1
|
Durand T, Dodge GJ, Siuda RP, Higinbotham HR, Arbour CA, Ghosh S, Allen KN, Imperiali B. Proteome-wide bioinformatic annotation and functional validation of the monotopic phosphoglycosyl transferase superfamily. Proc Natl Acad Sci U S A 2024; 121:e2417572121. [PMID: 39602253 PMCID: PMC11626204 DOI: 10.1073/pnas.2417572121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Phosphoglycosyl transferases (PGTs) are membrane proteins that initiate glycoconjugate biosynthesis by transferring a phospho-sugar moiety from a soluble nucleoside diphosphate sugar to a membrane-embedded polyprenol phosphate acceptor. The centrality of PGTs in complex glycan assembly and the current lack of functional information make these enzymes high-value targets for biochemical investigation. In particular, the small monotopic PGT family is exclusively bacterial and represents the minimal functional unit of the monotopic PGT superfamily. Here, we combine a sequence similarity network analysis with a generalizable, luminescence-based activity assay to probe the substrate specificity of this family of monoPGTs in the bacterial cell-membrane fraction. This strategy allows us to identify specificity on a far more significant scale than previously achievable and correlate preferred substrate specificities with predicted structural differences within the conserved monoPGT fold. Finally, we present the proof-of-concept for a small-scale inhibitor screen (eight nucleoside analogs) with four monoPGTs of diverse substrate specificity, thus building a foundation for future inhibitor discovery initiatives.
Collapse
Affiliation(s)
- Theo Durand
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
- Imperial College London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Greg J. Dodge
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
- Structural Biology Unit, Biogen, Cambridge, MA02139
| | - Roxanne P. Siuda
- Department of Chemistry, Boston University, Boston, MA02215
- Department of Pharmacology Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA02215
| | - Hugh R. Higinbotham
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Soumi Ghosh
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Karen N. Allen
- Department of Chemistry, Boston University, Boston, MA02215
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
2
|
Durand T, Dodge GJ, Siuda RP, Higinbotham HR, Arbour CA, Ghosh S, Allen KN, Imperiali B. Proteome-Wide Bioinformatic Annotation and Functional Validation of the Monotopic Phosphoglycosyl Transferase Superfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602977. [PMID: 39026775 PMCID: PMC11257628 DOI: 10.1101/2024.07.10.602977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Phosphoglycosyl transferases (PGTs) are membrane proteins that initiate glycoconjugate biosynthesis by transferring a phospho-sugar moiety from a soluble nucleoside diphosphate sugar to a membrane-embedded polyprenol phosphate acceptor. The centrality of PGTs in complex glycan assembly and the current lack of functional information make these enzymes high-value targets for biochemical investigation. In particular, the small monotopic PGT family is exclusively bacterial and represents the minimal functional unit of the monotopic PGT superfamily. Here, we combine a sequence similarity network (SSN) analysis with a generalizable, luminescence-based activity assay to probe the substrate specificity of this family of monoPGTs in a bacterial cell-membrane fraction. This strategy allows us to identify specificity on a far more significant scale than previously achievable and correlate preferred substrate specificities with predicted structural differences within the conserved monoPGT fold. Finally, we present the proof-of-concept for a small-scale inhibitor screen (eight nucleoside analogs) with four monoPGTs of diverse substrate specificity, thus building a foundation for future inhibitor discovery initiatives.
Collapse
Affiliation(s)
- Theo Durand
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK
| | - Greg J. Dodge
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Current address Biogen, 225 Binney Street, Cambridge MA 02139, USA
| | - Roxanne P. Siuda
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston MA 02215, USA
- Dept. of Pharmacology Physiology, and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E Concord St L-630D, Boston, MA 02215, USA
| | - Hugh R. Higinbotham
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Soumi Ghosh
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karen N. Allen
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston MA 02215, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Dodge GJ, Anderson AJ, He Y, Liu W, Viner R, Imperiali B. Mapping the architecture of the initiating phosphoglycosyl transferase from S. enterica O-antigen biosynthesis in a liponanoparticle. eLife 2024; 12:RP91125. [PMID: 38358918 PMCID: PMC10942596 DOI: 10.7554/elife.91125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Bacterial cell surface glycoconjugates are critical for cell survival and for interactions between bacteria and their hosts. Consequently, the pathways responsible for their biosynthesis have untapped potential as therapeutic targets. The localization of many glycoconjugate biosynthesis enzymes to the membrane represents a significant challenge for expressing, purifying, and characterizing these enzymes. Here, we leverage cutting-edge detergent-free methods to stabilize, purify, and structurally characterize WbaP, a phosphoglycosyl transferase (PGT) from the Salmonella enterica (LT2) O-antigen biosynthesis. From a functional perspective, these studies establish WbaP as a homodimer, reveal the structural elements responsible for dimerization, shed light on the regulatory role of a domain of unknown function embedded within WbaP, and identify conserved structural motifs between PGTs and functionally unrelated UDP-sugar dehydratases. From a technological perspective, the strategy developed here is generalizable and provides a toolkit for studying other classes of small membrane proteins embedded in liponanoparticles beyond PGTs.
Collapse
Affiliation(s)
- Greg J Dodge
- Department of Biology and Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Alyssa J Anderson
- Department of Biology and Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yi He
- Thermo Fisher ScientificSan JoseUnited States
| | - Weijing Liu
- Thermo Fisher ScientificSan JoseUnited States
| | - Rosa Viner
- Thermo Fisher ScientificSan JoseUnited States
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
4
|
Seebald LM, Haratipour P, Jacobs MR, Bernstein HM, Kashemirov BA, McKenna CE, Imperiali B. Uridine Bisphosphonates Differentiate Phosphoglycosyl Transferase Superfamilies. J Am Chem Soc 2024; 146:3220-3229. [PMID: 38271668 PMCID: PMC10922802 DOI: 10.1021/jacs.3c11402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Complex bacterial glycoconjugates drive interactions between pathogens, symbionts, and their human hosts. Glycoconjugate biosynthesis is initiated at the membrane interface by phosphoglycosyl transferases (PGTs), which catalyze the transfer of a phosphosugar from a soluble uridine diphosphosugar (UDP-sugar) substrate to a membrane-bound polyprenol-phosphate (Pren-P). The two distinct superfamilies of PGT enzymes (polytopic and monotopic) show striking differences in their structure and mechanism. We designed and synthesized a series of uridine bisphosphonates (UBPs), wherein the diphosphate of the UDP and UDP-sugar is replaced by a substituted methylene bisphosphonate (CXY-BPs; X/Y = F/F, Cl/Cl, (S)-H/F, (R)-H/F, H/H, CH3/CH3). UBPs and UBPs incorporating an N-acetylglucosamine (GlcNAc) substituent at the β-phosphonate were evaluated as inhibitors of a polytopic PGT (WecA from Thermotoga maritima) and a monotopic PGT (PglC from Campylobacter jejuni). Although CHF-BP most closely mimics diphosphate with respect to its acid/base properties, the less basic CF2-BP conjugate more strongly inhibited PglC, whereas the more basic CH2-BP analogue was the strongest inhibitor of WecA. These surprising differences indicate different modes of ligand binding for the different PGT superfamilies, implicating a modified P-O- interaction with the structural Mg2+. For the monoPGT enzyme, the two diastereomeric CHF-BP conjugates, which feature a chiral center at the Pα-CHF-Pβ carbon, also exhibited strikingly different binding affinities and the inclusion of GlcNAc with the native α-anomer configuration significantly improved binding affinity. UBP-sugars are thus revealed as informative new mechanistic probes of PGTs that may aid development of novel antibiotic agents for the exclusively prokaryotic monoPGT superfamily.
Collapse
Affiliation(s)
- Leah M. Seebald
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pouya Haratipour
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Michaela R. Jacobs
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Hannah M. Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Arbour CA, Nagar R, Bernstein HM, Ghosh S, Al-Sammarraie Y, Dorfmueller HC, Ferguson MAJ, Stanley-Wall NR, Imperiali B. Defining early steps in Bacillus subtilis biofilm biosynthesis. mBio 2023; 14:e0094823. [PMID: 37650625 PMCID: PMC10653937 DOI: 10.1128/mbio.00948-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Biofilms are the communal way of life that microbes adopt to increase survival. Key to our ability to systematically promote or ablate biofilm formation is a detailed understanding of the biofilm matrix macromolecules. Here, we identify the first two essential steps in the Bacillus subtilis biofilm matrix exopolysaccharide (EPS) synthesis pathway. Together, our studies and approaches provide the foundation for the sequential characterization of the steps in EPS biosynthesis, using prior steps to enable chemoenzymatic synthesis of the undecaprenyl diphosphate-linked glycan substrates.
Collapse
Affiliation(s)
- Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rupa Nagar
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hannah M. Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Soumi Ghosh
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yusra Al-Sammarraie
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Helge C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Price NPJ, Jackson MA, Hartman TM, Bannantine JP, Naumann TA, Vermillion KE, Koch AA, Kennedy PD. Precursor-Directed Biosynthesis and Biological Testing of omega-Alicyclic- and neo-Branched Tunicamycin N-Acyl Variants. ACS Chem Biol 2023; 18:2267-2280. [PMID: 37788216 DOI: 10.1021/acschembio.3c00324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Tunicamycins (TUNs) are Streptomyces-derived natural products, widely used to block protein N-glycosylation in eukaryotes or cell wall biosynthesis in bacteria. Modified or synthetic TUN analogues that uncouple these activities have considerable potential as novel mode-of-action antibacterial agents. Chemically modified TUNs reported previously with attenuated activity on yeast have pinpointed eukaryotic-specific chemophores in the uridyl group and the N-acyl chain length and terminal branching pattern. A small molecule screen of fatty acid biosynthetic primers identified several novel alicyclic- and neo-branched TUN N-acyl variants, with primer incorporation at the terminal omega-acyl position. TUNs with unique 5- and 6-carbon ω-cycloalkane and ω-cycloalkene acyl chains are produced under fermentation and in yields comparable with the native TUN. The purification, structural assignments, and the comparable antimicrobial properties of 15 of these compounds are reported, greatly extending the structural diversity of this class of compounds for potential medicinal and agricultural applications.
Collapse
Affiliation(s)
- Neil P J Price
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Michael A Jackson
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Trina M Hartman
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - John P Bannantine
- USDA, Agricultural Research Service, National Animal Disease Center, 1920 Dayton Ave., Ames, Iowa 50010, United States
| | - Todd A Naumann
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Karl E Vermillion
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research, 1815 N. University St., Peoria, Illinois 61604, United States
| | - Aaron A Koch
- Cayman Chemical, 1180 E. Ellsworth Rd., Ann Arbor, Michigan 48108, United States
| | - Paul D Kennedy
- Cayman Chemical, 1180 E. Ellsworth Rd., Ann Arbor, Michigan 48108, United States
| |
Collapse
|
7
|
Seebald LM, Haratipour P, Jacobs MR, Bernstein HM, Kashemirov BA, McKenna CE, Imperiali B. Uridine Bisphosphonates Differentiate Phosphoglycosyl Transferase Superfamilies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558431. [PMID: 37786673 PMCID: PMC10541605 DOI: 10.1101/2023.09.19.558431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Complex bacterial glycoconjugates are essential for bacterial survival, and drive interactions between pathogens and symbionts, and their human hosts. Glycoconjugate biosynthesis is initiated at the membrane interface by phosphoglycosyl transferases (PGTs), which catalyze the transfer of a phosphosugar from a soluble uridine diphospho-sugar (UDP-sugar) substrate to a membrane-bound polyprenol-phosphate (Pren-P). Two distinct superfamilies of PGT enzymes, denoted as polytopic and monotopic, carry out this reaction but show striking differences in structure and mechanism. With the goal of creating non-hydrolyzable mimics (UBP-sugars) of the UDP-sugar substrates as chemical probes to interrogate critical aspects of these essential enzymes, we designed and synthesized a series of uridine bisphosphonates (UBPs), wherein the diphosphate bridging oxygen of the UDP and UDP-sugar is replaced by a substituted methylene group (CXY; X/Y = F/F, Cl/Cl, (S)-H/F, (R)-H/F, H/H, CH3/CH3). These compounds, which incorporated as the conjugating sugar an N-acetylglucosamine (GlcNAc) substituent at the β-phosphonate, were evaluated as inhibitors of a representative polytopic PGT (WecA from Thermotoga maritima) and a monotopic PGT (PglC from Campylobacter jejuni). Although CHF-BP most closely mimics pyrophosphate with respect to its acid/base properties, the less basic CF2-BP conjugate most strongly inhibited PglC, whereas the more basic CH2-BP analogue was the strongest inhibitor of WecA. These surprising differences indicate different modes of ligand binding for the different PGT superfamilies implicating a modified P-O- interaction with the structural Mg2+, consistent with their catalytic divergence. Furthermore, at least for the monoPGT superfamily example, this was not the sole determinant of ligand binding: the two diastereomeric CHF-BP conjugates, which feature a chiral center at the Pα-CHF-Pβ carbon, exhibited strikingly different binding affinities and the inclusion of GlcNAc with the native α-anomer configuration significantly improved binding affinity. UBP-sugars are a valuable tool for elucidating the structures and mechanisms of the distinct PGT superfamilies and offer a promising scaffold to develop novel antibiotic agents for the exclusively prokaryotic monoPGT superfamily.
Collapse
Affiliation(s)
- Leah M. Seebald
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pouya Haratipour
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Michaela R. Jacobs
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Hannah M. Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Dodge GJ, Anderson AJ, He Y, Liu W, Viner R, Imperiali B. Mapping the architecture of the initiating phosphoglycosyl transferase from S. enterica O-antigen biosynthesis in a liponanoparticle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545297. [PMID: 37398332 PMCID: PMC10312794 DOI: 10.1101/2023.06.16.545297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Bacterial cell surface glycoconjugates are critical for cell survival and for interactions between bacteria and their hosts. Consequently, the pathways responsible for their biosynthesis have untapped potential as therapeutic targets. The localization of many glycoconjugate biosynthesis enzymes to the membrane represents a significant challenge for expressing, purifying, and characterizing these enzymes. Here, we leverage cutting-edge methods to stabilize, purify, and structurally characterize WbaP, a phosphoglycosyl transferase (PGT) from Salmonella enterica (LT2) O-antigen biosynthesis without detergent solubilization from the lipid bilayer. From a functional perspective, these studies establish WbaP as a homodimer, reveal the structural elements responsible for oligomerization, shed light on the regulatory role of a domain of unknown function embedded within WbaP, and identify conserved structural motifs between PGTs and functionally unrelated UDP-sugar dehydratases. From a technological perspective, the strategy developed here is generalizable and provides a toolkit for studying small membrane proteins embedded in liponanoparticles beyond PGTs.
Collapse
Affiliation(s)
- Greg J. Dodge
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alyssa J. Anderson
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi He
- Thermo Fisher Scientific, San Jose CA 95134, USA
| | - Weijing Liu
- Thermo Fisher Scientific, San Jose CA 95134, USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose CA 95134, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Anderson AJ, Dodge GJ, Allen KN, Imperiali B. Co-conserved sequence motifs are predictive of substrate specificity in a family of monotopic phosphoglycosyl transferases. Protein Sci 2023; 32:e4646. [PMID: 37096962 PMCID: PMC10186338 DOI: 10.1002/pro.4646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Monotopic phosphoglycosyl transferases (monoPGTs) are an expansive superfamily of enzymes that catalyze the first membrane-committed step in the biosynthesis of bacterial glycoconjugates. MonoPGTs show a strong preference for their cognate nucleotide diphospho-sugar (NDP-sugar) substrates. However, despite extensive characterization of the monoPGT superfamily through previous development of a sequence similarity network comprising >38,000 nonredundant sequences, the connection between monoPGT sequence and NDP-sugar substrate specificity has remained elusive. In this work, we structurally characterize the C-terminus of a prototypic monoPGT for the first time and show that 19 C-terminal residues play a significant structural role in a subset of monoPGTs. This new structural information facilitated the identification of co-conserved sequence "fingerprints" that predict NDP-sugar substrate specificity for this subset of monoPGTs. A Hidden Markov model was generated that correctly assigned the substrate of previously unannotated monoPGTs. Together, these structural, sequence, and biochemical analyses have delivered new insight into the determinants guiding substrate specificity of monoPGTs and have provided a strategy for assigning the NDP-sugar substrate of a subset of enzymes in the superfamily that use UDP-di-N-acetyl bacillosamine. Moving forward, this approach may be applied to identify additional sequence motifs that serve as fingerprints for monoPGTs of differing UDP-sugar substrate specificity.
Collapse
Affiliation(s)
- Alyssa J. Anderson
- Department of Biology and Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Greg J. Dodge
- Department of Biology and Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Karen N. Allen
- Department of ChemistryBoston UniversityBostonMassachusettsUSA
| | - Barbara Imperiali
- Department of Biology and Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
10
|
Arbour CA, Nagar R, Bernstein HM, Ghosh S, Al-Sammarraie Y, Dorfmueller HC, Ferguson MAJ, Stanley-Wall NR, Imperiali B. Defining Early Steps in B. subtilis Biofilm Biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529487. [PMID: 36865097 PMCID: PMC9980142 DOI: 10.1101/2023.02.22.529487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The Bacillus subtilis extracellular biofilm matrix includes an exopolysaccharide that is critical for the architecture and function of the community. To date, our understanding of the biosynthetic machinery and the molecular composition of the exopolysaccharide of B. subtilis remains unclear and incomplete. This report presents synergistic biochemical and genetic studies built from a foundation of comparative sequence analyses targeted at elucidating the activities of the first two membrane-committed steps in the exopolysaccharide biosynthetic pathway. By taking this approach, we determined the nucleotide sugar donor and lipid-linked acceptor substrates for the first two enzymes in the B. subtilis biofilm exopolysaccharide biosynthetic pathway. EpsL catalyzes the first phosphoglycosyl transferase step using UDP-di- N -acetyl bacillosamine as phospho-sugar donor. EpsD is a GT-B fold glycosyl transferase that facilitates the second step in the pathway that utilizes the product of EpsL as an acceptor substrate and UDP- N -acetyl glucosamine as the sugar donor. Thus, the study defines the first two monosaccharides at the reducing end of the growing exopolysaccharide unit. In doing so we provide the first evidence of the presence of bacillosamine in an exopolysaccharide synthesized by a Gram-positive bacterium. IMPORTANCE Biofilms are the communal way of life that microbes adopt to increase survival. Key to our ability to systematically promote or ablate biofilm formation is a detailed understanding of the biofilm matrix macromolecules. Here we identify the first two essential steps in the Bacillus subtilis biofilm matrix exopolysaccharide synthesis pathway. Together our studies and approaches provide the foundation for the sequential characterization of the steps in exopolysaccharide biosynthesis, using prior steps to enable chemoenzymatic synthesis of the undecaprenol diphosphate-linked glycan substrates.
Collapse
Affiliation(s)
- Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Rupa Nagar
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Hannah M. Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Soumi Ghosh
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Yusra Al-Sammarraie
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Helge C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| |
Collapse
|
11
|
Anderson AJ, Seebald LM, Arbour CA, Imperiali B. Probing Monotopic Phosphoglycosyl Transferases from Complex Cellular Milieu. ACS Chem Biol 2022; 17:3191-3197. [PMID: 36346917 PMCID: PMC9703085 DOI: 10.1021/acschembio.2c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monotopic phosphoglycosyl transferase enzymes (monoPGTs) initiate the assembly of prokaryotic glycoconjugates essential for bacterial survival and proliferation. MonoPGTs belong to an expansive superfamily with a diverse and richly annotated sequence space; however, the biochemical roles of most monoPGTs in glycoconjugate biosynthesis pathways remain elusive. To better understand these critical enzymes, we have implemented activity-based protein profiling (ABPP) probes as protein-centric, membrane protein compatible tools that lay the groundwork for understanding the activity and regulation of the monoPGT superfamily from a cellular proteome. With straightforward gel-based readouts, we demonstrate robust, covalent labeling at the active site of various representative monoPGTs from cell membrane fractions using 3-phenyl-2H-azirine probes.
Collapse
Affiliation(s)
- Alyssa J. Anderson
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leah M. Seebald
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Maczuga N, Tran ENH, Morona R. Subcellular localization of the enterobacterial common antigen GT-E-like glycosyltransferase, WecG. Mol Microbiol 2022; 118:403-416. [PMID: 36006410 PMCID: PMC9804384 DOI: 10.1111/mmi.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 01/05/2023]
Abstract
Enterobacterales have developed a specialized outer membrane polysaccharide (enterobacterial common antigen [ECA]). ECA biosynthesis begins on the cytoplasmic side of the inner membrane (IM) where glycosyltransferases sequentially add sugar moieties to form a complete repeat unit which is then translocated across the IM by WzxE before being polymerized into short linear chains by WzyE/WzzE. Research into WecG, the enzyme responsible for generating ECA lipid-II, has not progressed beyond Barr et al. (1988) who described WecG as a membrane protein. Here we revise our understanding of WecG and re-characterize it as a peripherally associated membrane protein. Through the use of Western immunoblotting we show that WecG in Shigella flexneri is maintained to the IM via its three C-terminal helices and further identify key residues in helix II which are critical for this interaction which has allowed us to identify WecG as a GT-E glycosyltransferase. We investigate the possibility of protein complexes and ultimately show that ECA lipid-I maintains WecG to the membrane which is crucial for its function. This research is the first since Barr et al. (1988) to investigate the biochemistry of WecG and reveals possible novel drug targets to inhibit WecG and thus ECA function and cell viability.
Collapse
Affiliation(s)
- Nicholas Maczuga
- Department of Molecular and Biomedical Sciences, Research Centre for Infectious Diseases, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Elizabeth N. H. Tran
- Department of Molecular and Biomedical Sciences, Research Centre for Infectious Diseases, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Renato Morona
- Department of Molecular and Biomedical Sciences, Research Centre for Infectious Diseases, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
13
|
Monjarás Feria J, Valvano MA. Exploring the Topology of Cytoplasmic Membrane Proteins Involved in Lipopolysaccharide Biosynthesis by in Silico and Biochemical Analyses. Methods Mol Biol 2022; 2548:71-82. [PMID: 36151492 DOI: 10.1007/978-1-0716-2581-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the absence of a tri-dimensional structure, revealing the topology of a membrane protein provides relevant information to identify the number and orientation of transmembrane helices and the localization of critical amino acid residues, contributing to a better understanding of function and intermolecular associations. Topology can be predicted in silico by bioinformatic analysis or solved by biochemical methods. In this chapter, we describe a pipeline employing bioinformatic approaches for the prediction of membrane protein topology, followed by experimental validation through the substituted-cysteine accessibility method and the analysis of the protein's oligomerization state.
Collapse
Affiliation(s)
- Julia Monjarás Feria
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
14
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
15
|
The surprising structural and mechanistic dichotomy of membrane-associated phosphoglycosyl transferases. Biochem Soc Trans 2021; 49:1189-1203. [PMID: 34100892 DOI: 10.1042/bst20200762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Phosphoglycosyl transferases (PGTs) play a pivotal role at the inception of complex glycoconjugate biosynthesis pathways across all domains of life. PGTs promote the first membrane-committed step in the en bloc biosynthetic strategy by catalyzing the transfer of a phospho-sugar from a nucleoside diphospho-sugar to a membrane-resident polyprenol phosphate. Studies on the PGTs have been hampered because they are integral membrane proteins, and often prove to be recalcitrant to expression, purification and analysis. However, in recent years exciting new information has been derived on the structures and the mechanisms of PGTs, revealing the existence of two unique superfamilies of PGT enzymes that enact catalysis at the membrane interface. Genome neighborhood analysis shows that these superfamilies, the polytopic PGT (polyPGT) and monotopic PGT (monoPGT), may initiate different pathways within the same organism. Moreover, the same fundamental two-substrate reaction is enacted through two different chemical mechanisms with distinct modes of catalysis. This review highlights the structural and mechanistic divergence between the PGT enzyme superfamilies and how this is reflected in differences in regulation in their varied glycoconjugate biosynthesis pathways.
Collapse
|