1
|
Li J, Cui J, Li X, Zhu D, Chen Z, Huang X, Wang Y, Wu Q, Tian Y. TMBIM-2 orchestrates systemic mitochondrial stress response via facilitating Ca2+ oscillations. J Cell Biol 2025; 224:e202408050. [PMID: 40100072 PMCID: PMC11917168 DOI: 10.1083/jcb.202408050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/11/2024] [Accepted: 02/09/2025] [Indexed: 03/20/2025] Open
Abstract
Neuronal mitochondrial function is critical for orchestrating inter-tissue communication essential for overall fitness. Despite its significance, the molecular mechanism underlying the impact of prolonged mitochondrial stresses on neuronal activity and how they orchestrate metabolism and aging remains elusive. Here, we identified the evolutionarily conserved transmembrane protein XBX-6/TMBIM-2 as a key mediator in the neuronal-to-intestinal mitochondrial unfolded protein response (UPRmt). Our investigations reveal that intrinsic neuronal mitochondrial stress triggers spatiotemporal Ca2+ oscillations in a TMBIM-2-dependent manner through the Ca2+ efflux pump MCA-3. Notably, persistent Ca2+ oscillations at synapses of ADF neurons are critical for facilitating serotonin release and the subsequent activation of the neuronal-to-intestinal UPRmt. TMBIM2 expression diminishes with age; however, its overexpression counteracts the age-related decline in aversive learning behavior and extends the lifespan of Caenorhabditis elegans. These findings underscore the intricate integration of chronic neuronal mitochondrial stress into neurotransmission processes via TMBIM-2-dependent Ca2+ equilibrium, driving metabolic adaptation and behavioral changes for the regulation of aging.
Collapse
Affiliation(s)
- Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jimeng Cui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Robinson KS, Sennhenn P, Yuan DS, Liu H, Taddei D, Qian Y, Luo W. TMBIM6/BI-1 is an intracellular environmental regulator that induces paraptosis in cancer via ROS and Calcium-activated ERAD II pathways. Oncogene 2025; 44:494-512. [PMID: 39609612 PMCID: PMC11832424 DOI: 10.1038/s41388-024-03222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Transmembrane B cell lymphoma 2-associated X protein inhibitor motif-containing (TMBIM) 6, also known as Bax Inhibitor-1 (BI-1), has been heavily researched for its cytoprotective functions. TMBIM6 functional diversity includes modulating cell survival, stress, metabolism, cytoskeletal dynamics, organelle function, regulating cytosolic acidification, calcium, and reactive oxygen species (ROS). Clinical research shows TMBIM6 plays a key role in many of the world's top diseases/injuries (i.e., Alzheimer's, Parkinson's, diabetes, obesity, brain injury, liver disease, heart disease, aging, etc.), including cancer, where TMBIM6 expression impacts patient survival, chemoresistance, cancer progression, and metastasis. We show TMBIM6 is activated by, and undergoes, different conformational changes that dictate its function following a significant change in the cell's IntraCellular Environment (ICE). TMBIM6 agonism, following ICE change, can help the cell overcome multiple stresses including toxin exposure, viral infection, wound healing, and excitotoxicity. However, in cancer cells TMBIM6 agonism results in rapid paraptotic induction irrespective of the cancer type, sub-type, genotype or phenotype. Furthermore, the level of TMBIM6 expression in cancer did not dictate the level of paraptotic induction; however, it did dictate the rate at which paraptosis occurred. TMBIM6 agonism did not induce paraptosis in cancer via canonical routes involving p38 MAPK, JNK, ERK, UPR, autophagy, proteasomes, or Caspase-9. Instead, TMBIM6 agonism in cancer upregulates cytosolic Ca2+ and ROS, activates lysosome biogenesis, and induces paraptosis via ERAD II mechanisms. In xenograft models, we show TMBIM6 agonism induces rapid cancer cell death with no toxicity, even at high doses of TMBIM6 agonist (>450 mg/kg). In summary, this study shows TMBIM6's functional diversity is only activated by severe ICE change in diseased/injured cells, highlighting its transformative potential as a therapeutic target across various diseases and injuries, including cancer.
Collapse
Affiliation(s)
| | | | | | - Hai Liu
- Viva Biotech, Shanghai, China
| | | | | | - Wei Luo
- MicroQuin, Cambridge, MA, USA
| |
Collapse
|
3
|
Tsai RF, Chen HY, Cheng YC, Lo FC, Lu TT, Liaw WF, Chiang YW. Regulatory Mechanisms and Synergistic Enhancement of the Diiron YtfE Protein in Nitric Oxide Reduction. Chemistry 2025; 31:e202403680. [PMID: 39431983 DOI: 10.1002/chem.202403680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
The diiron-containing YtfE protein in Escherichia coli is pivotal in counteracting nitrosative stress, a critical barrier to bacterial viability. This study delves into the biochemical complexity governing YtfE's conversion of nitric oxide (NO) to nitrous oxide, a key process for alleviating nitrosative stress. Through site-directed mutagenesis, we explored YtfE's molecular structure, with a particular focus on two internal transport tunnels important for its activity. Our findings illuminate Tunnel 1 as the primary conduit for substrate transport, regulated by conformational shifts within the N-terminal domain that enable substrate access to the diiron core in the C-terminal domain. Tunnel 2 emerges as a secondary, supportive route, activated when Tunnel 1 is compromised. This result challenges a previous model of distinct tunnels for substrate entry and product exit, suggesting both tunnels are capable of transporting substrates and products. Our engineering efforts enhanced the role of Tunnel 2, enabling a synergistic operation with Tunnel 1 and tripling YtfE's enzymatic activity compared to its wild-type form. This research not only deepens our understanding of YtfE's regulatory mechanism for NO reduction but also introduces a strategy to amplify its enzymatic efficiency. The outcomes offer new ravenues for modulating bacterial stress responses.
Collapse
Affiliation(s)
- Ruei-Fong Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300-044, TAIWAN
| | - Hung-Ying Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300-044, TAIWAN
| | - Yang-Chun Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300-044, TAIWAN
| | - Feng-Chun Lo
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300-044, TAIWAN
| | - Tsai-Te Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300-044, TAIWAN
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300-044, TAIWAN
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300-044, TAIWAN
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300-044, TAIWAN
| |
Collapse
|
4
|
Cheng CC, Tsai RF, Lin CK, Tan KT, Kalendra V, Simenas M, Lin CW, Chiang YW. In-Cell DEER Spectroscopy of Nanodisc-Delivered Membrane Proteins in Living Cell Membranes. JACS AU 2024; 4:3766-3770. [PMID: 39483229 PMCID: PMC11522923 DOI: 10.1021/jacsau.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024]
Abstract
Membrane proteins are integral to numerous cellular processes, yet their conformational dynamics in native environments remains difficult to study. This study introduces a nanodelivery method using nanodiscs to transport spin-labeled membrane proteins into the membranes of living cells, enabling direct in-cell double electron-electron resonance (DEER) spectroscopy measurements. We investigated the membrane protein BsYetJ, incorporating spin labels at key positions to monitor conformational changes. Our findings demonstrate successful delivery and high-quality DEER data for BsYetJ in both Gram-negative E. coli and Gram-positive B. subtilis membranes. The delivered BsYetJ retains its ability to transport calcium ions. DEER analysis reveals distinct conformational states of BsYetJ in different membrane environments, highlighting the influence of lipid composition on the protein structure. This nanodelivery method overcomes traditional limitations, enabling the study of membrane proteins in more physiologically relevant conditions.
Collapse
Affiliation(s)
- Chu-Chun Cheng
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Ruei-Fong Tsai
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Che-Kai Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Kui-Thong Tan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Vidmantas Kalendra
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Mantas Simenas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Chun-Wei Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
5
|
Tsai CL, Chang JW, Cheng KY, Lan YJ, Hsu YC, Lin QD, Chen TY, Shih O, Lin CH, Chiang PH, Simenas M, Kalendra V, Chiang YW, Chen CH, Jeng US, Wang SK. Comprehensive characterization of polyproline tri-helix macrocyclic nanoscaffolds for predictive ligand positioning. NANOSCALE ADVANCES 2024; 6:947-959. [PMID: 38298598 PMCID: PMC10825903 DOI: 10.1039/d3na00945a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Multivalent ligands hold promise for enhancing avidity and selectivity to simultaneously target multimeric proteins, as well as potentially modulating receptor signaling in pharmaceutical applications. Essential for these manipulations are nanosized scaffolds that precisely control ligand display patterns, which can be achieved by using polyproline oligo-helix macrocyclic nanoscaffolds via selective binding to protein oligomers and cell surface receptors. This work focuses on synthesis and structural characterization of different-sized polyproline tri-helix macrocyclic (PP3M) scaffolds. Through combined analysis of circular dichroism (CD), small- and wide-angle X-ray scattering (SWAXS), electron spin resonance (ESR) spectroscopy, and molecular modeling, a non-coplanar tri-helix loop structure with partially crossover helix ends is elucidated. This structural model aligns well with scanning tunneling microscopy (STM) imaging. The present work enhances the precision of nanoscale organic synthesis, offering prospects for controlled ligand positioning on scaffolds. This advancement paves the way for further applications in nanomedicine through selective protein interaction, manipulation of cell surface receptor functions, and developments of more complex polyproline-based nanostructures.
Collapse
Affiliation(s)
- Chia-Lung Tsai
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Je-Wei Chang
- National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan
| | - Kum-Yi Cheng
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University Taipei 106319 Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Yi-Cheng Hsu
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Qun-Da Lin
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Tzu-Yuan Chen
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan
| | - Chih-Hsun Lin
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University Taipei 106319 Taiwan
| | - Po-Hsun Chiang
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Mantas Simenas
- Faculty of Physics, Vilnius University Sauletekio 3 LT-10257 Vilnius Lithuania
| | - Vidmantas Kalendra
- Faculty of Physics, Vilnius University Sauletekio 3 LT-10257 Vilnius Lithuania
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Chun-Hsien Chen
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University Taipei 106319 Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center Hsinchu 300092 Taiwan
- Department of Chemical Engineering, National Tsing Hua University Hsinchu 300044 Taiwan
- College of Semiconductor Research, National Tsing Hua University Hsinchu 300044 Taiwan
| | - Sheng-Kai Wang
- Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University Hsinchu 300044 Taiwan
| |
Collapse
|
6
|
Yeh PS, Li CC, Lu YS, Chiang YW. Structural Insights into the Binding and Degradation Mechanisms of Protoporphyrin IX by the Translocator Protein TSPO. JACS AU 2023; 3:2918-2929. [PMID: 37885593 PMCID: PMC10598825 DOI: 10.1021/jacsau.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
The 18 kDa translocator protein (TSPO) has gained considerable attention as a clinical biomarker for neuroinflammation and a potential therapeutic target. However, the mechanisms by which TSPO associates with ligands, particularly the endogenous porphyrin ligand protoporphyrin IX (PpIX), remain poorly understood. In this study, we employed mutagenesis- and spectroscopy-based functional assays to investigate TSPO-mediated photo-oxidative degradation of PpIX and identify key residues involved in the reaction. We provide structural evidence using electron spin resonance, which sheds light on the highly conserved intracellular loop (LP1) connecting transmembrane 1 (TM1) and TM2. Our findings show that LP1 does not act as a lid to regulate ligand binding; instead, it interacts strongly with the TM3-TM4 linker (LP3) to stabilize the local structure of LP3. This LP1-LP3 interaction is crucial for maintaining the binding pocket structure, which is essential for proper ligand binding. Our results also demonstrate that PpIX accesses the pocket through the lipid bilayer without requiring conformational changes in TSPO. This study provides an improved understanding of TSPO-mediated PpIX degradation, highlighting potential therapeutic strategies to regulate the reaction.
Collapse
Affiliation(s)
- Pei-Shan Yeh
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chieh-Chin Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yi-Shan Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
7
|
Kao TY, Chiang YW. DEERefiner-assisted structural refinement using pulsed dipolar spectroscopy: a study on multidrug transporter LmrP. Phys Chem Chem Phys 2023; 25:24508-24517. [PMID: 37656008 DOI: 10.1039/d3cp02569a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Pulsed dipolar spectroscopy, such as double electron-electron resonance (DEER), has been underutilized in protein structure determination, despite its ability to provide valuable spatial information. In this study, we present DEERefiner, a user-friendly MATLAB-based GUI program that enables the modeling of protein structures by combining an initial structure and DEER distance restraints. We illustrate the effectiveness of DEERefiner by successfully modeling the ligand-dependent conformational changes of the proton-drug antiporter LmrP to an extracellular-open-like conformation with an impressive precision of 0.76 Å. Additionally, DEERefiner was able to uncover a previously hypothesized but experimentally unresolved proton-dependent conformation of LmrP, characterized as an extracellular-closed/partially intracellular-open conformation, with a precision of 1.16 Å. Our work not only highlights the ability of DEER spectroscopy to model protein structures but also reveals the potential of DEERefiner to advance the field by providing an accessible and applicable tool for precise protein structure modeling, thereby paving the way for deeper insights into protein function.
Collapse
Affiliation(s)
- Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan.
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan.
| |
Collapse
|
8
|
Bremer E, Calteau A, Danchin A, Harwood C, Helmann JD, Médigue C, Palsson BO, Sekowska A, Vallenet D, Zuniga A, Zuniga C. A model industrial workhorse:
Bacillus subtilis
strain 168 and its genome after a quarter of a century. Microb Biotechnol 2023; 16:1203-1231. [PMID: 37002859 DOI: 10.1111/1751-7915.14257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).
Collapse
Affiliation(s)
- Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine Hong Kong University Pokfulam SAR Hong Kong China
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute Newcastle University Baddiley Clark Building Newcastle upon Tyne UK
| | - John D. Helmann
- Department of Microbiology Cornell University Ithaca New York USA
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Bernhard O. Palsson
- Department of Bioengineering University of California San Diego La Jolla USA
| | | | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Abril Zuniga
- Department of Biology San Diego State University San Diego California USA
| | - Cristal Zuniga
- Bioinformatics and Medical Informatics Graduate Program San Diego State University San Diego California USA
| |
Collapse
|
9
|
Lan YJ, Cheng CC, Chu SC, Chiang YW. A gating mechanism of the BsYetJ calcium channel revealed in an endoplasmic reticulum lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184153. [PMID: 36948481 DOI: 10.1016/j.bbamem.2023.184153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The transmembrane BAX inhibitor-1-containing motif 6 (TMBIM6) is suggested to modulate apoptosis by regulating calcium homeostasis in the endoplasmic reticulum (ER). However, the precise molecular mechanism underlying this calcium regulation remains poorly understood. To shed light on this issue, we investigated all negatively charged residues in BsYetJ, a bacterial homolog of TMBIM6, using mutagenesis and fluorescence-based functional assays. We reconstituted BsYetJ in membrane vesicles with a lipid composition similar to that of the ER. Our results show that the charged residues E49 and R205 work together as a major gate, regulating calcium conductance in these ER-like lipid vesicles. However, these residues become largely inactive when reconstituted in other lipid environments. In addition, we found that D195 acts as a minor filter compared to the E49-R205 dyad. Our study uncovers a previously unknown function of BsYetJ/TMBIM6 in the calcium-dependent inactivation of BsYetJ, providing a framework for the development of a lipid-dependent mechanistic model of BsYetJ that will facilitate our understanding of calcium-dependent apoptosis.
Collapse
Affiliation(s)
- Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chu-Chun Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Shu-Chi Chu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan.
| |
Collapse
|
10
|
Ho PS, Kao TY, Li CC, Lan YJ, Lai YC, Chiang YW. Nanodisc Lipids Exhibit Singular Behaviors Implying Critical Phenomena. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15372-15383. [PMID: 36454955 DOI: 10.1021/acs.langmuir.2c02596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanodiscs are broadly used for characterization of membrane proteins as they are generally assumed to provide a near-native environment. In fact, it is an open question whether the physical properties of lipids in nanodiscs and membrane vesicles of the same lipid composition are identical. Here, we investigate the properties of lipids (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, and their mixtures) in two different sample types, nanodiscs and multilamellar vesicles, by means of spin-label electron spin resonance techniques. Our results provide a quantitative description of lipid dynamics and ordering, elucidating the molecular details of how lipids in the two sample types behave differently in response to temperature and lipid composition. We show that the properties of lipids are altered in nanodiscs such that the dissimilarity of the fluid and gel lipid phases is reduced, and the first-order phase transitions are largely abolished in nanodiscs. We unveil that the ensemble of lipids in the middle of a nanodisc bilayer, as probed by the end-chain spin-label 16-PC, is promoted to a state close to a miscibility critical point, thereby rendering the phase transitions continuous. Critical phenomena have recently been proposed to explain features of the heterogeneity in native cell membranes. Our results lay the groundwork for how to establish a near-native environment in nanodiscs with simple organization of lipid components.
Collapse
Affiliation(s)
- Pei-Shan Ho
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chieh-Chin Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yei-Chen Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402-002, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
11
|
Patron M, Tarasenko D, Nolte H, Kroczek L, Ghosh M, Ohba Y, Lasarzewski Y, Ahmadi ZA, Cabrera-Orefice A, Eyiama A, Kellermann T, Rugarli EI, Brandt U, Meinecke M, Langer T. Regulation of mitochondrial proteostasis by the proton gradient. EMBO J 2022; 41:e110476. [PMID: 35912435 PMCID: PMC9379554 DOI: 10.15252/embj.2021110476] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m‐AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+/H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m‐AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m‐AAA protease. The m‐AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.
Collapse
Affiliation(s)
- Maria Patron
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Daryna Tarasenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Lara Kroczek
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mausumi Ghosh
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Yohsuke Ohba
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Zeinab Alsadat Ahmadi
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Akinori Eyiama
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Tim Kellermann
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Elena I Rugarli
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Structure of the Human BK Ion Channel in Lipid Environment. MEMBRANES 2022; 12:membranes12080758. [PMID: 36005673 PMCID: PMC9414842 DOI: 10.3390/membranes12080758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023]
Abstract
Voltage-gated and ligand-modulated ion channels play critical roles in excitable cells. To understand the interplay among voltage sensing, ligand binding, and channel opening, the structures of ion channels in various functional states and in lipid membrane environments need to be determined. Here, the random spherically constrained (RSC) single-particle cryo-EM method was employed to study human large conductance voltage- and calcium-activated potassium (hBK or hSlo1) channels reconstituted into liposomes. The hBK structure was determined at 3.5 Å resolution in the absence of Ca2+. Instead of the common fourfold symmetry observed in ligand-modulated ion channels, a twofold symmetry was observed in hBK in liposomes. Compared with the structure of isolated hSlo1 Ca2+ sensing gating rings, two opposing subunits in hBK unfurled, resulting in a wider opening towards the transmembrane region of hBK. In the pore gate domain, two opposing subunits also moved downwards relative to the two other subunits.
Collapse
|
13
|
Chu BK, Tsai R, Hung C, Kuo Y, Chen EH, Chiang Y, Chan SI, Chen RP. Location of the cross-β structure in prion fibrils: A search by seeding and electron spin resonance spectroscopy. Protein Sci 2022; 31:e4326. [PMID: 35634767 PMCID: PMC9112485 DOI: 10.1002/pro.4326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022]
Abstract
Prion diseases are transmissible fatal neurodegenerative disorders spreading between humans and other mammals. The pathogenic agent, prion, is a protease-resistant, β-sheet-rich protein aggregate, converted from a membrane protein called PrPC . PrPSc is the misfolded form of PrPC and undergoes self-propagation to form the infectious amyloids. Since the key hallmark of prion disease is amyloid formation, identifying and studying which segments are involved in the amyloid core can provide molecular details about prion diseases. It has been known that the prion protein could also form non-infectious fibrils in the presence of denaturants. In this study, we employed a combination of site-directed nitroxide spin-labeling, fibril seeding, and electron spin resonance (ESR) spectroscopy to identify the structure of the in vitro-prepared full-length mouse prion fibrils. It is shown that in the in vitro amyloidogenesis, the formation of the amyloid core is linked to an α-to-β structural transformation involving the segment 160-224, which contains strand 2, helix 2, and helix 3. This method is particularly suitable for examining the hetero-seeded amyloid fibril structure, as the unlabeled seeds are invisible by ESR spectroscopy. It can be applied to study the structures of different strains of infectious prions or other amyloid fibrils in the future.
Collapse
Affiliation(s)
- Brett K.‐Y. Chu
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
| | - Ruei‐Fong Tsai
- Department of ChemistryNational Tsing Hua UniversityHsinchuTaiwan
| | - Chien‐Lun Hung
- Department of ChemistryNational Tsing Hua UniversityHsinchuTaiwan
| | - Yun‐Hsuan Kuo
- Department of ChemistryNational Tsing Hua UniversityHsinchuTaiwan
| | - Eric H.‐L. Chen
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Yun‐Wei Chiang
- Department of ChemistryNational Tsing Hua UniversityHsinchuTaiwan
| | - Sunney I. Chan
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
- Institute of ChemistryAcademia SinicaTaipeiTaiwan
| | - Rita P.‐Y. Chen
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
- Institute of Biochemical SciencesNational Taiwan UniversityTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
| |
Collapse
|
14
|
Kao TY, Hung CL, Lan YJ, Lee SW, Chiang YW. Simple Cryoprotectant-Free Method to Advance Pulsed Dipolar ESR Spectroscopy for Capturing Protein Conformational Ensembles. J Phys Chem B 2022; 126:423-429. [PMID: 35005966 DOI: 10.1021/acs.jpcb.1c08190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Double electron-electron resonance (DEER) is a powerful technique for studying protein conformations. To preserve the room-temperature ensemble, proteins are usually shock-frozen in liquid nitrogen prior to DEER measurements. The use of cryoprotectant additives is, therefore, necessary to ensure the formation of a vitrified state. Here, we present a simple modification of the freezing process using a flexible fused silica microcapillary, which increases the freezing rates and thus enables DEER measurement without the use of cryoprotectants. The Bid protein, which is highly sensitive to cryoprotectant additives, is used as a model. We show that DEER with the simple modification can successfully reveal the cold denaturation of Bid, which was not possible with the conventional DEER preparations. The DEER result reveals the nature of Bid folding. Our method advances DEER for capturing the chemically and thermally induced conformational changes of a protein in a cryoprotectant-free medium.
Collapse
Affiliation(s)
- Te-Yu Kao
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chien-Lun Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yu-Jing Lan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Su Wei Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
15
|
Huang CT, Lai YC, Chen SY, Ho MR, Chiang YW, Hsu ST. Structural polymorphism and substrate promiscuity of a ribosome-associated molecular chaperone. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:375-386. [PMID: 37904759 PMCID: PMC10539794 DOI: 10.5194/mr-2-375-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/02/2021] [Indexed: 11/01/2023]
Abstract
Trigger factor (TF) is a highly conserved multi-domain molecular chaperone that exerts its chaperone activity at the ribosomal tunnel exit from which newly synthesized nascent chains emerge. TF also displays promiscuous substrate binding for a large number of cytosolic proteins independent of ribosome binding. We asked how TF recognizes a variety of substrates while existing in a monomer-dimer equilibrium. Paramagnetic nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy were used to show that dimeric TF displays a high degree of structural polymorphism in solution. A series of peptides has been generated to quantify their TF binding affinities in relation with their sequence compositions. The results confirmed a previous predication that TF preferentially binds to peptide fragments that are rich in aromatic and positively charged amino acids. NMR paramagnetic relaxation enhancement analysis showed that TF utilizes multiple binding sites, located in the chaperone domain and part of the prolyl trans-cis isomerization domain, to interact with these peptides. Dimerization of TF effectively sequesters most of the substrate binding sites, which are expected to become accessible upon binding to the ribosome as a monomer. As TF lacks ATPase activity, which is commonly used to trigger conformational changes within molecular chaperones in action, the ribosome-binding-associated disassembly and conformational rearrangements may be the underlying regulatory mechanism of its chaperone activity.
Collapse
Affiliation(s)
- Chih-Ting Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yei-Chen Lai
- Department of Chemistry, National Tsing Hua University, Hsichu 30013, Taiwan
| | - Szu-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsichu 30013, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|