with their function being modulated by cyclic nucleotide binding. Dysfunction of HCN ion channels leads to the genesis of several diseases such as arrhythmia, bradycardia, or epilepsy. This study employs a multidisciplinary approach integrating mutagenesis, ligand binding assays, and molecular dynamics (MD) simulations combined with dynamic pharmacophore studies to investigate the impact of single residue mutations within the cyclic nucleotide-binding domain (CNBD) of HCN4 channels. Utilizing an autodisplay-based ligand binding assay, surface-displayed HCN4 CNBD mutants were evaluated for their interaction with 8-Fluo-cAMP, providing insights into the ligand binding properties. While some known mutational effects could be confirmed (R669, T670), we identified L652 to be crucial for successful ligand binding. Surprisingly, C662, located in the center of the binding pocket, was discovered to play a negligible role in cAMP-binding. Both E660 and R710 were shown to substantially affect 8-Fluo-cAMP-binding, uncovering the direct ligand binding capability of the R710A mutant for the first time. Furthermore, MD simulations coupled with dynamic pharmacophore analysis offered detailed insights into dynamic ligand-protein interactions, elucidating the structural basis of ligand binding and modulation induced by single residue mutations. Here, a novel bypass mechanism of R713 that interacts with cAMP in the absence of R710 was demonstrated. These findings unveil new perspectives on cyclic nucleotide binding in HCN4 channels, providing a foundation for future studies of pathogenic HCN4 ion channel mutations.
Collapse
Affiliation(s)
- Magdalena
N. Wojciechowski
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Johannes Jokiel
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Hanna Kuss
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Marcel Bermúdez
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Joachim Jose
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| |
Collapse
|
3
|
Lin JL, Chang Y, Tewari D, Cowgill J, Chanda B. Mapping the contribution of the C-linker domain to gating polarity in CNBD channels. Biophys J 2024; 123:2176-2184. [PMID: 38678368 PMCID: PMC11309966 DOI: 10.1016/j.bpj.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Ion channels of the cyclic nucleotide-binding domain (CNBD) family play a crucial role in the regulation of key biological processes, such as photoreception and pacemaking activity in the heart. These channels exhibit high sequence and structural similarity but differ greatly in their functional responses to membrane potential. The CNBD family includes hyperpolarization-activated ion channels and depolarization-activated ether-à-go-go channels. Structural and functional studies show that the differences in the coupling interface between these two subfamilies' voltage-sensing domain and pore domain may underlie their differential response to membrane polarity. However, other structural components may also contribute to defining the polarity differences in activation. Here, we focus on the role of the C-terminal domain, which interacts with elements in both the pore and voltage-sensing domains. By generating a series of chimeras involving the C-terminal domain derived from distant members of the CNBD family, we find that the nature of the C-termini profoundly influences the gating polarity of these ion channels. Scanning mutagenesis of the C-linker region, a helix-turn-helix motif connecting the pore helix to the CNBD, reveals that residues at the intersubunit interface between the C-linkers are crucial for hyperpolarization-dependent activation. These findings highlight the unique and unexpected role of the intersubunit interface of the C-linker region in regulating the gating polarity of voltage-gated ion channels.
Collapse
Affiliation(s)
- Jenna L Lin
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri; Graduate Program in Biochemistry, Biophysics, & Structural Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Debanjan Tewari
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
4
|
Burtscher V, Mount J, Huang J, Cowgill J, Chang Y, Bickel K, Chen J, Yuan P, Chanda B. Structural basis for hyperpolarization-dependent opening of human HCN1 channel. Nat Commun 2024; 15:5216. [PMID: 38890331 PMCID: PMC11189445 DOI: 10.1038/s41467-024-49599-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Hyperpolarization and cyclic nucleotide (HCN) activated ion channels are critical for the automaticity of action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN and related plant ion channels activate upon membrane hyperpolarization. Although functional studies have identified residues in the interface between the voltage-sensing and pore domain as crucial for inverted electromechanical coupling, the structural mechanisms for this unusual voltage-dependence remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 corresponding to Closed, Open, and a putative Intermediate state. Our structures reveal that the downward motion of the gating charges past the charge transfer center is accompanied by concomitant unwinding of the inner end of the S4 and S5 helices, disrupting the tight gating interface observed in the Closed state structure. This helix-coil transition at the intracellular gating interface accompanies a concerted iris-like dilation of the pore helices and underlies the reversed voltage dependence of HCN channels.
Collapse
Affiliation(s)
- Verena Burtscher
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jonathan Mount
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Huang
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kathleen Bickel
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
5
|
Page DA, Ruben PC. Cannabidiol potentiates hyperpolarization-activated cyclic nucleotide-gated (HCN4) channels. J Gen Physiol 2024; 156:e202313505. [PMID: 38652080 PMCID: PMC11040500 DOI: 10.1085/jgp.202313505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Cannabidiol (CBD), the main non-psychotropic phytocannabinoid produced by the Cannabis sativa plant, blocks a variety of cardiac ion channels. We aimed to identify whether CBD regulated the cardiac pacemaker channel or the hyperpolarization-activated cyclic nucleotide-gated channel (HCN4). HCN4 channels are important for the generation of the action potential in the sinoatrial node of the heart and increased heart rate in response to β-adrenergic stimulation. HCN4 channels were expressed in HEK 293T cells, and the effect of CBD application was examined using a whole-cell patch clamp. We found that CBD depolarized the V1/2 of activation in holo-HCN4 channels, with an EC50 of 1.6 µM, without changing the current density. CBD also sped activation kinetics by approximately threefold. CBD potentiation of HCN4 channels occurred via binding to the closed state of the channel. We found that CBD's mechanism of action was distinct from cAMP, as CBD also potentiated apo-HCN4 channels. The addition of an exogenous PIP2 analog did not alter the ability of CBD to potentiate HCN4 channels, suggesting that CBD also acts using a unique mechanism from the known HCN4 potentiator PIP2. Lastly, to gain insight into CBD's mechanism of action, computational modeling and targeted mutagenesis were used to predict that CBD binds to a lipid-binding pocket at the C-terminus of the voltage sensor. CBD represents the first FDA-approved drug to potentiate HCN4 channels, and our findings suggest a novel starting point for drug development targeting HCN4 channels.
Collapse
Affiliation(s)
- Dana A. Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
6
|
Wu X, Cunningham KP, Bruening-Wright A, Pandey S, Larsson HP. Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism. Int J Mol Sci 2024; 25:4309. [PMID: 38673895 PMCID: PMC11050684 DOI: 10.3390/ijms25084309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Voltage-gated potassium (Kv) channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels share similar structures but have opposite gating polarity. Kv channels have a strong coupling (>109) between the voltage sensor (S4) and the activation gate: when S4s are activated, the gate is open to >80% but, when S4s are deactivated, the gate is open <10-9 of the time. Using noise analysis, we show that the coupling between S4 and the gate is <200 in HCN channels. In addition, using voltage clamp fluorometry, locking the gate open in a Kv channel drastically altered the energetics of S4 movement. In contrast, locking the gate open or decreasing the coupling between S4 and the gate in HCN channels had only minor effects on the energetics of S4 movement, consistent with a weak coupling between S4 and the gate. We propose that this loose coupling is a prerequisite for the reversed voltage gating in HCN channels.
Collapse
Affiliation(s)
- Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (X.W.); (K.P.C.)
| | - Kevin P. Cunningham
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (X.W.); (K.P.C.)
- School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | | | - Shilpi Pandey
- Oregan National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA;
| | - H. Peter Larsson
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (X.W.); (K.P.C.)
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
7
|
Burtscher V, Mount J, Cowgill J, Chang Y, Bickel K, Yuan P, Chanda B. Structural Basis for Hyperpolarization-dependent Opening of the Human HCN1 Channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553623. [PMID: 37645882 PMCID: PMC10462129 DOI: 10.1101/2023.08.17.553623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Hyperpolarization and cyclic-nucleotide (HCN) activated ion channels play a critical role in generating self-propagating action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN channels activate upon membrane hyperpolarization, but the structural mechanisms underlying this gating behavior remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 in Closed, Intermediate, and Open states. Our structures reveal that the inward motion of two gating charges past the charge transfer center (CTC) and concomitant tilting of the S5 helix drives the opening of the central pore. In the intermediate state structure, a single gating charge is positioned below the CTC and the pore appears closed, whereas in the open state structure, both charges move past CTC and the pore is fully open. Remarkably, the downward motion of the voltage sensor is accompanied by progressive unwinding of the inner end of S4 and S5 helices disrupting the tight gating interface that stabilizes the Closed state structure. This "melting" transition at the intracellular gating interface leads to a concerted iris-like displacement of S5 and S6 helices, resulting in pore opening. These findings reveal key structural features that are likely to underlie reversed voltage-dependence of HCN channels.
Collapse
Affiliation(s)
- Verena Burtscher
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Mount
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cowgill
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yongchang Chang
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kathleen Bickel
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Baron Chanda
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
8
|
Greene D, Barton M, Luchko T, Shiferaw Y. Molecular Dynamics Simulations of the Cardiac Ryanodine Receptor Type 2 (RyR2) Gating Mechanism. J Phys Chem B 2022; 126:9790-9809. [PMID: 36384028 PMCID: PMC9720719 DOI: 10.1021/acs.jpcb.2c03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the cardiac ryanodine receptor type 2 (RyR2) have been linked to fatal cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). While many CPVT mutations are associated with an increase in Ca2+ leak from the sarcoplasmic reticulum, the mechanistic details of RyR2 channel gating are not well understood, and this poses a barrier in the development of new pharmacological treatments. To address this, we explore the gating mechanism of the RyR2 using molecular dynamics (MD) simulations. We test the effect of changing the conformation of certain structural elements by constructing chimera RyR2 structures that are derived from the currently available closed and open cryo-electron microscopy (cryo-EM) structures, and we then use MD simulations to relax the system. Our key finding is that the position of the S4-S5 linker (S4S5L) on a single subunit can determine whether the channel as a whole is open or closed. Our analysis reveals that the position of the S4S5L is regulated by interactions with the U-motif on the same subunit and with the S6 helix on an adjacent subunit. We find that, in general, channel gating is crucially dependent on high percent occupancy interactions between adjacent subunits. We compare our interaction analysis to 49 CPVT1 mutations in the literature and find that 73% appear near a high percent occupancy interaction between adjacent subunits. This suggests that disruption of cooperative, high percent occupancy interactions between adjacent subunits is a primary cause of channel leak and CPVT in mutant RyR2 channels.
Collapse
|
9
|
Yip D, Accili E. Kinetic modelling of voltage-dependent gating in funny channels. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:182-188. [PMID: 34310984 DOI: 10.1016/j.pbiomolbio.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Delbert Yip
- Department of Cellular and Physiological Sciences, University of British Columbia, Health Sciences Mall, V6T 1Z3, 2350, Canada
| | - Eric Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Health Sciences Mall, V6T 1Z3, 2350, Canada.
| |
Collapse
|
10
|
Biophysical analysis of an HCN1 epilepsy variant suggests a critical role for S5 helix Met-305 in voltage sensor to pore domain coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:156-172. [PMID: 34298002 DOI: 10.1016/j.pbiomolbio.2021.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Hyperpolarization-gated, cyclic nucleotide-activated (HCN1-4) channels are inwardly rectifying cation channels that display voltage dependent activation and de-activation. Pathogenic variants in HCN1 are associated with severe developmental and epileptic encephalopathies including the de novo HCN1 M305L variant. M305 is located in the S5 domain that is implicated in coupling voltage sensor domain movement to pore opening. This variant lacks voltage-dependent activation and de-activation and displays normal cation selectivity. To elucidate the impact of the mutation on the channel structure-function relations, molecular dynamics simulations of the wild type and mutant homotetramers were compared and identified a sulphur-aromatic interaction between M305 and F389 that contributes to the coupling of the voltage-sensing domain to the pore domain. To mimic the heterozygous condition as a heterotetrameric channel assembly, Xenopus oocytes were co-injected with various ratios of wild-type and mutant subunit cRNAs and the biophysical properties of channels with different subunit stoichiometries were determined. The results showed that a single mutated subunit was sufficient to significantly disrupt the voltage dependence of activation. The functional data were qualitatively consistent with predictions of a model that assumes independent activation of the voltage sensing domains allosterically controlling the closed to open transition of the pore. Overall, the M305L mutation results in an HCN1 channel that lacks voltage dependence and facilitates excitatory cation flow at membrane potentials that would normally close the channel. Our findings provide molecular insights into HCN1 channels and reveal the structural and biophysical basis of the severe epilepsy phenotype associated with the M305L mutation.
Collapse
|
11
|
Saponaro A, Bauer D, Giese MH, Swuec P, Porro A, Gasparri F, Sharifzadeh AS, Chaves-Sanjuan A, Alberio L, Parisi G, Cerutti G, Clarke OB, Hamacher K, Colecraft HM, Mancia F, Hendrickson WA, Siegelbaum SA, DiFrancesco D, Bolognesi M, Thiel G, Santoro B, Moroni A. Gating movements and ion permeation in HCN4 pacemaker channels. Mol Cell 2021; 81:2929-2943.e6. [PMID: 34166608 PMCID: PMC8294335 DOI: 10.1016/j.molcel.2021.05.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 10/31/2022]
Abstract
The HCN1-4 channel family is responsible for the hyperpolarization-activated cation current If/Ih that controls automaticity in cardiac and neuronal pacemaker cells. We present cryoelectron microscopy (cryo-EM) structures of HCN4 in the presence or absence of bound cAMP, displaying the pore domain in closed and open conformations. Analysis of cAMP-bound and -unbound structures sheds light on how ligand-induced transitions in the channel cytosolic portion mediate the effect of cAMP on channel gating and highlights the regulatory role of a Mg2+ coordination site formed between the C-linker and the S4-S5 linker. Comparison of open/closed pore states shows that the cytosolic gate opens through concerted movements of the S5 and S6 transmembrane helices. Furthermore, in combination with molecular dynamics analyses, the open pore structures provide insights into the mechanisms of K+/Na+ permeation. Our results contribute mechanistic understanding on HCN channel gating, cyclic nucleotide-dependent modulation, and ion permeation.
Collapse
Affiliation(s)
- Andrea Saponaro
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniel Bauer
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - M Hunter Giese
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Paolo Swuec
- Department of Biosciences, University of Milan, Milan, Italy; Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milan, Milan, Italy
| | | | | | | | - Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milan, Milan, Italy; Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milan, Milan, Italy
| | - Laura Alberio
- Department of Biosciences, University of Milan, Milan, Italy; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giacomo Parisi
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Gabriele Cerutti
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Kay Hamacher
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Wayne A Hendrickson
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Dario DiFrancesco
- Department of Biosciences, University of Milan, Milan, Italy; Institute of Biophysics-Milano, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Milan, Italy; Pediatric Research Center "Romeo ed Enrica Invernizzi," University of Milan, Milan, Italy
| | - Gerhard Thiel
- Department of Biology, TU-Darmstadt, Darmstadt, Germany
| | - Bina Santoro
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA.
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy; Institute of Biophysics-Milano, Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
12
|
Li S, Yang F, Sun D, Zhang Y, Zhang M, Liu S, Zhou P, Shi C, Zhang L, Tian C. Cryo-EM structure of the hyperpolarization-activated inwardly rectifying potassium channel KAT1 from Arabidopsis. Cell Res 2020; 30:1049-1052. [PMID: 32901112 PMCID: PMC7784887 DOI: 10.1038/s41422-020-00407-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Siyu Li
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fan Yang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Demeng Sun
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yong Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mengge Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sanling Liu
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peng Zhou
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230030, China
| | - Chaowei Shi
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Longhua Zhang
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Changlin Tian
- Hefei National Laboratory of Physical Sciences at Microscale, Anhui Laboratory of Advanced Photonic Science and Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China.
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230030, China.
| |
Collapse
|
13
|
Pozdnyakov I, Safonov P, Skarlato S. Diversity of voltage-gated potassium channels and cyclic nucleotide-binding domain-containing channels in eukaryotes. Sci Rep 2020; 10:17758. [PMID: 33082475 PMCID: PMC7576140 DOI: 10.1038/s41598-020-74971-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 10/06/2020] [Indexed: 12/04/2022] Open
Abstract
Voltage-gated potassium channels (Kv) and cyclic nucleotide-binding domain-containing cation channels HCN, CNG, and KCNH are the evolutionarily related families of ion channels in animals. Their homologues were found in several lineages of eukaryotes and prokaryotes; however, the actual phylogenetic and structural diversity of these ion channels remains unclear. In this work, we present a taxonomically broad investigation of evolutionary relationships and structural diversity of Kv, HCN, CNG, and KCNH and their homologues in eukaryotes focusing on channels from different protistan groups. We demonstrate that both groups of channels consist of a more significant number of lineages than it was shown before, and these lineages can be grouped in two clusters termed Kv-like channels and CNBD-channels. Moreover, we, for the first time, report the unusual two-repeat tandem Kv-like channels and CNBD-channels in several eukaryotic groups, i.e. dinoflagellates, oomycetes, and chlorarachniophytes. Our findings reveal still underappreciated phylogenetic and structural diversity of eukaryotic ion channel lineages.
Collapse
Affiliation(s)
- Ilya Pozdnyakov
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia.
| | - Pavel Safonov
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Sergei Skarlato
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| |
Collapse
|
14
|
HCN2 activation modulation: An electrophysiological and molecular study of the well-preserved LCI sequence in the pore channel. Arch Biochem Biophys 2020; 689:108436. [DOI: 10.1016/j.abb.2020.108436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022]
|
15
|
Wang ZJ, Blanco I, Hayoz S, Brelidze TI. The HCN domain is required for HCN channel cell-surface expression and couples voltage- and cAMP-dependent gating mechanisms. J Biol Chem 2020; 295:8164-8173. [PMID: 32341127 DOI: 10.1074/jbc.ra120.013281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Indexed: 11/06/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are major regulators of synaptic plasticity and rhythmic activity in the heart and brain. Opening of HCN channels requires membrane hyperpolarization and is further facilitated by intracellular cyclic nucleotides (cNMPs). In HCN channels, membrane hyperpolarization is sensed by the membrane-spanning voltage sensor domain (VSD), and the cNMP-dependent gating is mediated by the intracellular cyclic nucleotide-binding domain (CNBD) connected to the pore-forming S6 transmembrane segment via the C-linker. Previous functional analysis of HCN channels has suggested a direct or allosteric coupling between the voltage- and cNMP-dependent activation mechanisms. However, the specifics of this coupling remain unclear. The first cryo-EM structure of an HCN1 channel revealed that a novel structural element, dubbed the HCN domain (HCND), forms a direct structural link between the VSD and C-linker-CNBD. In this study, we investigated the functional significance of the HCND. Deletion of the HCND prevented surface expression of HCN2 channels. Based on the HCN1 structure analysis, we identified Arg237 and Gly239 residues on the S2 of the VSD that form direct interactions with Ile135 on the HCND. Disrupting these interactions abolished HCN2 currents. We also identified three residues on the C-linker-CNBD (Glu478, Gln482, and His559) that form direct interactions with residues Arg154 and Ser158 on the HCND. Disrupting these interactions affected both voltage- and cAMP-dependent gating of HCN2 channels. These findings indicate that the HCND is necessary for the cell-surface expression of HCN channels and provides a functional link between voltage- and cAMP-dependent mechanisms of HCN channel gating.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., USA
| | - Ismary Blanco
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D. C., USA
| | - Sebastien Hayoz
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., USA
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D. C., USA .,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D. C., USA
| |
Collapse
|
16
|
Page DA, Magee KEA, Li J, Jung M, Young EC. Cytoplasmic Autoinhibition in HCN Channels is Regulated by the Transmembrane Region. J Membr Biol 2020; 253:153-166. [PMID: 32146488 PMCID: PMC7150657 DOI: 10.1007/s00232-020-00111-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/16/2020] [Indexed: 12/25/2022]
Abstract
Hyperpolarization-activated cation-nonselective (HCN) channels regulate electrical activity in the brain and heart in a cAMP-dependent manner. The voltage-gating of these channels is mediated by a transmembrane (TM) region but is additionally regulated by direct binding of cAMP to a cyclic nucleotide-binding (CNB) fold in the cytoplasmic C-terminal region. Cyclic AMP potentiation has been explained by an autoinhibition model which views the unliganded CNB fold as an inhibitory module whose influence is disrupted by cAMP binding. However, the HCN2 subtype uses two other CNB fold-mediated mechanisms called open-state trapping and Quick-Activation to respectively slow the deactivation kinetics and speed the activation kinetics, against predictions of an autoinhibition model. To test how these multiple mechanisms are influenced by the TM region, we replaced the TM region of HCN2 with that of HCN4. This HCN4 TM-replacement preserved cAMP potentiation but augmented the magnitude of autoinhibition by the unliganded CNB fold; it moreover disrupted open-state trapping and Quick-Activation so that autoinhibition became the dominant mechanism contributed by the C-terminal region to determine kinetics. Truncation within the CNB fold partially relieved this augmented autoinhibition. This argues against the C-terminal region acting like a portable module with consistent effects on TM regions of different subtypes. Our findings provide evidence that functional interactions between the HCN2 TM region and C-terminal region govern multiple CNB fold-mediated mechanisms, implying that the molecular mechanisms of autoinhibition, open-state trapping, and Quick-Activation include participation of TM region structures.
Collapse
Affiliation(s)
- Dana A Page
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kaylee E A Magee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.,Department of Biology, Kwantlen Polytechnic University, 12666 72 Avenue, Surrey, BC, V3W 2M8, Canada
| | - Jessica Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Matthew Jung
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Edgar C Young
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
17
|
Lee CH, MacKinnon R. Voltage Sensor Movements during Hyperpolarization in the HCN Channel. Cell 2019; 179:1582-1589.e7. [PMID: 31787376 DOI: 10.1016/j.cell.2019.11.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022]
Abstract
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a voltage-gated cation channel that mediates neuronal and cardiac pacemaker activity. The HCN channel exhibits reversed voltage dependence, meaning it closes with depolarization and opens with hyperpolarization. Different from Na+, Ca2+, and Kv1-Kv7 channels, the HCN channel does not have domain-swapped voltage sensors. We introduced a reversible, metal-mediated cross bridge into the voltage sensors to create the chemical equivalent of a hyperpolarized conformation and determined the structure using cryoelectron microscopy (cryo-EM). Unlike the depolarized HCN channel, the S4 helix is displaced toward the cytoplasm by two helical turns. Near the cytoplasm, the S4 helix breaks into two helices, one running parallel to the membrane surface, analogous to the S4-S5 linker of domain-swapped voltage-gated channels. These findings suggest a basis for allosteric communication between voltage sensors and the gate in this kind of channel. They also imply that voltage sensor movements are not the same in all voltage-gated channels.
Collapse
Affiliation(s)
- Chia-Hsueh Lee
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
18
|
Sunkara MR, Schwabe T, Ehrlich G, Kusch J, Benndorf K. All four subunits of HCN2 channels contribute to the activation gating in an additive but intricate manner. J Gen Physiol 2018; 150:1261-1271. [PMID: 29959170 PMCID: PMC6122924 DOI: 10.1085/jgp.201711935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023] Open
Abstract
HCN pacemaker channels are dually gated by hyperpolarizing voltages and cyclic nucleotide binding. Sunkara et al. show that each of the four binding sites promotes channel opening, most likely by exerting a turning momentum on the tetrameric intracellular gating ring. Hyperpolarization-activated cyclic nucleotide–modulated (HCN) channels are tetramers that elicit electrical rhythmicity in specialized brain neurons and cardiomyocytes. The channels are dually activated by voltage and binding of cyclic adenosine monophosphate (cAMP) to their four cyclic nucleotide-binding domains (CNBDs). Here we analyze the effects of cAMP binding to different concatemers of HCN2 channel subunits, each having a defined number of functional CNBDs. We show that each liganded CNBD promotes channel activation in an additive manner and that, in the special case of two functional CNBDs, functionality does not depend on the arrangement of the subunits. Correspondingly, the reverse process of deactivation is slowed by progressive liganding, but only if four and three ligands as well as two ligands in trans position (opposite to each other) are bound. In contrast, two ligands bound in cis positions (adjacent to each other) and a single bound ligand do not affect channel deactivation. These results support an activation mechanism in which each single liganded CNBD causes a turning momentum on the tetrameric ring-like structure formed by all four CNBDs and that at least two liganded subunits in trans positions are required to maintain activation.
Collapse
Affiliation(s)
- Mallikarjuna Rao Sunkara
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Tina Schwabe
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Gunter Ehrlich
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jana Kusch
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Klaus Benndorf
- Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
19
|
Gating interaction maps reveal a noncanonical electromechanical coupling mode in the Shaker K + channel. Nat Struct Mol Biol 2018; 25:320-326. [PMID: 29581567 PMCID: PMC6170002 DOI: 10.1038/s41594-018-0047-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/05/2018] [Indexed: 11/08/2022]
Abstract
Membrane potential regulates the activity of voltage-dependent ion channels via specialized voltage-sensing modules but the mechanisms involved in coupling voltage-sensor movement to pore opening remain unclear due to lack of resting state structures and robust methods to identify allosteric pathways. Here, using a newly developed interaction energy analysis, we probe the interfaces of the voltage-sensing and pore modules in the drosophila Shaker K+ channel. Our measurements reveal unexpectedly strong equilibrium gating interactions between contacts at the S4 and S5 helices in addition to those between S6 and S4–S5 linker. Network analysis of MD trajectories shows that the voltage-sensor and pore motions are linked by two distinct pathways- canonical one through the S4–S5 linker and a hitherto unknown pathway akin to rack and pinion coupling involving S4 and S5 helices. Our findings highlight the central role of the S5 helix in electromechanical transduction in the VGIC superfamily.
Collapse
|
20
|
Inactivation of KCNQ1 potassium channels reveals dynamic coupling between voltage sensing and pore opening. Nat Commun 2017; 8:1730. [PMID: 29167462 PMCID: PMC5700111 DOI: 10.1038/s41467-017-01911-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 10/25/2017] [Indexed: 12/04/2022] Open
Abstract
In voltage-activated ion channels, voltage sensor (VSD) activation induces pore opening via VSD-pore coupling. Previous studies show that the pore in KCNQ1 channels opens when the VSD activates to both intermediate and fully activated states, resulting in the intermediate open (IO) and activated open (AO) states, respectively. It is also well known that accompanying KCNQ1 channel opening, the ionic current is suppressed by a rapid process called inactivation. Here we show that inactivation of KCNQ1 channels derives from the different mechanisms of the VSD-pore coupling that lead to the IO and AO states, respectively. When the VSD activates from the intermediate state to the activated state, the VSD-pore coupling has less efficacy in opening the pore, producing inactivation. These results indicate that different mechanisms, other than the canonical VSD-pore coupling, are at work in voltage-dependent ion channel activation. KCNQ1 is a voltage-gated potassium channel that is important in cardiac and epithelial function. Here the authors present a mechanism for KCNQ1 activation and inactivation in which voltage sensor activation promotes pore opening more effectively in the intermediate open state than the fully open state, generating inactivation.
Collapse
|
21
|
Lee CH, MacKinnon R. Structures of the Human HCN1 Hyperpolarization-Activated Channel. Cell 2017; 168:111-120.e11. [PMID: 28086084 DOI: 10.1016/j.cell.2016.12.023] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 01/23/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels underlie the control of rhythmic activity in cardiac and neuronal pacemaker cells. In HCN, the polarity of voltage dependence is uniquely reversed. Intracellular cyclic adenosine monophosphate (cAMP) levels tune the voltage response, enabling sympathetic nerve stimulation to increase the heart rate. We present cryo-electron microscopy structures of the human HCN channel in the absence and presence of cAMP at 3.5 Å resolution. HCN channels contain a K+ channel selectivity filter-forming sequence from which the amino acids create a unique structure that explains Na+ and K+ permeability. The voltage sensor adopts a depolarized conformation, and the pore is closed. An S4 helix of unprecedented length extends into the cytoplasm, contacts the C-linker, and twists the inner helical gate shut. cAMP binding rotates cytoplasmic domains to favor opening of the inner helical gate. These structures advance understanding of ion selectivity, reversed polarity gating, and cAMP regulation in HCN channels.
Collapse
Affiliation(s)
- Chia-Hsueh Lee
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
22
|
A reduced mechanical model for cAMP-modulated gating in HCN channels. Sci Rep 2017; 7:40168. [PMID: 28074902 PMCID: PMC5225470 DOI: 10.1038/srep40168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/01/2016] [Indexed: 12/29/2022] Open
Abstract
We developed an in silico mechanical model to analyze the process of cAMP-induced conformational modulations in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which conduct cations across the membrane of mammalian heart and brain cells. The structural analysis reveals a quaternary twist in the cytosolic parts of the four subunits in the channel tetramer. This motion augments the intrinsic dynamics of the very same protein structure. The pronounced differences between the cAMP bound and unbound form include a mutual interaction between the C-linker of the cyclic nucleotide binding domain (CNBD) and the linker between the S4 and S5 transmembrane domain of the channel. This allows a mechanistic annotation of the twisting motion in relation to the allosteric modulation of voltage-dependent gating of this channel by cAMP.
Collapse
|
23
|
|
24
|
Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, Kass RS. Molecular Pathophysiology of Congenital Long QT Syndrome. Physiol Rev 2017; 97:89-134. [PMID: 27807201 PMCID: PMC5539372 DOI: 10.1152/physrev.00008.2016] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ion channels represent the molecular entities that give rise to the cardiac action potential, the fundamental cellular electrical event in the heart. The concerted function of these channels leads to normal cyclical excitation and resultant contraction of cardiac muscle. Research into cardiac ion channel regulation and mutations that underlie disease pathogenesis has greatly enhanced our knowledge of the causes and clinical management of cardiac arrhythmia. Here we review the molecular determinants, pathogenesis, and pharmacology of congenital Long QT Syndrome. We examine mechanisms of dysfunction associated with three critical cardiac currents that comprise the majority of congenital Long QT Syndrome cases: 1) IKs, the slow delayed rectifier current; 2) IKr, the rapid delayed rectifier current; and 3) INa, the voltage-dependent sodium current. Less common subtypes of congenital Long QT Syndrome affect other cardiac ionic currents that contribute to the dynamic nature of cardiac electrophysiology. Through the study of mutations that cause congenital Long QT Syndrome, the scientific community has advanced understanding of ion channel structure-function relationships, physiology, and pharmacological response to clinically employed and experimental pharmacological agents. Our understanding of congenital Long QT Syndrome continues to evolve rapidly and with great benefits: genotype-driven clinical management of the disease has improved patient care as precision medicine becomes even more a reality.
Collapse
Affiliation(s)
- M S Bohnen
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - G Peng
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - S H Robey
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - C Terrenoire
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - V Iyer
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - K J Sampson
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - R S Kass
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| |
Collapse
|
25
|
Li X, Anishkin A, Liu H, van Rossum DB, Chintapalli SV, Sassic JK, Gallegos D, Pivaroff-Ward K, Jegla T. Bimodal regulation of an Elk subfamily K+ channel by phosphatidylinositol 4,5-bisphosphate. ACTA ACUST UNITED AC 2016; 146:357-74. [PMID: 26503718 PMCID: PMC4621751 DOI: 10.1085/jgp.201511491] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PIP2 mediates the bimodal regulation of the EAG family K+ channel ELK1 to produce an overall inhibitory effect. Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide–gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites of PIP2 regulation in these channels include the voltage-sensor domain (VSD) and conserved regions of the proximal cytoplasmic C terminus. Relatively little is known about PIP2 regulation of Ether-á-go-go (EAG) channels, a metazoan-specific family of K+ channels that includes three gene subfamilies, Eag (Kv10), Erg (Kv11), and Elk (Kv12). We examined PIP2 regulation of the Elk subfamily potassium channel human Elk1 to determine whether bimodal regulation is conserved within the EAG K+ channel family. Open-state stabilization by PIP2 has been observed in human Erg1, but the proposed site of regulation in the distal C terminus is not conserved among EAG family channels. We show that PIP2 strongly inhibits voltage activation of Elk1 but also stabilizes the open state. This stabilization produces slow deactivation and a mode shift in voltage gating after activation. However, removal of PIP2 has the net effect of enhancing Elk1 activation. R347 in the linker between the VSD and pore (S4–S5 linker) and R479 near the S6 activation gate are required for PIP2 to inhibit voltage activation. The ability of PIP2 to stabilize the open state also requires these residues, suggesting an overlap in sites central to the opposing effects of PIP2 on channel gating. Open-state stabilization in Elk1 requires the N-terminal eag domain (PAS domain + Cap), and PIP2-dependent stabilization is enhanced by a conserved basic residue (K5) in the Cap. Our data shows that PIP2 can bimodally regulate voltage gating in EAG family channels, as has been proposed for Shaker and HCN channels. PIP2 regulation appears fundamentally different for Elk and KCNQ channels, suggesting that, although both channel types can regulate action potential threshold in neurons, they are not functionally redundant.
Collapse
Affiliation(s)
- Xiaofan Li
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802 Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD 20742
| | - Hansi Liu
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Damian B van Rossum
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802 Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202 Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202
| | - Jessica K Sassic
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - David Gallegos
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| | - Kendra Pivaroff-Ward
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195
| | - Timothy Jegla
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802 Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
26
|
Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History. PLoS One 2015; 10:e0137600. [PMID: 26356684 PMCID: PMC4565715 DOI: 10.1371/journal.pone.0137600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories—hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.
Collapse
|
27
|
Zaydman MA, Kasimova MA, McFarland K, Beller Z, Hou P, Kinser HE, Liang H, Zhang G, Shi J, Tarek M, Cui J. Domain-domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel. eLife 2014; 3:e03606. [PMID: 25535795 PMCID: PMC4381907 DOI: 10.7554/elife.03606] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/19/2014] [Indexed: 01/22/2023] Open
Abstract
Voltage-gated ion channels generate electrical currents that control muscle
contraction, encode neuronal information, and trigger hormonal release.
Tissue-specific expression of accessory (β) subunits causes these channels to
generate currents with distinct properties. In the heart, KCNQ1 voltage-gated
potassium channels coassemble with KCNE1 β-subunits to generate the
IKs current (Barhanin et al.,
1996; Sanguinetti et al., 1996),
an important current for maintenance of stable heart rhythms. KCNE1 significantly
modulates the gating, permeation, and pharmacology of KCNQ1 (Wrobel et al., 2012; Sun et
al., 2012; Abbott, 2014). These
changes are essential for the physiological role of IKs (Silva and Rudy, 2005); however, after 18 years
of study, no coherent mechanism explaining how KCNE1 affects KCNQ1 has emerged. Here
we provide evidence of such a mechanism, whereby, KCNE1 alters the state-dependent
interactions that functionally couple the voltage-sensing domains (VSDs) to the
pore. DOI:http://dx.doi.org/10.7554/eLife.03606.001 Cells are surrounded by a membrane that prevents charged molecules from flowing
directly into or out of the cell. Instead ions move through channel proteins within
the cell membrane. Most ion channel proteins are selective and only allow one or a
few types of ion to cross. Ion channels can also be ‘gated’, and have a
central pore that can open or close to allow or stop the flow of selected ions. This
gating can be affected by the channel sensing changes in conditions, such as changes
in the voltage across the cell membrane. Research conducted more than half a century ago—before the discovery of
channel proteins—led to a mathematical model of the flow of potassium ions
across a membrane in response to changes in voltage. This model made a number of
assumptions, many of which are still widely accepted. However, Zaydman et al. have
now called into question some of the assumptions of this model. Based on the original model, it has been long assumed that the voltage-sensing
domains that open or close the central pore in response to changes in voltage must be
fully activated to allow the channel to open. It had also been assumed that the
voltage-sensing domains do not affect the flow of ions once the channel is open.
Zaydman et al. have now shown that these assumptions are not valid for a specific
voltage-gated potassium channel called KCNQ1. Instead, this ion channel opens when
its voltage-sensing domains are either partially or fully activated. Zaydman found
that the intermediate-open and activated-open states had different preferences for
passing various types of ion; therefore, the gating of the channel and the flow of
ions through the open channel are both dependent on the state of the voltage-sensing
domains. This is in direct contrast to what had previously been assumed. The original model cannot reproduce the gating of KCNQ1, nor can any other
established model. Therefore, Zaydman et al. devised a new model to understand how
the interactions between different states of the voltage-sensing domains and the pore
lead to gating. Zaydman et al. then used their model to address how another protein
called KCNE1 is able to alter properties of the KCNQ1 channel. KCNE1 is a protein that is expressed in the heart muscle cell and mutations affecting
KCNQ1 or KCNE1 have been associated with potentially fatal heart conditions. Based on
the assumptions of the original model, it had been difficult to understand how KCNE1
was able to affect different properties of the KCNQ1 channel. Thus, for nearly 20
years it has been debated whether KCNE1 primarily affects the activation of the
voltage-sensing domains or the opening of the pore. Zaydman et al. found instead that
KCNE1 alters the interactions between the voltage-sensing domains and the pore, which
prevented the intermediate-open state and modified the properties of the
activated-open state. This mechanism provides one of the most complete explanations
for the action of the KCNE1 protein. DOI:http://dx.doi.org/10.7554/eLife.03606.002
Collapse
Affiliation(s)
- Mark A Zaydman
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Marina A Kasimova
- Theory, Modeling, and Simulations, UMR 7565, Université de Lorraine, Nancy, France
| | - Kelli McFarland
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Zachary Beller
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Panpan Hou
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Holly E Kinser
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Hongwu Liang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Guohui Zhang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| | - Mounir Tarek
- Theory, Modeling, and Simulations, UMR 7565, Université de Lorraine, Nancy, France
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Diseases, Washington University in St Louis, St Louis, United States
| |
Collapse
|
28
|
Conservation analysis of residues in the S4-S5 linker and the terminal part of the S5-P-S6 pore modulus in Kv and HCN channels: flexible determinants for the electromechanical coupling. Pflugers Arch 2014; 467:2069-79. [PMID: 25398373 DOI: 10.1007/s00424-014-1647-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/03/2014] [Indexed: 12/22/2022]
Abstract
Protein mobility is important to achieve protein function. Intrinsic flexibility associated with motion underlies this important issue and the analysis of side chain flexibility gives insights to understand it. In this work, the S5-P-S6 pore modulus (PM) of members of Kv and HCN channels was examined by a combination of sequence alignment, residue composition analysis, and intrinsic side chain flexibility. The PM sequences were organized as a database that was used to reveal and correlate the functional diversity of each analyzed family. Specifically, we focused our attention on the crucial role of the S4-S5 linker and its well-described interaction with the S6 T during the electromechanical coupling. Our analysis suggests the presence of a Gly-hinge in the middle of the S4-S5 linkers. This apparent Gly-hinge links a flexible N-terminal segment with a rigid C-terminal one, although in Kv7 channels, the latter segment is even more flexible. Instead, HCN channels exhibit a putative Thr-hinge and is rich in aromatic residues, in consequence, their linker is more rigid. Concerning S6, we confirm the presence of the two flexible kinks previously described and we provide the complete segmental flexibility profiles for the different families. Our results are discussed in terms of the relation between residue composition, conservation, and local conformational flexibility. This provides important insights to understand and differentiate the characteristic gating properties of these channels as well as their implications in cell physiology.
Collapse
|
29
|
HCN2 Channels: A Permanent Open State and Conductance Changes. J Membr Biol 2014; 248:67-81. [DOI: 10.1007/s00232-014-9742-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022]
|
30
|
Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV, van der Bilt IA, Baars MJ, van Haelst PL, Caliskan K, Hoedemaekers YM, Le Scouarnec S, Redon R, Pinto YM, Christiaans I, Wilde AA, Bezzina CR. HCN4 Mutations in Multiple Families With Bradycardia and Left Ventricular Noncompaction Cardiomyopathy. J Am Coll Cardiol 2014; 64:745-56. [DOI: 10.1016/j.jacc.2014.05.045] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022]
|
31
|
Insight into the molecular interaction between the cyclic nucleotide-binding homology domain and the eag domain of the hERG channel. FEBS Lett 2014; 588:2782-8. [PMID: 24931372 DOI: 10.1016/j.febslet.2014.05.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/14/2014] [Accepted: 05/27/2014] [Indexed: 12/18/2022]
Abstract
The gating of the hERG channel is regulated by its eag domain through molecular interaction with either the cyclic nucleotide-binding homology domain (CNBHD) or the linker between transmembrane segments 4 and 5. Our NMR study on the purified CNBHD demonstrated that it contains nine β-strands and does not bind cAMP. We show that the eag domain binds to the CBND through an interface containing several disease-associated mutations. The N-terminal cap domain and R56 in the eag domain are important for the interaction with the CNBHD. Residues from the CNBHD that were affected by the interaction with the eag domain were also identified. A R56Q mutation does not cause major structural changes in the eag domain and showed reduced interaction with the CNBHD.
Collapse
|
32
|
Randich AM, Cuello LG, Wanderling SS, Perozo E. Biochemical and structural analysis of the hyperpolarization-activated K(+) channel MVP. Biochemistry 2014; 53:1627-36. [PMID: 24490868 PMCID: PMC3985891 DOI: 10.1021/bi4014243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
In
contrast to the majority of voltage-gated ion channels, hyperpolarization-activated
channels remain closed at depolarizing potentials and are activated
at hyperpolarizing potentials. The basis for this reverse polarity
is thought to be a result of differences in the way the voltage-sensing
domain (VSD) couples to the pore domain. In the absence of structural
data, the molecular mechanism of this reverse polarity coupling remains
poorly characterized. Here we report the characterization of the structure
and local dynamics of the closed activation gate (lower S6 region)
of MVP, a hyperpolarization-activated potassium channel from Methanococcus jannaschii, by electron paramagnetic resonance
(EPR) spectroscopy. We show that a codon-optimized version of MVP
has high expression levels in Escherichia coli, is
purified as a stable tetramer, and exhibits expected voltage-dependent
activity when reconstituted in liposomes. EPR analysis of the mid
to lower S6 region revealed positions exhibiting strong spin–spin
coupling, indicating that the activation gate of MVP is closed at
0 mV. A comparison of local environmental parameters along the activation
gate for MVP and KcsA indicates that MVP adopts a different closed
conformation. These structural details set the stage for future evaluations
of reverse electromechanical coupling in MVP.
Collapse
Affiliation(s)
- Amelia M Randich
- Department of Biochemistry and Molecular Biology, The University of Chicago , Chicago, Illinois 60637, United States
| | | | | | | |
Collapse
|
33
|
Nieves-Cordones M, Gaillard I. Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels. PLANT SIGNALING & BEHAVIOR 2014; 9:e972892. [PMID: 25482770 PMCID: PMC4622754 DOI: 10.4161/15592316.2014.972892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Among the different transport systems present in plant cells, Shaker channels constitute the major pathway for K(+) in the plasma membrane. Plant Shaker channels are members of the 6 transmembrane-1 pore (6TM-1P) cation channel superfamily as the animal Shaker (Kv) and HCN channels. All these channels are voltage-gated K(+) channels: Kv channels are outward-rectifiers, opened at depolarized voltages and HCN channels are inward-rectifiers, opened by membrane hyperpolarization. Among plant Shaker channels, we can find outward-rectifiers, inward-rectifiers and also weak-rectifiers, with weak voltage dependence. Despite the absence of crystal structures of plant Shaker channels, functional analyses coupled to homology modeling, mostly based on Kv and HCN crystals, have permitted the identification of several regions contributing to plant Shaker channel gating. In the present mini-review, we make an update on the voltage-gating mechanism of plant Shaker channels which seem to be comparable to that proposed for HCN channels.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
- Correspondence to: Manuel Nieves-Cordones; , Isabelle Gaillard;
| | - Isabelle Gaillard
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
- Correspondence to: Manuel Nieves-Cordones; , Isabelle Gaillard;
| |
Collapse
|
34
|
Tian C, Zhu R, Zhu L, Qiu T, Cao Z, Kang T. Potassium Channels: Structures, Diseases, and Modulators. Chem Biol Drug Des 2013; 83:1-26. [DOI: 10.1111/cbdd.12237] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chuan Tian
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
- School of Pharmacy; Liaoning University of Traditional Chinese Medicine; Dalian Liaoning 116600 China
| | - Ruixin Zhu
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Lixin Zhu
- Department of Pediatrics; Digestive Diseases and Nutrition Center; The State University of New York at Buffalo; Buffalo NY 14226 USA
| | - Tianyi Qiu
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Zhiwei Cao
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Tingguo Kang
- School of Pharmacy; Liaoning University of Traditional Chinese Medicine; Dalian Liaoning 116600 China
| |
Collapse
|
35
|
Chowdhury S, Chanda B. Perspectives on: conformational coupling in ion channels: thermodynamics of electromechanical coupling in voltage-gated ion channels. ACTA ACUST UNITED AC 2013. [PMID: 23183697 PMCID: PMC3514737 DOI: 10.1085/jgp.201210840] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Sandipan Chowdhury
- Graduate Program in Biophysics, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
36
|
Bazyan AS, van Luijtelaar G. Neurochemical and behavioral features in genetic absence epilepsy and in acutely induced absence seizures. ISRN NEUROLOGY 2013; 2013:875834. [PMID: 23738145 PMCID: PMC3664506 DOI: 10.1155/2013/875834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 02/08/2023]
Abstract
The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be due to an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic I h pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes. It also enhances GABAA receptor activity in the striatum, globus pallidus, and reticular thalamic nucleus, causing a rise of SWD activity in the cortico-thalamo-cortical networks. One of the reasons for the occurrence of absences is that several genes coding of GABAA receptors are mutated. The question arises: what the role of DA receptors is. Two mechanisms that cause an infringement of the function of DA receptors in this genetic absence epilepsy model are proposed.
Collapse
Affiliation(s)
- A. S. Bazyan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia
| | - G. van Luijtelaar
- Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|
37
|
Islas LD. The electric heart of hERG. J Gen Physiol 2013; 141:409-11. [PMID: 23478994 PMCID: PMC3607827 DOI: 10.1085/jgp.201310973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Kwan DCH, Prole DL, Yellen G. Structural changes during HCN channel gating defined by high affinity metal bridges. ACTA ACUST UNITED AC 2012; 140:279-91. [PMID: 22930802 PMCID: PMC3434101 DOI: 10.1085/jgp.201210838] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide–sensitive nonselective cation (HCN) channels are activated by membrane hyperpolarization, in contrast to the vast majority of other voltage-gated channels that are activated by depolarization. The structural basis for this unique characteristic of HCN channels is unknown. Interactions between the S4–S5 linker and post-S6/C-linker region have been implicated previously in the gating mechanism of HCN channels. We therefore introduced pairs of cysteines into these regions within the sea urchin HCN channel and performed a Cd2+-bridging scan to resolve their spatial relationship. We show that high affinity metal bridges between the S4–S5 linker and post-S6/C-linker region can induce either a lock-open or lock-closed phenotype, depending on the position of the bridged cysteine pair. This suggests that interactions between these regions can occur in both the open and closed states, and that these regions move relative to each other during gating. Concatenated constructs reveal that interactions of the S4–S5 linker and post-S6/C-linker can occur between neighboring subunits. A structural model based on these interactions suggests a mechanism for HCN channel gating. We propose that during voltage-dependent activation the voltage sensors, together with the S4–S5 linkers, drive movement of the lower ends of the S5 helices around the central axis of the channel. This facilitates a movement of the pore-lining S6 helices, which results in opening of the channel. This mechanism may underlie the unique voltage dependence of HCN channel gating.
Collapse
Affiliation(s)
- Daniel C H Kwan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
39
|
Zaydman MA, Silva JR, Cui J. Ion channel associated diseases: overview of molecular mechanisms. Chem Rev 2012; 112:6319-33. [PMID: 23151230 DOI: 10.1021/cr300360k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark A Zaydman
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63130, United States
| | | | | |
Collapse
|
40
|
Jackson HA, Hegle A, Nazzari H, Jegla T, Accili EA. Asymmetric divergence in structure and function of HCN channel duplicates in Ciona intestinalis. PLoS One 2012; 7:e47590. [PMID: 23133599 PMCID: PMC3487815 DOI: 10.1371/journal.pone.0047590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/17/2012] [Indexed: 01/16/2023] Open
Abstract
Hyperpolarization-activated Cyclic Nucleotide (HCN) channels are voltage-gated cation channels and are critical for regulation of membrane potential in electrically active cells. To understand the evolution of these channels at the molecular level, we cloned and examined two of three HCN homologs of the urochordate Ciona intestinalis (ciHCNa and ciHCNb). ciHCNa is like mammalian HCNs in that it possesses similar electrical function and undergoes N-glycosylation of a sequon near the pore. ciHCNb lacks the pore-associated N-glycosylation sequon and is predictably not N-glycosylated, and it also has an unusual gating phenotype in which the channel's voltage-sensitive gate appears to close incompletely. Together with previous findings, the data support an evolutionary trajectory in which an HCN ancestor underwent lineage-specific duplication in Ciona, to yield one HCN with most features that are conserved with the mammalian HCNs and another HCN that has been uniquely altered.
Collapse
Affiliation(s)
- Heather A. Jackson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Hegle
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hamed Nazzari
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy Jegla
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Eric A. Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
41
|
Trudeau MC. Unlocking the mechanisms of HCN channel gating with locked-open and locked-closed channels. ACTA ACUST UNITED AC 2012; 140:457-61. [PMID: 23071267 PMCID: PMC3483117 DOI: 10.1085/jgp.201210898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Wemhöner K, Silbernagel N, Marzian S, Netter MF, Rinné S, Stansfeld PJ, Decher N. A leucine zipper motif essential for gating of hyperpolarization-activated channels. J Biol Chem 2012; 287:40150-60. [PMID: 23048023 DOI: 10.1074/jbc.m112.378513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND It is poorly understood how hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) function. RESULTS We have identified a leucine zipper in the S5 segment of HCNs, regulating hyperpolarization-activated and instantaneous current components. CONCLUSION The leucine zipper is essential for HCN channel gating. SIGNIFICANCE The identification and functional characterization of the leucine zipper is an important step toward the understanding of HCN channel function. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pacemakers in cardiac myocytes and neurons. Although their membrane topology closely resembles that of voltage-gated K(+) channels, the mechanism of their unique gating behavior in response to hyperpolarization is still poorly understood. We have identified a highly conserved leucine zipper motif in the S5 segment of HCN family members. In order to study the role of this motif for channel function, the leucine residues of the zipper were individually mutated to alanine, arginine, or glutamine residues. Leucine zipper mutants traffic to the plasma membrane, but the channels lose their sensitivity to open upon hyperpolarization. Thus, our data indicate that the leucine zipper is an important molecular determinant for hyperpolarization-activated channel gating. Residues of the leucine zipper interact with the adjacent S6 segment of the channel. This interaction is essential for voltage-dependent gating of the channel. The lower part of the leucine zipper, at the intracellular mouth of the channel, is important for stabilizing the closed state. Mutations at these sites increase current amplitudes or result in channels with deficient closing and increased min-P(o). Our data are further supported by homology models of the open and closed state of the HCN2 channel pore. Thus, we conclude that the leucine zipper of HCN channels is a major determinant for hyperpolarization-activated channel gating.
Collapse
Affiliation(s)
- Konstantin Wemhöner
- Institute for Physiology, Vegetative Physiology Group, University of Marburg, Deutschhausstrasse 1-2, 35037 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Blunck R, Batulan Z. Mechanism of electromechanical coupling in voltage-gated potassium channels. Front Pharmacol 2012; 3:166. [PMID: 22988442 PMCID: PMC3439648 DOI: 10.3389/fphar.2012.00166] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/24/2012] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion - sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3-4e(+) each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during gating.
Collapse
Affiliation(s)
- Rikard Blunck
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
- Department of Physics, Université de MontréalMontreal, QC, Canada
| | - Zarah Batulan
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
| |
Collapse
|
44
|
Li RA. Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned? Gene Ther 2012; 19:588-95. [PMID: 22673497 DOI: 10.1038/gt.2012.33] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Normal rhythms originate in the sino-atrial node, a specialized cardiac tissue consisting of only a few thousands of nodal pacemaker cells. Malfunction of pacemaker cells due to diseases or aging leads to rhythm generation disorders (for example, bradycardias and sick-sinus syndrome (SSS)), which often necessitate the implantation of electronic pacemakers. Although effective, electronic devices are associated with such shortcomings as limited battery life, permanent implantation of leads, lead dislodging, the lack of autonomic responses and so on. Here, various gene- and cell-based approaches, with a particular emphasis placed on the use of pluripotent stem cells and the hyperpolarization-activated cyclic nucleotide-gated-encoded pacemaker gene family, that have been pursued in the past decade to reconstruct bio-artificial pacemakers as alternatives will be discussed in relation to the basic biological insights and translational regenerative potential.
Collapse
Affiliation(s)
- R A Li
- Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
45
|
Vardanyan V, Pongs O. Coupling of voltage-sensors to the channel pore: a comparative view. Front Pharmacol 2012; 3:145. [PMID: 22866036 PMCID: PMC3406610 DOI: 10.3389/fphar.2012.00145] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/07/2012] [Indexed: 12/11/2022] Open
Abstract
The activation of voltage-dependent ion channels is initiated by potential-induced conformational rearrangements in the voltage-sensor domains that propagates to the pore domain (PD) and finally opens the ion conduction pathway. In potassium channels voltage-sensors are covalently linked to the pore via S4-S5 linkers at the cytoplasmic site of the PD. Transformation of membrane electric energy into the mechanical work required for the opening or closing of the channel pore is achieved through an electromechanical coupling mechanism, which involves local interaction between residues in S4-S5 linker and pore-forming alpha helices. In this review we discuss present knowledge and open questions related to the electromechanical coupling mechanism in most intensively studied voltage-gated Shaker potassium channel and compare structure-functional aspects of coupling with those observed in distantly related ion channels. We focus particularly on the role of electromechanical coupling in modulation of the constitutive conductance of ion channels.
Collapse
Affiliation(s)
- Vitya Vardanyan
- Ion Channel Research Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia Yerevan, Armenia
| | | |
Collapse
|
46
|
Choveau FS, Abderemane-Ali F, Coyan FC, Es-Salah-Lamoureux Z, Baró I, Loussouarn G. Opposite Effects of the S4-S5 Linker and PIP(2) on Voltage-Gated Channel Function: KCNQ1/KCNE1 and Other Channels. Front Pharmacol 2012; 3:125. [PMID: 22787448 PMCID: PMC3389672 DOI: 10.3389/fphar.2012.00125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/14/2012] [Indexed: 01/16/2023] Open
Abstract
Voltage-gated potassium (Kv) channels are tetramers, each subunit presenting six transmembrane segments (S1-S6), with each S1-S4 segments forming a voltage-sensing domain (VSD) and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5(L)) and of the S6 C-terminal part (S6(T)) in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5(L) is acting like a ligand binding to S6(T) to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5(L), the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP(2)), stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated) require PIP(2) to function properly, confirming its crucial importance as an ion channel cofactor. This is highlighted in cases in which an altered regulation of ion channels by PIP(2) leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP(2) and S4S5(L)), and assesses their potential physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Frank S Choveau
- UMR 1087, Institut National de la Santé et de la Recherche Médicale Nantes, France
| | | | | | | | | | | |
Collapse
|
47
|
Wu S, Gao W, Xie C, Xu X, Vorvis C, Marni F, Hackett AR, Liu Q, Zhou L. Inner activation gate in S6 contributes to the state-dependent binding of cAMP in full-length HCN2 channel. ACTA ACUST UNITED AC 2012; 140:29-39. [PMID: 22689828 PMCID: PMC3382721 DOI: 10.1085/jgp.201110749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, applications of the patch-clamp fluorometry (PCF) technique in studies of cyclic nucleotide-gated (CNG) and hyperpolarization-activated, cyclic nucleotide-regulated (HCN) channels have provided direct evidence for the long-held notion that ligands preferably bind to and stabilize these channels in an open state. This state-dependent ligand-channel interaction involves contributions from not only the ligand-binding domain but also other discrete structural elements within the channel protein. This insight led us to investigate whether the pore of the HCN channel plays a role in the ligand-whole channel interaction. We used three well-characterized HCN channel blockers to probe the ion-conducting passage. The PCF technique was used to simultaneously monitor channel activity and cAMP binding. Two ionic blockers, Cs(+) and Mg(2+), effectively block channel conductance but have no obvious effect on cAMP binding. Surprisingly, ZD7288, an open channel blocker specific for HCN channels, significantly reduces the activity-dependent increase in cAMP binding. Independent biochemical assays exclude any nonspecific interaction between ZD7288 and isolated cAMP-binding domain. Because ZD7228 interacts with the inner pore region, where the activation gate is presumably located, we did an alanine scanning of the intracellular end of S6, from T426 to A435. Mutations of three residues, T426, M430, and H434, which are located at regular intervals on the S6 α-helix, enhance cAMP binding. In contrast, mutations of two residues in close proximity, F431A and I432A, dampen the response. Our results demonstrate that movements of the structural elements near the activation gate directly affect ligand binding affinity, which is a simple mechanistic explanation that could be applied to the interpretation of ligand gating in general.
Collapse
Affiliation(s)
- Shengjun Wu
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cheng YM, Claydon TW. Voltage-dependent gating of HERG potassium channels. Front Pharmacol 2012; 3:83. [PMID: 22586397 PMCID: PMC3347040 DOI: 10.3389/fphar.2012.00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/16/2012] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.
Collapse
Affiliation(s)
- Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | | |
Collapse
|
49
|
Barros F, Domínguez P, de la Peña P. Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol 2012; 3:49. [PMID: 22470342 PMCID: PMC3311039 DOI: 10.3389/fphar.2012.00049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo Oviedo, Asturias, Spain
| | | | | |
Collapse
|
50
|
Molecular mapping of general anesthetic sites in a voltage-gated ion channel. Biophys J 2012; 101:1613-22. [PMID: 21961587 DOI: 10.1016/j.bpj.2011.08.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/20/2022] Open
Abstract
Several voltage-gated ion channels are modulated by clinically relevant doses of general anesthetics. However, the structural basis of this modulation is not well understood. Previous work suggested that n-alcohols and inhaled anesthetics stabilize the closed state of the Shaw2 voltage-gated (Kv) channel (K-Shaw2) by directly interacting with a discrete channel site. We hypothesize that the inhibition of K-Shaw2 channels by general anesthetics is governed by interactions between binding and effector sites involving components of the channel's activation gate. To investigate this hypothesis, we applied Ala/Val scanning mutagenesis to the S4-S5 linker and the post-PVP S6 segment, and conducted electrophysiological analysis to evaluate the energetic impact of the mutations on the inhibition of the K-Shaw2 channel by 1-butanol and halothane. These analyses identified residues that determine an apparent binding cooperativity and residue pairs that act in concert to modulate gating upon anesthetic binding. In some instances, due to their critical location, key residues also influence channel gating. Complementing these results, molecular dynamics simulations and in silico docking experiments helped us visualize possible anesthetic sites and interactions. We conclude that the inhibition of K-Shaw2 by general anesthetics results from allosteric interactions between distinct but contiguous binding and effector sites involving inter- and intrasubunit interfaces.
Collapse
|