1
|
Zhu Y, Gupta P, Gholami Derami H, Huang YY, Singamaneni S, Jun YS. Chemical Functional Groups Regulate Ion Concentrations and pHs in Nanopores. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40298201 DOI: 10.1021/acsami.4c15940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Understanding ion behaviors in functionalized nanopores is essential to deciphering reactions in both natural and engineered systems, such as sediments, biological ion channels, and membranes. While many efforts have shown the modified ion behaviors in the functionalized nanopores, a direct measurement and analysis to show how chemical functional groups affect ion concentrations in nanopores are critically needed. Herein, we present a plasmonic nanosensor that can measure the local concentrations of protons, anions (phosphate, nitrate, sulfate, and arsenate), and cations (mercury, lead, and copper) in functionalized nanopores, and we compare their concentrations in nanopores with the corresponding bulk concentrations. Notably, chemical functional groups induced ion concentrations differently in nanopores. In pristine nanopores and methyl- and phenyl-functionalized nanopores, we discovered an unexpected concurrence of an enhanced anion concentration and a suppressed cation concentration. In addition, the nanopore pH is dependent on bulk solution compositions and can be lower by 2.5 units, even when the bulk solution is well-buffered. In contrast, for hydrophilic (amine, thiol, and carboxyl) nanopores, pH depended on the pKa of the functional groups, and the heavy metal concentrations depended on chemical interactions with the functional groups. Our findings provide a better understanding of water chemistry in nanopores and can help precisely control ions in nanopores to benefit the design of membrane-based desalination techniques, CO2 storage, and porous catalysts.
Collapse
Affiliation(s)
- Yaguang Zhu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Prashant Gupta
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Hamed Gholami Derami
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yin-Yuan Huang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Chen M, Xu X. Structure of a Grafted Polyelectrolyte Layer at the Dielectric Interface: Coupling Effects of Dielectric Contrast, Ionic Strength, and Excluded Volume. J Phys Chem B 2025. [PMID: 40267177 DOI: 10.1021/acs.jpcb.5c02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
A statistical thermodynamic theory is employed to study the grafted polyelectrolyte layers (GPELs) at dielectric interfaces, focusing on the coupling effects of dielectric contrast (Δε), ionic strength, and excluded volume. The dielectric contrast induces an image-charge effect near the interface, whose influence on GPELs remains to be further explored, especially when combined with ionic strength and excluded volume effects. With increasing grafting density (ρg), GPELs exhibit four distinct regimes: isotropic, stretched, collapsed, and re-stretched. In the isotropic regime, all three effects are weak, making GPELs insensitive to Δε variations. In the stretched and collapsed regimes, high ionic strength shifts dominance to the entropic effect of mobile ions. Here, mobile ions respond strongly to Δε, while PE chains remain insensitive. A jump-like decrease in layer thickness occurs at the stretch-collapse transition due to counterion accumulation near the surface, enhancing electrostatic interactions. In the re-stretched regime, GPELs behave like neutral polymer brushes, with excluded volume effects becoming crucial, rendering both PE chains and mobile ions insensitive to Δε. Reducing the charge density of PE chains further diminishes the response of mobile ions to Δε. The interplay of these effects results in a "roller coaster" trend in brush height with increasing ρg. This study underscores the necessity of considering all three effects to fully understand GPEL behavior at dielectric interfaces, as neglecting any one may lead to incomplete insights into swelling/shrinking behaviors. While some findings align with experimental results, others warrant further exploration.
Collapse
Affiliation(s)
- Mingyu Chen
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
An J, Lim HK, Kim H. Kernel-Based Modeling of Electron-Density Polarization at Metal-Liquid Interfaces. J Chem Theory Comput 2025; 21:4134-4141. [PMID: 40197007 DOI: 10.1021/acs.jctc.5c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Accurate modeling of metal polarization is crucial for understanding molecular interactions at metal-liquid interfaces. In this paper, we present a novel computational method for incorporating the polarization of metallic electrons into classical molecular dynamics simulations. Our approach employs a kernel-based polarization model to describe the real-time polarization of the metal electron density on a three-dimensional grid, with parameters fitted to quantum mechanical calculations. We applied this model to investigate the water-Au(111) interface, analyzing the effects of varying levels of metal polarization: (1) no polarization, (2) full polarization, and (3) time-averaged polarization. The results showed that metal electron polarization enhanced the orientational fluctuations of water molecules, stabilized the O-down configuration near the metal surface, and increased the population of nondonor hydrogen-bond configurations. The time-averaged approximation reproduces some trends observed with full polarization but introduces a bias toward lay-down configurations, leading to an overestimation of double-donor configurations. Our grid-based polarization method offers a computational approach for simulating metal polarization effects, providing new methods to investigate the electrostatics and dynamics of metal-liquid interfaces.
Collapse
Affiliation(s)
- Jihun An
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyung-Kyu Lim
- Division of Chemical Engineering and Bioengineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Shin J, Seo B, Choi K, Park D, Lee HJ, Kim H, Shin D, Park BJ, Kim JW. Charge-Directed Nanocellulose Assembly for Interfacial Phase-Transfer Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418325. [PMID: 40099434 DOI: 10.1002/adma.202418325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/09/2025] [Indexed: 03/19/2025]
Abstract
Liquid-liquid interfaces present unique opportunities for sustainable biphasic catalysis, yet concurrent amplification of molecular transport and reactivity at these boundaries remains challenging. Here it is demonstrated that high-aspect-ratio cationic nanocellulose (HNC+) spontaneously self-assembles into mechanically robust nanomesh architectures at oil-water interfaces through charge-directed assembly. This assembly is driven by electrostatic attraction between the cationic nanofibers and the intrinsic negative charge at hydrophobic-aqueous interfaces (σ ≈-0.3 C m-2), generating sufficient excess attractive force (ΔU ≈-1,200 kBT) to overcome image charge repulsion. The resulting nanomesh exhibits uniform "breathing holes" (≈34 nm) and exceptional stability under extreme conditions (pH 2-13, 1.8 m NaCl, and 90 °C). When applied to oxidative desulfurization, the system achieves >90% thiophene removal under ambient conditions with exceptional atom economy (E-factor < 1.1) and catalyst stability through multiple cycles. This breakthrough strategy for interfacial engineering using renewable materials opens new possibilities for green chemical manufacturing while providing fundamental insights into charge-mediated assembly at liquid interfaces. These findings establish a viable pathway for sustainable heterogeneous catalysis that aligns with circular economy principles.
Collapse
Affiliation(s)
- Jaewon Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Bokgi Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyoungho Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - DaAe Park
- Cosmocos Co., Ltd, Incheon, 21698, Republic of Korea
| | - Hee Jeong Lee
- Cosmocos Co., Ltd, Incheon, 21698, Republic of Korea
| | - HoAn Kim
- Cosmocos Co., Ltd, Incheon, 21698, Republic of Korea
| | - Daehyun Shin
- Cosmocos Co., Ltd, Incheon, 21698, Republic of Korea
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
5
|
Ge K, Shao H, Lin Z, Taberna PL, Simon P. Advanced characterization of confined electrochemical interfaces in electrochemical capacitors. NATURE NANOTECHNOLOGY 2025; 20:196-208. [PMID: 39639178 DOI: 10.1038/s41565-024-01821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024]
Abstract
The advancement of high-performance fast-charging materials has significantly propelled progress in electrochemical capacitors (ECs). Electrochemical capacitors store charges at the nanoscale electrode material-electrolyte interface, where the charge storage and transport mechanisms are mediated by factors such as nanoconfinement, local electrode structure, surface properties and non-electrostatic ion-electrode interactions. This Review offers a comprehensive exploration of probing the confined electrochemical interface using advanced characterization techniques. Unlike classical two-dimensional (2D) planar interfaces, partial desolvation and image charges play crucial roles in effective charge storage under nanoconfinement in porous materials. This Review also highlights the potential of zero charge as a key design principle driving nanoscale ion fluxes and carbon-electrolyte interactions in materials such as 2D and three-dimensional (3D) porous carbons. These considerations are crucial for developing efficient and rapid energy storage solutions for a wide range of applications.
Collapse
Affiliation(s)
- Kangkang Ge
- Université Toulouse III-Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse, France
| | - Hui Shao
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, People's Republic of China.
| | - Zifeng Lin
- College of Materials Science and Engineering, Sichuan University, Chengdu, People's Republic of China.
| | - Pierre-Louis Taberna
- Université Toulouse III-Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS, Amiens, France.
| | - Patrice Simon
- Université Toulouse III-Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS, Amiens, France.
| |
Collapse
|
6
|
Zhao W, Yin P, Wang Z, Huang J, Fu Y, Hu W. Recent advances in regulation methods for selective separation and precise control of two-dimensional (2D) lamellar membranes. Adv Colloid Interface Sci 2024; 334:103330. [PMID: 39486346 DOI: 10.1016/j.cis.2024.103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Selective separation and precise control of the structure and surface characterization for two-dimensional (2D) membranes is the key technology that needs to be revealed for further development of the material in practical application. Current researches focus on the cross-linking and modification of single nanosheet to improve and manipulate the performance of 2D lamellar membranes. In this paper, the selectivity principles such as size exclusion, charge properties, and surface chemical affinity in the separation process of 2D membranes were comprehensively and systematically reviewed, as well as the preparation of hybrid membranes combining the advantages of various raw materials. We also analyzed the practical application of the separation principles in relevant researches and discussed the development directions of 2D membranes. These inductions have certain summary and guiding significance for the selective regulation and goal-oriented design of 2D membranes.
Collapse
Affiliation(s)
- Weixuan Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Ping Yin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zulin Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Junnan Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yiming Fu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Wenjihao Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| |
Collapse
|
7
|
Vahid H, Scacchi A, Sammalkorpi M, Ala-Nissila T. Adsorption of polyelectrolytes in the presence of varying dielectric discontinuity between solution and substrate. J Chem Phys 2024; 161:134907. [PMID: 39360687 DOI: 10.1063/5.0223124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
We examine the interactions between polyelectrolytes (PEs) and uncharged substrates under conditions corresponding to a dielectric discontinuity between the aqueous solution and the substrate. To this end, we vary the relevant system characteristics, in particular the substrate dielectric constant ɛs under different salt conditions. We employ coarse-grained molecular dynamics simulations with rodlike PEs in salt solutions with explicit ions and implicit water solvent with dielectric constant ɛw = 80. As expected, at low salt concentrations, PEs are repelled from the substrates with ɛs < ɛw but are attracted to substrates with a high dielectric constant due to image charges. This attraction considerably weakens for high salt and multivalent counterions due to enhanced screening. Furthermore, for monovalent salt, screening enhances adsorption for weakly charged PEs, but weakens it for strongly charged ones. Meanwhile, multivalent counterions have little effect on weakly charged PEs, but prevent adsorption of highly charged PEs, even at low salt concentrations. We also find that correlation-induced charge inversion of a PE is enhanced close to the low dielectric constant substrates, but suppressed when the dielectric constant is high. To explore the possibility of a PE monolayer formation, we examine the interaction of a pair of like-charged PEs aligned parallel to a high dielectric constant substrate with ɛs = 8000. Our main conclusion is that monolayer formation is possible only for weakly charged PEs at high salt concentrations of both monovalent and multivalent counterions. Finally, we also consider the energetics of a PE approaching the substrate perpendicular to it, in analogy to polymer translocation. Our results highlight the complex interplay between electrostatic and steric interactions and contribute to a deeper understanding of PE-substrate interactions and adsorption at substrate interfaces with varying dielectric discontinuities from solution, ubiquitous in biointerfaces, PE coating applications, and designing adsorption setups.
Collapse
Affiliation(s)
- Hossein Vahid
- Department of Applied Physics, Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Alberto Scacchi
- Department of Applied Physics, Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Mechanical and Materials Engineering, University of Turku, Vesilinnantie 5, FI-20014 Turku, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Tapio Ala-Nissila
- Department of Applied Physics, Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland
- Quantum Technology Finland Center of Excellence, Department of Applied Physics, Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
8
|
Zhou T, Bruch D, Wang ZG. Image charge effects under metal and dielectric boundary conditions. Phys Rev E 2024; 110:044129. [PMID: 39562977 DOI: 10.1103/physreve.110.044129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 11/21/2024]
Abstract
The image charge (IC) effect is a fundamental problem in electrostatics. However, proper treatment at the continuum level for many-ion systems, such as electrolyte solutions or ionic liquids, remains an open theoretical question. Here, we demonstrate and systematically compare the IC effects under metal and dielectric boundary conditions (BCs), based on a renormalized Gaussian-fluctuation theory. Our calculations for a simple 1:1 symmetric electrolyte in the point-charge approximation show that the double-layer structure, capacitance, and interaction forces between like-charged plates depend strongly on the types of boundaries, even in the weak-coupling regime. Like-charge attraction is predicted for both metal and dielectric BCs. Finally, we comment on the effects of a dielectrically saturated solvent layer on the metal surface. We provide these results to serve as a baseline for comparison with more realistic molecular dynamics simulations and experiments.
Collapse
|
9
|
Bruch D, Wang ZG. A model for zwitterionic polymers and their capacitance applications. J Chem Phys 2024; 161:104901. [PMID: 39254163 DOI: 10.1063/5.0226496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024] Open
Abstract
Zwitterions have been shown experimentally to enhance the dielectric constant of ionic media, owing to their large molecular dipole. Many studies since explored the enhancement of ionic conductivity with zwitterion additives as well as bulk behavior of zwitterions. Here, we examine the capacitance behavior of zwitterions between charged parallel plates using a mean-field theory. Employing only chain connectivity of a cation and anion with neutral monomers in between with mean-field electrostatics, we show that our model captures the high-dielectric behavior of zwitterions. We also predict an optimum in the capacitance of zwitterionic media as a function of chain length. To address the issue of zwitterion screening near charged surfaces, we demonstrate that zwitterions simultaneously partially screen charged walls and act as a pure dielectric that propagates the electric field far from the surface. Moreover, we show that salt solutions with zwitterionic additives outperform the energy density of both salt-only and zwitterion-only capacitors. We find that salt-only capacitors perform better at low applied potential, whereas salt capacitors with zwitterionic additives perform better at high applied potential.
Collapse
Affiliation(s)
- Dorian Bruch
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA
| |
Collapse
|
10
|
Goloviznina K, Fleischhaker J, Binninger T, Rotenberg B, Ers H, Ivanistsev V, Meissner R, Serva A, Salanne M. Accounting for the Quantum Capacitance of Graphite in Constant Potential Molecular Dynamics Simulations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405230. [PMID: 39096068 DOI: 10.1002/adma.202405230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Molecular dynamics (MD) simulations at a constant electric potential are an essential tool to study electrochemical processes, providing microscopic information on the structural, thermodynamic, and dynamical properties. Despite the numerous advances in the simulation of electrodes, they fail to accurately represent the electronic structure of materials such as graphite. In this work, a simple parameterization method that allows to tune the metallicity of the electrode based on a quantum chemistry calculation of the density of states (DOS) is introduced. As a first illustration, the interface between graphite electrodes and two different liquid electrolytes, an aqueous solution of NaCl and a pure ionic liquid, at different applied potentials are studied. It is shown that the simulations reproduce qualitatively the experimentally-measured capacitance; in particular, they yield a minimum of capacitance at the point of zero charge (PZC), which is due to the quantum capacitance (QC) contribution. An analysis of the structure of the adsorbed liquids allows to understand why the ionic liquid displays a lower capacitance despite its large ionic concentration. In addition to its relevance for the important class of carbonaceous electrodes, this method can be applied to any electrode materials (e.g. 2D materials, conducting polymers, etc), thus enabling molecular simulation studies of complex electrochemical devices in the future.
Collapse
Affiliation(s)
- Kateryna Goloviznina
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039, Amiens Cedex, France
| | - Johann Fleischhaker
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France
- Institute of Polymers and Composites, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Tobias Binninger
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293, Montpellier, France
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Benjamin Rotenberg
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039, Amiens Cedex, France
| | - Heigo Ers
- University of Tartu, Ravila 14a, Tartu, 51004, Estonia
| | | | - Robert Meissner
- Institute of Polymers and Composites, Hamburg University of Technology, 21073, Hamburg, Germany
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Alessandra Serva
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039, Amiens Cedex, France
| | - Mathieu Salanne
- CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005, Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039, Amiens Cedex, France
- Institut Universitaire de France (IUF), 75231, Paris, France
| |
Collapse
|
11
|
Ye BB, Chen S, Wang ZG. GCMe: Efficient Implementation of the Gaussian Core Model with Smeared Electrostatic Interactions for Molecular Dynamics Simulations of Soft Matter Systems. J Chem Theory Comput 2024; 20:6870-6880. [PMID: 39013595 PMCID: PMC11325544 DOI: 10.1021/acs.jctc.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In recent years, molecular dynamics (MD) simulations have emerged as an essential tool for understanding the structure, dynamics, and phase behavior of charged soft matter systems. To explore phenomena across greater length and time scales in MD simulations, molecules are often coarse-grained for better computational performance. However, commonly used force fields represent particles as hard-core interaction centers with point charges, which often overemphasizes the packing effect and short-range electrostatics, especially in systems with bulky deformable organic molecules and systems with strong coarse-graining. This underscores the need for an efficient soft-core model to physically capture the effective interactions between coarse-grained particles. To this end, we implement a soft-core model uniting the Gaussian core model with smeared electrostatic interactions that is phenomenologically equivalent to recent theoretical models. We first parametrize it generically using water as the model solvent. Then, we benchmark its performance in the OpenMM toolkit for different boundary conditions to highlight a computational speedup of up to 34 × compared to commonly used force fields and existing implementations. Finally, we demonstrate its utility by investigating how boundary polarizability affects the adsorption behavior of a polyelectrolyte solution on perfectly conducting and nonmetal boundaries.
Collapse
Affiliation(s)
- Benjamin Bobin Ye
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Shensheng Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Qi SC, Zhao YJ, Lu XJ, Liu YL, Sun Z, Liu XQ, Sun LB. Excitation generated preferential binding sites for ethane on porous carbon-copper porphyrin sorbents: ethane/ethylene adsorptive separation improved by light. Chem Sci 2024; 15:7285-7292. [PMID: 38756801 PMCID: PMC11095506 DOI: 10.1039/d4sc00898g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Energy-efficient separation of C2H6/C2H4 is a great challenge, for which adsorptive separation is very promising. C2H6-selective adsorption has big implications, while the design of C2H6-sorbents with ideal adsorption capability, particularly with the C2H6/C2H4-selectivity exceeded 2.0, is still challenging. Instead of the current strategies such as chemical modification or pore space modulation, we propose a new methodology for the design of C2H6-sorbents. With a Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] framework dispersed onto a microporous carbon and a hierarchical-pore carbon, two composite sorbents are fabricated. The composite sorbents exhibit enhanced C2H6-selective adsorption capabilities with visible light, particularly the composite sorbent based on the hierarchical-pore carbon, whose C2H6 and C2H4 adsorption capacities (0 °C, 1 bar) are targetedly increased by 27% and only 1.8% with visible light, and therefore, an C2H6-selectivity (C2H6/C2H4 = 10/90, v/v) of 4.8 can be realized. With visible light, the adsorption force of the C2H6 molecule can be asymmetrically enhanced by the excitation enriched electron density over the adsorption sites formed via the close interaction between the Cu-TCPP and the carbon layer, whereas that of the C2H4 molecule is symmetrically altered and the forces cancelled each other out. This strategy may open up a new route for energy-efficient adsorptive separation of C2H6/C2H4 with light.
Collapse
Affiliation(s)
- Shi-Chao Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| | - Yun-Jie Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| | - Xiao-Jie Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| | - Yong-Lan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| | - Zhen Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| |
Collapse
|
13
|
Pireddu G, Fairchild CJ, Niblett SP, Cox SJ, Rotenberg B. Impedance of nanocapacitors from molecular simulations to understand the dynamics of confined electrolytes. Proc Natl Acad Sci U S A 2024; 121:e2318157121. [PMID: 38662549 PMCID: PMC11067016 DOI: 10.1073/pnas.2318157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Nanoelectrochemical devices have become a promising candidate technology across various applications, including sensing and energy storage, and provide new platforms for studying fundamental properties of electrode/electrolyte interfaces. In this work, we employ constant-potential molecular dynamics simulations to investigate the impedance of gold-aqueous electrolyte nanocapacitors, exploiting a recently introduced fluctuation-dissipation relation. In particular, we relate the frequency-dependent impedance of these nanocapacitors to the complex conductivity of the bulk electrolyte in different regimes, and use this connection to design simple but accurate equivalent circuit models. We show that the electrode/electrolyte interfacial contribution is essentially capacitive and that the electrolyte response is bulk-like even when the interelectrode distance is only a few nanometers, provided that the latter is sufficiently large compared to the Debye screening length. We extensively compare our simulation results with spectroscopy experiments and predictions from analytical theories. In contrast to experiments, direct access in simulations to the ionic and solvent contributions to the polarization allows us to highlight their significant and persistent anticorrelation and to investigate the microscopic origin of the timescales observed in the impedance spectrum. This work opens avenues for the molecular interpretation of impedance measurements, and offers valuable contributions for future developments of accurate coarse-grained representations of confined electrolytes.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, ParisF-75005, France
| | - Connie J. Fairchild
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Samuel P. Niblett
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Stephen J. Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Benjamin Rotenberg
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, ParisF-75005, France
- Réseau sur le Stockage Electrochimique de l’Energie, Fédération de Recherche CNRS 3459, Amiens Cedex80039, France
| |
Collapse
|
14
|
Park S, McDaniel JG. Generalized Helmholtz model describes capacitance profiles of ionic liquids and concentrated aqueous electrolytes. J Chem Phys 2024; 160:164709. [PMID: 38651812 DOI: 10.1063/5.0194360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
In this work, we propose and validate a generalization of the Helmholtz model that can account for both "bell-shaped" and "camel-shaped" differential capacitance profiles of concentrated electrolytes, the latter being characteristic of ionic liquids. The generalization is based on introducing voltage dependence of both the dielectric constant "ϵr(V)" and thickness "L(V)" of the inner Helmholtz layer, as validated by molecular dynamics (MD) simulations. We utilize MD simulations to study the capacitance profiles of three different electrochemical interfaces: (1) graphite/[BMIm+][BF4-] ionic liquid interface; (2) Au(100)/[BMIm+][BF4-] ionic liquid interface; (3) Au(100)/1M [Na+][Cl-] aqueous interface. We compute the voltage dependence of ϵr(V) and L(V) and demonstrate that the generalized Helmholtz model qualitatively describes both camel-shaped and bell-shaped differential capacitance profiles of ionic liquids and concentrated aqueous electrolytes (in lieu of specific ion adsorption). In particular, the camel-shaped capacitance profile that is characteristic of ionic liquid electrolytes arises simply from combination of the voltage-dependent trends of ϵr(V) and L(V). Furthermore, explicit analysis of the inner layer charge density for both concentrated aqueous and ionic liquid double layers reveal similarities, with these charge distributions typically exhibiting a dipolar region closest to the electrode followed by a monopolar peak at larger distances. It is appealing that a generalized Helmholtz model can provide a unified description of the inner layer structure and capacitance profile for seemingly disparate aqueous and ionic liquid electrolytes.
Collapse
Affiliation(s)
- Suehyun Park
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Jesse G McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
15
|
Scarpetta-Pizo L, Venegas R, Barrías P, Muñoz-Becerra K, Vilches-Labbé N, Mura F, Méndez-Torres AM, Ramírez-Tagle R, Toro-Labbé A, Hevia S, Zagal JH, Oñate R, Aspée A, Ponce I. Electron Spin-Dependent Electrocatalysis for the Oxygen Reduction Reaction in a Chiro-Self-Assembled Iron Phthalocyanine Device. Angew Chem Int Ed Engl 2024; 63:e202315146. [PMID: 37953459 DOI: 10.1002/anie.202315146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
The chiral-induced spin selectivity effect (CISS) is a breakthrough phenomenon that has revolutionized the field of electrocatalysis. We report the first study on the electron spin-dependent electrocatalysis for the oxygen reduction reaction, ORR, using iron phthalocyanine, FePc, a well-known molecular catalyst for this reaction. The FePc complex belongs to the non-precious catalysts group, whose active site, FeN4, emulates catalytic centers of biocatalysts such as Cytochrome c. This study presents an experimental platform involving FePc self-assembled to a gold electrode surface using chiral peptides (L and D enantiomers), i.e., chiro-self-assembled FePc systems (CSAFePc). The chiral peptides behave as spin filters axial ligands of the FePc. One of the main findings is that the peptides' handedness and length in CSAFePc can optimize the kinetics and thermodynamic factors governing ORR. Moreover, the D-enantiomer promotes the highest electrocatalytic activity of FePc for ORR, shifting the onset potential up to 1.01 V vs. RHE in an alkaline medium, a potential close to the reversible potential of the O2 /H2 O couple. Therefore, this work has exciting implications for developing highly efficient and bioinspired catalysts, considering that, in biological organisms, biocatalysts that promote O2 reduction to water comprise L-enantiomers.
Collapse
Affiliation(s)
- Laura Scarpetta-Pizo
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Ricardo Venegas
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Pablo Barrías
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Karina Muñoz-Becerra
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, 8370854, Chile
| | - Nayareth Vilches-Labbé
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Francisco Mura
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Ana María Méndez-Torres
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Rodrigo Ramírez-Tagle
- Facultad de Ingeniería y Arquitectura Universidad Central de Chile, Av. Sta. Isabel 1186, Santiago, 8330563, Chile
| | - Alejandro Toro-Labbé
- Departamento de Química-Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Región Metropolitana, Santiago, Chile
| | - Samuel Hevia
- Instituto de Física, Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6904411, Chile
| | - José H Zagal
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Rubén Oñate
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Alexis Aspée
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Ingrid Ponce
- Departamento de Ciencias del Ambiente, Departamento Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| |
Collapse
|
16
|
Luo S, Misra RP, Blankschtein D. Water Electric Field Induced Modulation of the Wetting of Hexagonal Boron Nitride: Insights from Multiscale Modeling of Many-Body Polarization. ACS NANO 2024; 18:1629-1646. [PMID: 38169482 DOI: 10.1021/acsnano.3c09811] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Understanding the behavior of water contacting two-dimensional materials, such as hexagonal boron nitride (hBN), is important in practical applications, including seawater desalination and energy harvesting. Water, being a polar solvent, can strongly polarize the hBN surface via the electric fields that it generates. However, there is a lack of molecular-level understanding about the role of polarization effects at the hBN/water interface, including its effect on the wetting properties of water. In this study, we develop a theoretical framework that introduces an all-atomistic polarizable force field to accurately model the interactions of water molecules with hBN surfaces. The force field is then utilized to self-consistently describe the water-induced polarization of hBN using the classical Drude oscillator model, including predicting the hBN-water binding energies which are found to be in excellent agreement with diffusion Monte Carlo (DMC) predictions. By carrying out molecular dynamics (MD) simulations, we demonstrate that the polarizable force field yields a water contact angle on multilayered hBN which is in close agreement with the recent experimentally reported values. Conversely, an implicit modeling of the hBN-water polarization energy utilizing a Lennard-Jones (LJ) potential, a commonly utilized approximation in previous MD simulation studies, leads to a considerably lower water contact angle. This difference in the predicted contact angles is attributed to the significant energy-entropy compensation resulting from the incorporation of polarization effects at the hBN-water interface. Our work highlights the importance of self-consistently modeling the hBN-water polarization energy and offers insights into the wetting-related interfacial phenomena of water on polarizable materials.
Collapse
Affiliation(s)
- Shuang Luo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Becker M, Loche P, Rezaei M, Wolde-Kidan A, Uematsu Y, Netz RR, Bonthuis DJ. Multiscale Modeling of Aqueous Electric Double Layers. Chem Rev 2024; 124:1-26. [PMID: 38118062 PMCID: PMC10785765 DOI: 10.1021/acs.chemrev.3c00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
From the stability of colloidal suspensions to the charging of electrodes, electric double layers play a pivotal role in aqueous systems. The interactions between interfaces, water molecules, ions and other solutes making up the electrical double layer span length scales from Ångströms to micrometers and are notoriously complex. Therefore, explaining experimental observations in terms of the double layer's molecular structure has been a long-standing challenge in physical chemistry, yet recent advances in simulations techniques and computational power have led to tremendous progress. In particular, the past decades have seen the development of a multiscale theoretical framework based on the combination of quantum density functional theory, force-field based simulations and continuum theory. In this Review, we discuss these theoretical developments and make quantitative comparisons to experimental results from, among other techniques, sum-frequency generation, atomic-force microscopy, and electrokinetics. Starting from the vapor/water interface, we treat a range of qualitatively different types of surfaces, varying from soft to solid, from hydrophilic to hydrophobic, and from charged to uncharged.
Collapse
Affiliation(s)
| | - Philip Loche
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Laboratory
of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Majid Rezaei
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Institute
of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
| | | | - Yuki Uematsu
- Department
of Physics and Information Technology, Kyushu
Institute of Technology, 820-8502 Iizuka, Japan
- PRESTO,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Roland R. Netz
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Douwe Jan Bonthuis
- Institute
of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
18
|
Wu J, Zhang J, Chen M, Yan J, Mao B, Feng G. Regulating the electrical double layer to prevent water electrolysis for wet ionic liquids with cheap salts. NANOSCALE 2023; 15:18603-18612. [PMID: 37927229 DOI: 10.1039/d3nr04700h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Hydrophobic ionic liquids (ILs), broadly utilized as electrolytes, face limitations in practical applications due to their hygroscopicity, which narrows their electrochemical windows via water electrolysis. Herein, we scrutinized the impact of incorporating cheap salts on the electrochemical stability of wet hydrophobic ILs. We observed that alkali ions effectively manipulate the solvation structure of water and regulate the electrical double layer (EDL) structure by subtly adjusting the free energy distribution of water in wet ILs. Specifically, alkali ions significantly disrupted the hydrogen bond network, reducing free water, strengthening the O-H bond, and lowering water activity in bulk electrolytes. This effect was particularly pronounced in EDL regions, where most water molecules were repelled from both the cathode and anode with the disappearance of the H-bond network connectivity along the EDL. The residual interfacial water underwent reorientation, inhibiting water electrolysis and thus enhancing the electrochemical window of wet hydrophobic ILs. This theoretical proposition was confirmed by cyclic voltammetry measurements, demonstrating a 45% enhancement in the electrochemical windows for salt-in-wet ILs, approximating the dry one. This work offers feasible strategies for tuning the EDL and managing interfacial water activity, expanding the comprehension of interface engineering for advanced electrochemical systems.
Collapse
Affiliation(s)
- Jiedu Wu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Jinkai Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
| | - Ming Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
- Institute of Interdisciplinary Research for Mathematics and Applied Science, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
- Institute of Interdisciplinary Research for Mathematics and Applied Science, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China
| |
Collapse
|
19
|
Jiménez-Ángeles F, Ehlen A, Olvera de la Cruz M. Surface polarization enhances ionic transport and correlations in electrolyte solutions nanoconfined by conductors. Faraday Discuss 2023; 246:576-591. [PMID: 37450272 DOI: 10.1039/d3fd00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Layered materials that perform mixed electron and ion transport are promising for energy harvesting, water desalination, and bioinspired functionalities. These functionalities depend on the interaction between ionic and electronic charges on the surface of materials. Here we investigate ion transport by an external electric field in an electrolyte solution confined in slit-like channels formed by two surfaces separated by distances that fit only a few water layers. We study different electrolyte solutions containing monovalent, divalent, and trivalent cations, and we consider walls made of non-polarizable surfaces and conductors. We show that considering the surface polarization of the confining surfaces can result in a significant increase in ionic conduction. The ionic conductivity is increased because the conductors' screening of electrostatic interactions enhances ionic correlations, leading to faster collective transport within the slit. While important, the change in water's dielectric constant in confinement is not enough to explain the enhancement of ion transport in polarizable slit-like channels.
Collapse
Affiliation(s)
- Felipe Jiménez-Ángeles
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | - Ali Ehlen
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, USA
- Department of Physics, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
20
|
Emrani A, Woodward CE, Forsman J. Phase transitions of ionic fluids in nanoporous electrodes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:91. [PMID: 37792072 PMCID: PMC10550857 DOI: 10.1140/epje/s10189-023-00350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
In this work, we utilise grand canonical Metropolis Monte Carlo simulations, to establish pore-induced freezing of restricted primitive model fluids. A planar pore model is utilised, with walls that are initially neutral, and either non-conducting or perfectly conducting. The phase of the confined electrolyte (solid/fluid) displays an oscillatory dependence on surface separation, in narrow pores. Conditions are chosen so that the bulk is composed of a stable fluid electrolyte. The tendency for the electrolyte to freeze in narrow pores is somewhat stronger in systems with non-conducting walls. We also demonstrate that an applied potential will, above a threshold value, melt a frozen electrolyte. In these cases, the capacitance, as measured by the average surface charge density divided by the applied potential, will be almost vanishing if the applied potential is below this threshold value. We do not see any evidence for a "superionic fluid", which has been hypothesised to generate a strong capacitance in narrow pores, due to an efficient screening of like-charge repulsions by image charges.
Collapse
Affiliation(s)
- Ayeh Emrani
- Theoretical Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Clifford E Woodward
- University College, University of New South Wales (ADFA), Canberra, ACT, 2600, Australia
| | - Jan Forsman
- Theoretical Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
21
|
Carr AJ, Lee SE, Uysal A. Ion and water adsorption to graphene and graphene oxide surfaces. NANOSCALE 2023; 15:14319-14337. [PMID: 37561081 DOI: 10.1039/d3nr02452k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Graphene and graphene oxide (GO) are two particularly promising nanomaterials for a range of applications including energy storage, catalysis, and separations. Understanding the nanoscale interactions between ions and water near graphene and GO surfaces is critical for advancing our fundamental knowledge of these systems and downstream application success. This minireview highlights the necessity of using surface-specific experimental probes and computational techniques to fully characterize these interfaces, including the nanomaterial, surrounding water, and any adsorbed ions, if present. Key experimental and simulation studies considering water and ion structures near both graphene and GO are discussed. The major findings are: water forms 1-3 hydration layers near graphene; ions adsorb electrostatically to graphene under an applied potential; the chemical and physical properties of GO vary considerably depending on the synthesis route; and these variations influence water and ion adsorption to GO. Lastly, we offer outlooks and perspectives for these research areas.
Collapse
Affiliation(s)
- Amanda J Carr
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Seung Eun Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
22
|
Lin Y, Tang W, Xiao P, Ma J, Han X, Xu X, Luo J, Zhao S. Synergistic Effect of Salt and Anionic Surfactants on Interfacial Tension Reduction: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12392-12401. [PMID: 37620996 DOI: 10.1021/acs.langmuir.3c01558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Surfactants are commonly utilized in chemical flooding processes alongside salt to effectively decrease interfacial tension (IFT). However, the underlying microscopic mechanism for the synergistic effect of salt and surfactants on oil displacement remains ambiguous. Herein, the structure and properties of the interface between water and n-dodecane are studied by means of molecular dynamics simulations, considering three types of anionic surfactants and two types of salts. As the salt concentration (ρsalt) increases, the IFT first decreases to a minimum value, followed by a subsequent increase to higher values. The salt ions reduce the IFT only at low ρsalt due to the salt screening effect and ion bridging effect, both of which contribute to a decrease in the nearest head-to-head distance of surfactants. By incorporating salt doping, the IFTs can be reduced by at most 5%. Notably, the IFTs of different surfactants are mainly determined by the hydrogen bond interactions between oxygen atoms in the headgroup and water molecules. The presence of a greater number of oxygen atoms corresponds to lower IFT values. Specifically, for alkyl ethoxylate sulfate, the ethoxy groups play a crucial role in reducing the IFTs. This study provides valuable insights into formulating anionic surfactants that are applicable to oil recovery processes in petroleum reservoirs using saline water.
Collapse
Affiliation(s)
- Yutong Lin
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiqiang Tang
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peiwen Xiao
- Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
- Key Laboratory of Nano Chemistry (KLNC), CNPC, Beijing 100083, China
| | - Jule Ma
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Han
- Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
- Key Laboratory of Nano Chemistry (KLNC), CNPC, Beijing 100083, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianhui Luo
- Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
- Key Laboratory of Nano Chemistry (KLNC), CNPC, Beijing 100083, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
23
|
Ntim S, Sulpizi M. Molecular dynamics simulations of electrified interfaces including the metal polarisation. Phys Chem Chem Phys 2023; 25:22619-22625. [PMID: 37555300 DOI: 10.1039/d3cp01472j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Understanding electrified interfaces requires an accurate description of the electric double layer which also takes into account the metal polarisation. Here we present a simple approach to the molecular dynamics simulation of electrified interfaces which combines fixed charges and a core-shell model for the description of the polarisable electron density on the metal electrode. The approach has been applied to the Au(111) surface in contact with a NaCl aqueous electrolyte solution in order to calculate the differential capacitance and to gain a detailed picture of the charging mechanism. Metal polarisation enhances the interfacial capacitance with a difference between the cathode and anode. In particular, we find that the influence of the metal polarisation on the electric double layer depends on the ion's solvation shell structure and, for the investigated interface, is more important at the cathode, where it modifies the sodium ion distribution.
Collapse
Affiliation(s)
- Samuel Ntim
- Institut für Physik, Johannes Gutenberg Universität, Staudingerweg 7, 55128-Mainz, Germany
| | - Marialore Sulpizi
- Institut für Physik, Ruhr Universität Bochum, Universitätstrasse 150, 44801 Bochum, Germany.
| |
Collapse
|
24
|
Dufils T, Knijff L, Shao Y, Zhang C. PiNNwall: Heterogeneous Electrode Models from Integrating Machine Learning and Atomistic Simulation. J Chem Theory Comput 2023; 19:5199-5209. [PMID: 37477645 PMCID: PMC10413855 DOI: 10.1021/acs.jctc.3c00359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 07/22/2023]
Abstract
Electrochemical energy storage always involves the capacitive process. The prevailing electrode model used in the molecular simulation of polarizable electrode-electrolyte systems is the Siepmann-Sprik model developed for perfect metal electrodes. This model has been recently extended to study the metallicity in the electrode by including the Thomas-Fermi screening length. Nevertheless, a further extension to heterogeneous electrode models requires introducing chemical specificity, which does not have any analytical recipes. Here, we address this challenge by integrating the atomistic machine learning code (PiNN) for generating the base charge and response kernel and the classical molecular dynamics code (MetalWalls) dedicated to the modeling of electrochemical systems, and this leads to the development of the PiNNwall interface. Apart from the cases of chemically doped graphene and graphene oxide electrodes as shown in this study, the PiNNwall interface also allows us to probe polarized oxide surfaces in which both the proton charge and the electronic charge can coexist. Therefore, this work opens the door for modeling heterogeneous and complex electrode materials often found in energy storage systems.
Collapse
Affiliation(s)
- Thomas Dufils
- Department of Chemistry-Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, P. O. Box 538, 75121 Uppsala, Sweden
| | - Lisanne Knijff
- Department of Chemistry-Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, P. O. Box 538, 75121 Uppsala, Sweden
| | - Yunqi Shao
- Department of Chemistry-Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, P. O. Box 538, 75121 Uppsala, Sweden
| | - Chao Zhang
- Department of Chemistry-Ångström
Laboratory, Uppsala University, Lägerhyddsvägen 1, P. O. Box 538, 75121 Uppsala, Sweden
| |
Collapse
|
25
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
26
|
Robert A, Berthoumieux H, Bocquet ML. Coupled Interactions at the Ionic Graphene-Water Interface. PHYSICAL REVIEW LETTERS 2023; 130:076201. [PMID: 36867792 DOI: 10.1103/physrevlett.130.076201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
We compute ionic free energy adsorption profiles at an aqueous graphene interface by developing a self-consistent approach. To do so, we design a microscopic model for water and put the liquid on an equal footing with the graphene described by its electronic band structure. By evaluating progressively the electronic and dipolar coupled electrostatic interactions, we show that the coupling level including mutual graphene and water screening permits one to recover remarkably the precision of extensive quantum simulations. We further derive the potential of mean force evolution of several alkali cations.
Collapse
Affiliation(s)
- Anton Robert
- PASTEUR, Département de chimie, École normale supérieure, Université PSL, CNRS, Sorbonne Université, 75005 Paris, France
| | - Hélène Berthoumieux
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC, UMR 7600), F-75005 Paris, France
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Marie-Laure Bocquet
- LPENS, École normale supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
27
|
Jeong KJ, Jeong S, Lee S, Son CY. Predictive Molecular Models for Charged Materials Systems: From Energy Materials to Biomacromolecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204272. [PMID: 36373701 DOI: 10.1002/adma.202204272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Electrostatic interactions play a dominant role in charged materials systems. Understanding the complex correlation between macroscopic properties with microscopic structures is of critical importance to develop rational design strategies for advanced materials. But the complexity of this challenging task is augmented by interfaces present in the charged materials systems, such as electrode-electrolyte interfaces or biological membranes. Over the last decades, predictive molecular simulations that are founded in fundamental physics and optimized for charged interfacial systems have proven their value in providing molecular understanding of physicochemical properties and functional mechanisms for diverse materials. Novel design strategies utilizing predictive models have been suggested as promising route for the rational design of materials with tailored properties. Here, an overview of recent advances in the understanding of charged interfacial systems aided by predictive molecular simulations is presented. Focusing on three types of charged interfaces found in energy materials and biomacromolecules, how the molecular models characterize ion structure, charge transport, morphology relation to the environment, and the thermodynamics/kinetics of molecular binding at the interfaces is discussed. The critical analysis brings two prominent field of energy materials and biological science under common perspective, to stimulate crossover in both research field that have been largely separated.
Collapse
Affiliation(s)
- Kyeong-Jun Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Seungwon Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Sangmin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Chang Yun Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
28
|
Wu X, Wang P, Lewis W, Jiang YB, Gale PA. Measuring anion binding at biomembrane interfaces. Nat Commun 2022; 13:4623. [PMID: 35941124 PMCID: PMC9359984 DOI: 10.1038/s41467-022-32403-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 11/08/2022] Open
Abstract
The quantification of anion binding by molecular receptors within lipid bilayers remains challenging. Here we measure anion binding in lipid bilayers by creating a fluorescent macrocycle featuring a strong sulfate affinity. We find the determinants of anion binding in lipid bilayers to be different from those expected that govern anion binding in solution. Charge-dense anions H2PO4- and Cl- that prevail in dimethyl sulfoxide fail to bind to the macrocycle in lipids. In stark contrast, ClO4- and I- that hardly bind in dimethyl sulfoxide show surprisingly significant affinities for the macrocycle in lipids. We reveal a lipid bilayer anion binding principle that depends on anion polarisability and bilayer penetration depth of complexes leading to unexpected advantages of charge-diffuse anions. These insights enhance our understanding of how biological systems select anions and guide the design of functional molecular systems operating at biomembrane interfaces.
Collapse
Affiliation(s)
- Xin Wu
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Patrick Wang
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - William Lewis
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, 361005, Xiamen, China
| | - Philip A Gale
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
29
|
Jeanmairet G, Rotenberg B, Salanne M. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chem Rev 2022; 122:10860-10898. [PMID: 35389636 PMCID: PMC9227719 DOI: 10.1021/acs.chemrev.1c00925] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Electrochemical double-layer capacitors (EDLCs) are devices allowing the storage or production of electricity. They function through the adsorption of ions from an electrolyte on high-surface-area electrodes and are characterized by short charging/discharging times and long cycle-life compared to batteries. Microscopic simulations are now widely used to characterize the structural, dynamical, and adsorption properties of these devices, complementing electrochemical experiments and in situ spectroscopic analyses. In this review, we discuss the main families of simulation methods that have been developed and their application to the main family of EDLCs, which include nanoporous carbon electrodes. We focus on the adsorption of organic ions for electricity storage applications as well as aqueous systems in the context of blue energy harvesting and desalination. We finally provide perspectives for further improvement of the predictive power of simulations, in particular for future devices with complex electrode compositions.
Collapse
Affiliation(s)
- Guillaume Jeanmairet
- Sorbonne
Université, CNRS, Physico-chimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
| | - Benjamin Rotenberg
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Électrochimique de l’Énergie
(RS2E), FR CNRS 3459, 80039 Amiens, France
| | - Mathieu Salanne
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS
3459, 80039 Amiens, France
- Sorbonne
Université, CNRS, Physico-chimie
des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris Cedex 05, France
| |
Collapse
|
30
|
Wu J. Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chem Rev 2022; 122:10821-10859. [PMID: 35594506 DOI: 10.1021/acs.chemrev.2c00097] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significant progress has been made in recent years in theoretical modeling of the electric double layer (EDL), a key concept in electrochemistry important for energy storage, electrocatalysis, and multitudes of other technological applications. However, major challenges remain in understanding the microscopic details of the electrochemical interface and charging mechanisms under realistic conditions. This review delves into theoretical methods to describe the equilibrium and dynamic responses of the EDL structure and capacitance for electrochemical systems commonly deployed for capacitive energy storage. Special emphasis is given to recent advances that intend to capture the nonclassical EDL behavior such as oscillatory ion distributions, polarization of nonmetallic electrodes, charge transfer, and various forms of phase transitions in the micropores of electrodes interfacing with an organic electrolyte or ionic liquid. This comprehensive analysis highlights theoretical insights into predictable relationships between materials characteristics and electrochemical performance and offers a perspective on opportunities for further development toward rational design and optimization of electrochemical systems.
Collapse
Affiliation(s)
- Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
31
|
Ye BB, Wang ZG. A coarse-grained model of room-temperature ionic liquids between metal electrodes: a molecular dynamics study. Phys Chem Chem Phys 2022; 24:11573-11584. [PMID: 35522924 DOI: 10.1039/d2cp00166g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent mean-field theories predict that room-temperature ionic liquid (RTIL) electric double-layer capacitors (EDLCs) undergo a spontaneous surface charge separation (SSCS) with no applied potential. In this study, we construct a coarse-grained molecular model that corresponds to the mean-field models to directly simulate the behavior of RTILs without invoking mean-field approximations. In addition to observing the SSCS transition, we highlight the importance of the image charge interactions and explore the enhanced in-plane ordering on the electrodes, two effects not accounted for by the mean-field theories. By calculating and comparing the differential capacitance for RTILs confined between perfectly conducting and non-metal electrodes, we show that the image charge interactions drastically improve the energy storage properties of RTIL EDLCs.
Collapse
Affiliation(s)
- Benjamin Bobin Ye
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA.
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA.
| |
Collapse
|
32
|
Phan LX, Lynch CI, Crain J, Sansom MS, Tucker SJ. Influence of effective polarization on ion and water interactions within a biomimetic nanopore. Biophys J 2022; 121:2014-2026. [DOI: 10.1016/j.bpj.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/25/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
|
33
|
Stenberg S, Woodward CE, Forsman J. Interactions between conducting surfaces in salt solutions. SOFT MATTER 2022; 18:1636-1643. [PMID: 35118484 DOI: 10.1039/d1sm01520f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we simulate interactions between two perfectly conducting surfaces, immersed in a salt solution. We demonstrate that these forces are quantitatively different from those between (equally charged) non-conducting surfaces. There is, for instance, a significant repulsion between net neutral surfaces. On the other hand, there are also qualitative similarities, with behaviours found with non-conducting surfaces. For instance, there is a non-monotonic dependence of the free energy barrier height, on the salt concentration, and the minimum essentially coincides with a flat profile of the apparent surface charge density (i.e. the effective net surface charge density, some distance away from the surface, when accounting for ion neutralization), outside the so-called Stern layer. These conditions can be described as "perfect surface charge neutralization". Despite observed quantitative differences, we demonstrate that it might be possible to mimic a dispersion containing charged colloidal metal particles by a simpler model system with charged non-conducting particles, using modified particle-ion interactions.
Collapse
Affiliation(s)
- Samuel Stenberg
- Theoretical Chemistry, Lund University, P. O. Box 124, 221 00 Lund, Sweden.
| | - Clifford E Woodward
- University College, University of New South Wales (ADFA), Canberra ACT 2600, Australia.
| | - Jan Forsman
- Theoretical Chemistry, Lund University, P. O. Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
34
|
Microscopic origin of the effect of substrate metallicity on interfacial free energies. Proc Natl Acad Sci U S A 2021; 118:2108769118. [PMID: 34876519 DOI: 10.1073/pnas.2108769118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
We investigate the effect of the metallic character of solid substrates on solid-liquid interfacial thermodynamics using molecular simulations. Building on the recent development of a semiclassical Thomas-Fermi model to tune the metallicity in classical molecular dynamics simulations, we introduce a thermodynamic integration framework to compute the evolution of the interfacial free energy as a function of the Thomas-Fermi screening length. We validate this approach against analytical results for empty capacitors and by comparing the predictions in the presence of an electrolyte with values determined from the contact angle of droplets on the surface. The general expression derived in this work highlights the role of the charge distribution within the metal. We further propose a simple model to interpret the evolution of the interfacial free energy with voltage and Thomas-Fermi length, which allows us to identify the charge correlations within the metal as the microscopic origin of the evolution of the interfacial free energy with the metallic character of the substrate. This methodology opens the door to the molecular-scale study of the effect of the metallic character of the substrate on confinement-induced transitions in ionic systems, as reported in recent atomic force microscopy and surface force apparatus experiments.
Collapse
|
35
|
Pireddu G, Scalfi L, Rotenberg B. A molecular perspective on induced charges on a metallic surface. J Chem Phys 2021; 155:204705. [PMID: 34852473 DOI: 10.1063/5.0076127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the response of the surface of metallic solids to external electric field sources is crucial to characterize electrode-electrolyte interfaces. Continuum electrostatics offer a simple description of the induced charge density at the electrode surface. However, such a simple description does not take into account features related to the atomic structure of the solid and to the molecular nature of the solvent and of the dissolved ions. In order to illustrate such effects and assess the ability of continuum electrostatics to describe the induced charge distribution, we investigate the behavior of a gold electrode interacting with sodium or chloride ions fixed at various positions, in a vacuum or in water, using all-atom constant-potential classical molecular dynamics simulations. Our analysis highlights important similarities between the two approaches, especially under vacuum conditions and when the ion is sufficiently far from the surface, as well as some limitations of the continuum description, namely, neglecting the charges induced by the adsorbed solvent molecules and the screening effect of the solvent when the ion is close to the surface. While the detailed features of the charge distribution are system-specific, we expect some of our generic conclusions on the induced charge density to hold for other ions, solvents, and electrode surfaces. Beyond this particular case, the present study also illustrates the relevance of such molecular simulations to serve as a reference for the design of improved implicit solvent models of electrode-electrolyte interfaces.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Laura Scalfi
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
36
|
Yuan J, Wang Y. Conformation and Ionization Behavior of Charge-Regulating Polyelectrolyte Brushes in a Poor Solvent. J Phys Chem B 2021; 125:10589-10596. [PMID: 34494845 DOI: 10.1021/acs.jpcb.1c04451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding the structural response of weak polyelectrolyte brushes upon external stimuli is crucial for their applications ranging from modifying surface properties to the development of smart and intelligent materials. In this work, coarse-grained molecular dynamics simulations were carried out to investigate the conformation and ionization behavior of charge-regulating polyelectrolyte brushes under poor solvent conditions, using an implicit solvent model. The results show that, while the thickness of a sparse polyelectrolyte brush shows a similar behavior to that of a single chain, namely, a monotonic change as a function of solvent quality (modeled by an effective segment-segment attraction strength parameter) and solution pH, a dense polyelectrolyte brush exhibits more complex behavior. An unexpected reexpansion is observed when the effective segment-segment attraction strength is further increased, especially in the case of a high pH. In the latter case, strong attraction in polymer segments promotes the formation of large, interchain, cylindrical aggregates, leading to an increase in brush thickness.
Collapse
Affiliation(s)
- Jiaxing Yuan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanwei Wang
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 010000, Kazakhstan.,Laboratory of Computational Materials Science for Energy Applications, Center for Energy and Advanced Materials Science, National Laboratory Astana, 53 Kabanbay Batyr Avenue, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
37
|
Serva A, Scalfi L, Rotenberg B, Salanne M. Effect of the metallicity on the capacitance of gold-aqueous sodium chloride interfaces. J Chem Phys 2021; 155:044703. [PMID: 34340400 DOI: 10.1063/5.0060316] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electrochemistry experiments have established that the capacitance of electrode-electrolyte interfaces is much larger for good metals, such as gold and platinum, than for carbon-based materials. Despite the development of elaborate electrode interaction potentials, to date molecular dynamics simulations are not able to capture this effect. Here, we show that changing the width of the Gaussian charge distribution used to represent the atomic charges in gold is an effective way to tune its metallicity. Larger Gaussian widths lead to a capacitance of aqueous solutions (pure water and 1 M NaCl) in good agreement with recent ab initio molecular dynamics results. For pure water, the increase in the capacitance is not accompanied by structural changes, while in the presence of salt, the Na+ cations tend to adsorb significantly on the surface. For a strongly metallic gold electrode, these ions can even form inner sphere complexes on hollow sites of the surface.
Collapse
Affiliation(s)
- Alessandra Serva
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Laura Scalfi
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
38
|
Lian Z, Chao H, Wang ZG. Effects of Confinement and Ion Adsorption in Ionic Liquid Supercapacitors with Nanoporous Electrodes. ACS NANO 2021; 15:11724-11733. [PMID: 34228448 DOI: 10.1021/acsnano.1c02506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigate the effects of pore size and ion adsorption on the room-temperature ionic liquid capacitor with nanoporous electrodes, with a focus on optimizing the capacitance and energy storage. Using a recently developed modified BSK model accounting for both ion correlations and nonelectrostatic interactions, we find that ion crowding proximate to the electrode surface induced by the spontaneous charge separation due to strong ion correlations is responsible for the anomalous increase in the capacitance with decreasing pore sizes observed in experiments. Reducing the strength of ion correlations increases the capacitance and suppresses the anomalous size dependence. For a given pore size, the capacitance peak diverges when the ion correlation strength α reaches a critical value, αsc,L. The capacitance peak shifts to smaller pore size as α decreases because of rapid decrease of αsc,L with decreasing pore size. Asymmetric preferential ion adsorption is shown to lead to significantly enhanced energy storage close to the transition point for any pore sizes. For a given correlation strength, the energy storage is optimal at a pore size where α = αsc,L.
Collapse
Affiliation(s)
- Zengju Lian
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | - Huikuan Chao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|