1
|
James AM, Farnung L. Structural basis of human CHD1 nucleosome recruitment and pausing. Mol Cell 2025; 85:1938-1951.e6. [PMID: 40334658 DOI: 10.1016/j.molcel.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/26/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
Chromatin remodelers regulate gene expression and genome maintenance by controlling nucleosome positioning, but the structural basis for their regulated and directional activity remains poorly understood. Here, we present three cryoelectron microscopy (cryo-EM) structures of human chromodomain helicase DNA-binding protein 1 (CHD1) bound to nucleosomes that reveal previously unobserved recruitment and regulatory states. We identify a structural element, termed the "anchor element," that connects the CHD1 ATPase motor to the nucleosome entry-side acidic patch. The anchor element coordinates with other regulatory modules, including the gating element, which undergoes a conformational switch critical for remodeling. Our structures demonstrate how the DNA-binding region of CHD1 binds entry- and exit-side DNA during remodeling to achieve directional sliding. The observed structural elements are conserved across chromatin remodelers, suggesting a unified mechanism for nucleosome recognition and remodeling. Our findings show how chromatin remodelers couple nucleosome recruitment to regulated DNA translocation, providing a framework for understanding chromatin remodeler mechanisms beyond DNA translocation.
Collapse
Affiliation(s)
- Allison M James
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Chen RW, Stoeber SD, Nodelman IM, Chen H, Yang L, Bowman GD, Bai L, Poirier MG. Native nucleosome-positioning elements for the investigation of nucleosome repositioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633597. [PMID: 39868261 PMCID: PMC11760725 DOI: 10.1101/2025.01.17.633597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Nucleosome repositioning is essential for establishing nucleosome-depleted regions (NDRs) to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogenously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer. Due to the artificial nature of 601, native NPEs are needed to explore the role of DNA sequence in nucleosome repositioning. Here, we characterize the position distributions and nucleosome formation free energy for a set of yeast native nucleosomes (YNNs) from Saccharomyces cerevisiae. We show these native NPEs can be used in biochemical studies of nucleosome repositioning by transcription factors (TFs) and the chromatin remodeler Chd1. TFs could directly reposition a fraction of nucleosomes containing native NPEs, but not 601-containing nucleosomes. In contrast, partial unwrapping was similar for 601 and native NPE sequences, and the rate of ATP-dependent remodeling by Chd1 was within the range of the fast and slow directions of the 601 nucleosomes. This set of native NPEs provides an alternative to the 601 NPE that can be used for probing the repositioning of nucleosomes that contain native DNA sequences.
Collapse
Affiliation(s)
- Ruo-Wen Chen
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Shane D. Stoeber
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ilana M. Nodelman
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hengye Chen
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lloyd Yang
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory D. Bowman
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael G. Poirier
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Farnung L. Chromatin Transcription Elongation - A Structural Perspective. J Mol Biol 2025; 437:168845. [PMID: 39476950 DOI: 10.1016/j.jmb.2024.168845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/10/2024]
Abstract
In eukaryotic cells, transcription by RNA polymerase II occurs in the context of chromatin, requiring the transcription machinery to navigate through nucleosomes as it traverses gene bodies. Recent advances in structural biology have provided unprecedented insights into the mechanisms underlying transcription elongation. This review presents a structural perspective on transcription through chromatin, focusing on the latest findings from high-resolution structures of transcribing RNA polymerase II-nucleosome complexes. I discuss how RNA polymerase II, in concert with elongation factors such as SPT4/5, SPT6, ELOF1, and the PAF1 complex, engages with and transcribes through nucleosomes. The review examines the stepwise unwrapping of nucleosomal DNA as polymerase advances, the roles of elongation factors in facilitating this process, and the mechanisms of nucleosome retention and transfer during transcription. This structural perspective provides a foundation for understanding the intricate interplay between the transcription machinery and chromatin, offering insights into how cells balance the need for genetic accessibility with the maintenance of genome stability and epigenetic regulation.
Collapse
Affiliation(s)
- Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Tripplehorn SA, Shirra MK, Lardo SM, Marvil HG, Hainer SJ, Arndt KM. A direct interaction between the Chd1 CHCT domain and Rtf1 controls Chd1 distribution and nucleosome positioning on active genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627179. [PMID: 39677735 PMCID: PMC11643122 DOI: 10.1101/2024.12.06.627179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The nucleosome remodeler Chd1 is required for the re-establishment of nucleosome positioning in the wake of transcription elongation by RNA Polymerase II. Previously, we found that Chd1 occupancy on gene bodies depends on the Rtf1 subunit of the Paf1 complex in yeast. Here, we identify an N-terminal region of Rtf1 and the CHCT domain of Chd1 as sufficient for their interaction and demonstrate that this interaction is direct. Mutations that disrupt the Rtf1-Chd1 interaction result in an accumulation of Chd1 at the 5' ends of Chd1-occupied genes, increased cryptic transcription, altered nucleosome positioning, and concordant shifts in histone modification profiles. We show that a homologous region within mouse RTF1 interacts with the CHCT domains of mouse CHD1 and CHD2. This work supports a conserved mechanism for coupling Chd1 family proteins to the transcription elongation complex and identifies a cellular function for a domain within Chd1 about which little is known.
Collapse
Affiliation(s)
| | - Margaret K. Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Santana M. Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Hannah G. Marvil
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Sarah J. Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
5
|
Reid XJ, Zhong Y, Mackay JP. How does CHD4 slide nucleosomes? Biochem Soc Trans 2024; 52:1995-2008. [PMID: 39221830 PMCID: PMC11555702 DOI: 10.1042/bst20230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Chromatin remodelling enzymes reposition nucleosomes throughout the genome to regulate the rate of transcription and other processes. These enzymes have been studied intensively since the 1990s, and yet the mechanism by which they operate has only very recently come into focus, following advances in cryoelectron microscopy and single-molecule biophysics. CHD4 is an essential and ubiquitous chromatin remodelling enzyme that until recently has received less attention than remodellers such as Snf2 and CHD1. Here we review what recent work in the field has taught us about how CHD4 reshapes the genome. Cryoelectron microscopy and single-molecule studies demonstrate that CHD4 shares a central remodelling mechanism with most other chromatin remodellers. At the same time, differences between CHD4 and other chromatin remodellers result from the actions of auxiliary domains that regulate remodeller activity by for example: (1) making differential interactions with nucleosomal epitopes such as the acidic patch and the N-terminal tail of histone H4, and (2) inducing the formation of distinct multi-protein remodelling complexes (e.g. NuRD vs ChAHP). Thus, although we have learned much about remodeller activity, there is still clearly much more waiting to be revealed.
Collapse
Affiliation(s)
- Xavier J. Reid
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| | - Yichen Zhong
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| |
Collapse
|
6
|
Engeholm M, Roske JJ, Oberbeckmann E, Dienemann C, Lidschreiber M, Cramer P, Farnung L. Resolution of transcription-induced hexasome-nucleosome complexes by Chd1 and FACT. Mol Cell 2024; 84:3423-3437.e8. [PMID: 39270644 PMCID: PMC11441371 DOI: 10.1016/j.molcel.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
To maintain the nucleosome organization of transcribed genes, ATP-dependent chromatin remodelers collaborate with histone chaperones. Here, we show that at the 5' ends of yeast genes, RNA polymerase II (RNAPII) generates hexasomes that occur directly adjacent to nucleosomes. The resulting hexasome-nucleosome complexes are then resolved by Chd1. We present two cryoelectron microscopy (cryo-EM) structures of Chd1 bound to a hexasome-nucleosome complex before and after restoration of the missing inner H2A/H2B dimer by FACT. Chd1 uniquely interacts with the complex, positioning its ATPase domain to shift the hexasome away from the nucleosome. In the absence of the inner H2A/H2B dimer, its DNA-binding domain (DBD) packs against the ATPase domain, suggesting an inhibited state. Restoration of the dimer by FACT triggers a rearrangement that displaces the DBD and stimulates Chd1 remodeling. Our results demonstrate how chromatin remodelers interact with a complex nucleosome assembly and suggest how Chd1 and FACT jointly support transcription by RNAPII.
Collapse
Affiliation(s)
- Maik Engeholm
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany.
| | - Johann J Roske
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Michael Lidschreiber
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany.
| | - Lucas Farnung
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany; Harvard Medical School, Blavatnik Institute, Department of Cell Biology, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25:309-332. [PMID: 38081975 DOI: 10.1038/s41580-023-00683-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 03/28/2024]
Abstract
The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.
Collapse
Affiliation(s)
- Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Avinash B Patel
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Yuan He
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
8
|
Marunde MR, Fuchs HA, Burg JM, Popova IK, Vaidya A, Hall NW, Weinzapfel EN, Meiners MJ, Watson R, Gillespie ZB, Taylor HF, Mukhsinova L, Onuoha UC, Howard SA, Novitzky K, McAnarney ET, Krajewski K, Cowles MW, Cheek MA, Sun ZW, Venters BJ, Keogh MC, Musselman CA. Nucleosome conformation dictates the histone code. eLife 2024; 13:e78866. [PMID: 38319148 PMCID: PMC10876215 DOI: 10.7554/elife.78866] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized 'codes' that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the 'histone code' concept and interrogate it at the nucleosome level.
Collapse
Affiliation(s)
| | - Harrison A Fuchs
- Department of Biochemistry, University of Iowa Carver College of MedicineAuroraUnited States
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel HillChapel HillUnited States
| | | | | | | | | | | | - Catherine A Musselman
- Department of Biochemistry, University of Iowa Carver College of MedicineAuroraUnited States
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
9
|
Bacic L, Gaullier G, Mohapatra J, Mao G, Brackmann K, Panfilov M, Liszczak G, Sabantsev A, Deindl S. Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1. Nat Commun 2024; 15:1000. [PMID: 38307862 PMCID: PMC10837151 DOI: 10.1038/s41467-024-45237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
The chromatin remodeler ALC1 is activated by DNA damage-induced poly(ADP-ribose) deposited by PARP1/PARP2 and their co-factor HPF1. ALC1 has emerged as a cancer drug target, but how it is recruited to ADP-ribosylated nucleosomes to affect their positioning near DNA breaks is unknown. Here we find that PARP1/HPF1 preferentially initiates ADP-ribosylation on the histone H2B tail closest to the DNA break. To dissect the consequences of such asymmetry, we generate nucleosomes with a defined ADP-ribosylated H2B tail on one side only. The cryo-electron microscopy structure of ALC1 bound to such an asymmetric nucleosome indicates preferential engagement on one side. Using single-molecule FRET, we demonstrate that this asymmetric recruitment gives rise to directed sliding away from the DNA linker closest to the ADP-ribosylation site. Our data suggest a mechanism by which ALC1 slides nucleosomes away from a DNA break to render it more accessible to repair factors.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
- Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden
| | - Jugal Mohapatra
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Mikhail Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Glen Liszczak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
10
|
Park S, Brandani GB, Ha T, Bowman G. Bi-directional nucleosome sliding by the Chd1 chromatin remodeler integrates intrinsic sequence-dependent and ATP-dependent nucleosome positioning. Nucleic Acids Res 2023; 51:10326-10343. [PMID: 37738162 PMCID: PMC10602870 DOI: 10.1093/nar/gkad738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/24/2023] Open
Abstract
Chromatin remodelers use a helicase-type ATPase motor to shift DNA around the histone core. Although not directly reading out the DNA sequence, some chromatin remodelers exhibit a sequence-dependent bias in nucleosome positioning, which presumably reflects properties of the DNA duplex. Here, we show how nucleosome positioning by the Chd1 remodeler is influenced by local DNA perturbations throughout the nucleosome footprint. Using site-specific DNA cleavage coupled with next-generation sequencing, we show that nucleosomes shifted by Chd1 can preferentially localize DNA perturbations - poly(dA:dT) tracts, DNA mismatches, and single-nucleotide insertions - about a helical turn outside the Chd1 motor domain binding site, super helix location 2 (SHL2). This phenomenon occurs with both the Widom 601 positioning sequence and the natural +1 nucleosome sequence from the Saccharomyces cerevisiae SWH1 gene. Our modeling indicates that localization of DNA perturbations about a helical turn outward from SHL2 results from back-and-forth sliding due to remodeler action on both sides of the nucleosome. Our results also show that barrier effects from DNA perturbations can be extended by the strong phasing of nucleosome positioning sequences.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregory D Bowman
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
11
|
Zhong Y, Moghaddas Sani H, Paudel BP, Low JKK, Silva APG, Mueller S, Deshpande C, Panjikar S, Reid XJ, Bedward MJ, van Oijen AM, Mackay JP. The role of auxiliary domains in modulating CHD4 activity suggests mechanistic commonality between enzyme families. Nat Commun 2022; 13:7524. [PMID: 36473839 PMCID: PMC9726900 DOI: 10.1038/s41467-022-35002-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
CHD4 is an essential, widely conserved ATP-dependent translocase that is also a broad tumour dependency. In common with other SF2-family chromatin remodelling enzymes, it alters chromatin accessibility by repositioning histone octamers. Besides the helicase and adjacent tandem chromodomains and PHD domains, CHD4 features 1000 residues of N- and C-terminal sequence with unknown structure and function. We demonstrate that these regions regulate CHD4 activity through different mechanisms. An N-terminal intrinsically disordered region (IDR) promotes remodelling integrity in a manner that depends on the composition but not sequence of the IDR. The C-terminal region harbours an auto-inhibitory region that contacts the helicase domain. Auto-inhibition is relieved by a previously unrecognized C-terminal SANT-SLIDE domain split by ~150 residues of disordered sequence, most likely by binding of this domain to substrate DNA. Our data shed light on CHD4 regulation and reveal strong mechanistic commonality between CHD family members, as well as with ISWI-family remodellers.
Collapse
Affiliation(s)
- Yichen Zhong
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Hakimeh Moghaddas Sani
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Bishnu P. Paudel
- grid.1007.60000 0004 0486 528XMolecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia ,grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Jason K. K. Low
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Ana P. G. Silva
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Stefan Mueller
- grid.1007.60000 0004 0486 528XMolecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia ,grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Chandrika Deshpande
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Santosh Panjikar
- grid.248753.f0000 0004 0562 0567Australian Synchrotron, Clayton, VIC 3168 Australia ,grid.1002.30000 0004 1936 7857Department of Molecular Biology and Biochemistry, Monash University, Clayton, VIC 3800 Australia
| | - Xavier J. Reid
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Max J. Bedward
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Antoine M. van Oijen
- grid.1007.60000 0004 0486 528XMolecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia ,grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Joel P. Mackay
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| |
Collapse
|
12
|
Kondalaji SG, Bowman GD. In Vitro Mapping of Nucleosome Positions at Base-Pair Resolution Using Ortho-Phenanthroline. Curr Protoc 2022; 2:e518. [PMID: 35943282 PMCID: PMC9373710 DOI: 10.1002/cpz1.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The positions of nucleosomes along genomic DNA play a role in defining patterns of gene expression and chromatin organization. Determination of nucleosome positions in vivo and in vitro, as revealed by the locations of histones on DNA, has provided insight into mechanisms of nucleosome sliding, spacing, assembly, and disassembly. Here, we describe methods for the in vitro determination of histone-DNA contacts at base-pair (bp) resolution. The protocol involves the labeling of histones with ortho-phenanthroline (OP), site-specific cleavage of nucleosomal DNA, and processing and analysis of the resulting DNA fragments. This methodology provides an efficient and high-resolution means for studying kinetics and behavior of enzymes that alter nucleosome structure and/or positioning, and can be used to identify preferred distributions of nucleosomes on natural DNA sequences. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Cysteine-specific chemical modification of folded histones with ortho-phenanthroline (OP) Basic Protocol 2: Nucleosome sliding assay adapted for OP mapping of histone-DNA contacts Basic Protocol 3: OP-mediated cleavage, processing, and analysis of DNA fragments using a sequencing gel Support Protocol 1: Preparation of dideoxy sequencing ladders Support Protocol 2: Preparation and running of a denaturing DNA sequencing gel.
Collapse
Affiliation(s)
| | - Gregory D Bowman
- T. C. Jenkins Department of Biophysics, Johns Hopkins
University, Baltimore, Maryland 21218
| |
Collapse
|
13
|
Acidic patch histone mutations and their effects on nucleosome remodeling. Biochem Soc Trans 2022; 50:907-919. [PMID: 35356970 DOI: 10.1042/bst20210773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Structural and biochemical studies have identified a histone surface on each side of the nucleosome disk termed 'the nucleosome acidic patch' that acts as a regulatory hub for the function of numerous nuclear proteins, including ATP-dependent chromatin complexes (remodelers). Four major remodeler subfamilies, SWI/SNF, ISWI, CHD, and INO80, have distinct modes of interaction with one or both nucleosome acidic patches, contributing to their specific remodeling outcomes. Genome-wide sequencing analyses of various human cancers have uncovered high-frequency mutations in histone coding genes, including some that map to the acidic patch. How cancer-related acidic patch histone mutations affect nucleosome remodeling is mainly unknown. Recent advances in in vitro chromatin reconstitution have enabled access to physiologically relevant nucleosomes, including asymmetric nucleosomes that possess both wild-type and acidic patch mutant histone copies. Biochemical investigation of these substrates revealed unexpected remodeling outcomes with far-reaching implications for alteration of chromatin structure. This review summarizes recent findings of how different remodeler families interpret wild-type and mutant acidic patches for their remodeling functions and discusses models for remodeler-mediated changes in chromatin landscapes as a consequence of acidic patch mutations.
Collapse
|
14
|
Nodelman IM, Das S, Faustino AM, Fried SD, Bowman GD, Armache JP. Nucleosome recognition and DNA distortion by the Chd1 remodeler in a nucleotide-free state. Nat Struct Mol Biol 2022; 29:121-129. [PMID: 35173352 DOI: 10.1038/s41594-021-00719-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Chromatin remodelers are ATP-dependent enzymes that reorganize nucleosomes within all eukaryotic genomes. Here we report a complex of the Chd1 remodeler bound to a nucleosome in a nucleotide-free state, determined by cryo-EM to 2.3 Å resolution. The remodeler stimulates the nucleosome to absorb an additional nucleotide on each strand at two different locations: on the tracking strand within the ATPase binding site and on the guide strand one helical turn from the ATPase motor. Remarkably, the additional nucleotide on the tracking strand is associated with a local transformation toward an A-form geometry, explaining how sequential ratcheting of each DNA strand occurs. The structure also reveals a histone-binding motif, ChEx, which can block opposing remodelers on the nucleosome and may allow Chd1 to participate in histone reorganization during transcription.
Collapse
Affiliation(s)
- Ilana M Nodelman
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Sayan Das
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Stephen D Fried
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory D Bowman
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
15
|
Determining translocation orientations of nucleic acid helicases. Methods 2021; 204:160-171. [PMID: 34758393 PMCID: PMC9076756 DOI: 10.1016/j.ymeth.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Helicase enzymes translocate along an RNA or DNA template with a defined polarity to unwind, separate, or remodel duplex strands for a variety of genome maintenance processes. Helicase mutations are commonly associated with a variety of diseases including aging, cancer, and neurodegeneration. Biochemical characterization of these enzymes has provided a wealth of information on the kinetics of unwinding and substrate preferences, and several high-resolution structures of helicases alone and bound to oligonucleotides have been solved. Together, they provide mechanistic insights into the structural translocation and unwinding orientations of helicases. However, these insights rely on structural inferences derived from static snapshots. Instead, continued efforts should be made to combine structure and kinetics to better define active translocation orientations of helicases. This review explores many of the biochemical and biophysical methods utilized to map helicase binding orientation to DNA or RNA substrates and includes several time-dependent methods to unequivocally map the active translocation orientation of these enzymes to better define the active leading and trailing faces.
Collapse
|
16
|
Abstract
Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrej Alendar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|