1
|
Sciortino F. Multitude of glasses of water. Proc Natl Acad Sci U S A 2025; 122:e2423093121. [PMID: 39739819 PMCID: PMC11725876 DOI: 10.1073/pnas.2423093121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
|
2
|
Eltareb A, Lopez GE, Giovambattista N. A continuum of amorphous ices between low-density and high-density amorphous ice. Commun Chem 2024; 7:36. [PMID: 38378859 PMCID: PMC10879119 DOI: 10.1038/s42004-024-01117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Amorphous ices are usually classified as belonging to low-density or high-density amorphous ice (LDA and HDA) with densities ρLDA ≈ 0.94 g/cm3 and ρHDA ≈ 1.15-1.17 g/cm3. However, a recent experiment crushing hexagonal ice (ball-milling) produced a medium-density amorphous ice (MDA, ρMDA ≈ 1.06 g/cm3) adding complexity to our understanding of amorphous ice and the phase diagram of supercooled water. Motivated by the discovery of MDA, we perform computer simulations where amorphous ices are produced by isobaric cooling and isothermal compression/decompression. Our results show that, depending on the pressure employed, isobaric cooling can generate a continuum of amorphous ices with densities that expand in between those of LDA and HDA (briefly, intermediate amorphous ices, IA). In particular, the IA generated at P ≈ 125 MPa has a remarkably similar density and average structure as MDA, implying that MDA is not unique. Using the potential energy landscape formalism, we provide an intuitive qualitative understanding of the nature of LDA, HDA, and the IA generated at different pressures. In this view, LDA and HDA occupy specific and well-separated regions of the PEL; the IA prepared at P = 125 MPa is located in the intermediate region of the PEL that separates LDA and HDA.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Gustavo E Lopez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY, 10468, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Krüger CR, Mowry NJ, Bongiovanni G, Drabbels M, Lorenz UJ. Electron diffraction of deeply supercooled water in no man's land. Nat Commun 2023; 14:2812. [PMID: 37198157 PMCID: PMC10192419 DOI: 10.1038/s41467-023-38520-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
A generally accepted understanding of the anomalous properties of water will only emerge if it becomes possible to systematically characterize water in the deeply supercooled regime, from where the anomalies appear to emanate. This has largely remained elusive because water crystallizes rapidly between 160 K and 232 K. Here, we present an experimental approach to rapidly prepare deeply supercooled water at a well-defined temperature and probe it with electron diffraction before crystallization occurs. We show that as water is cooled from room temperature to cryogenic temperature, its structure evolves smoothly, approaching that of amorphous ice just below 200 K. Our experiments narrow down the range of possible explanations for the origin of the water anomalies and open up new avenues for studying supercooled water.
Collapse
Affiliation(s)
- Constantin R Krüger
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland
| | - Nathan J Mowry
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland
| | - Gabriele Bongiovanni
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland
| | - Marcel Drabbels
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland
| | - Ulrich J Lorenz
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Molecular Nanodynamics, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
4
|
Kringle L, Kay BD, Kimmel GA. Dynamic Heterogeneity and Kovacs' Memory Effects in Supercooled Water. J Phys Chem B 2023; 127:3919-3930. [PMID: 37097190 DOI: 10.1021/acs.jpcb.3c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Understanding the properties of supercooled water is important for developing a comprehensive theory for liquid water and amorphous ices. Because of rapid crystallization for deeply supercooled water, experiments on it are typically carried out under conditions in which the temperature and/or pressure are rapidly changing. As a result, information on the structural relaxation kinetics of supercooled water as it approaches (metastable) equilibrium is useful for interpreting results obtained in this experimentally challenging region of phase space. We used infrared spectroscopy and the fast time resolution obtained by transiently heating nanoscale water films to investigate relaxation kinetics (aging) in supercooled water. When the structural relaxation of the water films was followed using a temperature jump protocol analogous to the classic experiments of Kovacs, similar memory effects were observed. In particular, after suitable aging at one temperature, water's structure displayed an extremum versus the number of heat pulses upon changing to a second temperature before eventually relaxing to a steady-state structure characteristic of that temperature. A random double well model based on the idea of dynamic heterogeneity in supercooled water accounts for the observations.
Collapse
Affiliation(s)
- Loni Kringle
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Bruce D Kay
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Greg A Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
5
|
Fardis M, Karagianni M, Gkoura L, Papavassiliou G. Self-Diffusion in Confined Water: A Comparison between the Dynamics of Supercooled Water in Hydrophobic Carbon Nanotubes and Hydrophilic Porous Silica. Int J Mol Sci 2022; 23:ijms232214432. [PMID: 36430907 PMCID: PMC9697084 DOI: 10.3390/ijms232214432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Confined liquids are model systems for the study of the metastable supercooled state, especially for bulk water, in which the onset of crystallization below 230 K hinders the application of experimental techniques. Nevertheless, in addition to suppressing crystallization, confinement at the nanoscale drastically alters the properties of water. Evidently, the behavior of confined water depends critically on the nature of the confining environment and the interactions of confined water molecules with the confining matrix. A comparative study of the dynamics of water under hydrophobic and hydrophilic confinement could therefore help to clarify the underlying interactions. As we demonstrate in this work using a few representative results from the relevant literature, the accurate assessment of the translational mobility of water molecules, especially in the supercooled state, can unmistakably distinguish between the hydrophilic and hydrophobic nature of the confining environments. Among the numerous experimental methods currently available, we selected nuclear magnetic resonance (NMR) in a field gradient, which directly measures the macroscopic translational self-diffusion coefficient, and quasi-elastic neutron scattering (QENS), which can determine the microscopic translational dynamics of the water molecules. Dielectric relaxation, which probes the re-orientational degrees of freedom, are also discussed.
Collapse
|
6
|
Phan AD. Screening and collective effects in randomly pinned fluids: a new theoretical framework. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:435101. [PMID: 35985315 DOI: 10.1088/1361-648x/ac8b51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
We propose a theoretical framework for the dynamics of bulk isotropic hard-sphere systems in the presence of randomly pinned particles and apply this theory to supercooled water to validate it. Structural relaxation is mainly governed by local and non-local activated process. As the pinned fraction grows, a local caging constraint becomes stronger and the long range collective aspect of relaxation is screened by immobile obstacles. Different responses of the local and cooperative motions results in subtle predictions for how the alpha relaxation time varies with pinning and density. Our theoretical analysis for the relaxation time of water with pinned molecules quantitatively well describe previous simulations. In addition, the thermal dependence of relaxation for unpinned bulk water is also consistent with prior computational and experimental data.
Collapse
Affiliation(s)
- Anh D Phan
- Faculty of Materials Science and Engineering, Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
7
|
Kringle L, Thornley WA, Kay BD, Kimmel GA. Isotope effects on the structural transformation and relaxation of deeply supercooled water. J Chem Phys 2022; 156:084501. [DOI: 10.1063/5.0078796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have examined the structure of supercooled liquid D2O as a function of temperature between 185 and 255 K using pulsed laser heating to rapidly heat and cool the sample on a nanosecond timescale. The liquid structure can be represented as a linear combination of two structural motifs, with a transition between them described by a logistic function centered at 218 K with a width of 10 K. The relaxation to a metastable state, which occurred prior to crystallization, exhibited nonexponential kinetics with a rate that was dependent on the initial structural configuration. When the temperature is scaled by the temperature of maximum density, which is an isostructural point of the isotopologues, the structural transition and the non-equilibrium relaxation kinetics of D2O agree remarkably well with those for H2O.
Collapse
Affiliation(s)
- Loni Kringle
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Wyatt A. Thornley
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Bruce D. Kay
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Greg A. Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| |
Collapse
|
8
|
de Almeida Ribeiro I, de Koning M, Molinero V. Is It Possible to Follow the Structural Evolution of Water in "No-Man's Land" Using a Pulsed-Heating Procedure? J Phys Chem Lett 2022; 13:1085-1089. [PMID: 35080178 DOI: 10.1021/acs.jpclett.1c04106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The anomalous increase in compressibility and heat capacity of supercooled water has been attributed to its structural transformation of into a four-coordinated liquid. Experiments revealed that κT and Cp peak at TWthermo ≈ 229 K [Kim et al. Science 2017, 358, 1589; Pathak et al. Proc. Natl. Acad. Sci. 2021, 118, e2018379118]. Recently, a pulsed heating procedure (PHP) was employed to interrogate the structure of water, reporting a steep increase in tetrahedrality around TWPHP = 210 ± 3 K [Kringle et al. Science 2020, 369, 1490]. This discrepancy questions whether water structure and thermodynamics are decoupled, or if the shift in TW is an artifact of PHP. Here we implement PHP in molecular simulations. We find that the stationary states captured at the bottom of the pulse are not representative of the thermalized liquid or its inherent structure. Our analysis reveals a temperature-dependent distortion that shifts TWPHP to ∼20 K below TWthermo. We conclude that 2 orders of magnitude faster rates are required to sample water's inherent structure with PHP.
Collapse
Affiliation(s)
- Ingrid de Almeida Ribeiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859 Campinas, São Paulo, Brazil
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Maurice de Koning
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859 Campinas, São Paulo, Brazil
- Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas, UNICAMP, 13083-861, Campinas, São Paulo, Brazil
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
9
|
Patrón A, Sánchez-Rey B, Prados A. Strong nonexponential relaxation and memory effects in a fluid with nonlinear drag. Phys Rev E 2022; 104:064127. [PMID: 35030916 DOI: 10.1103/physreve.104.064127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/24/2021] [Indexed: 11/07/2022]
Abstract
We analyze the dynamical evolution of a fluid with nonlinear drag, for which binary collisions are elastic, described at the kinetic level by the Enskog-Fokker-Planck equation. This model system, rooted in the theory of nonlinear Brownian motion, displays a really complex behavior when quenched to low temperatures. Its glassy response is controlled by a long-lived nonequilibrium state, independent of the degree of nonlinearity and also of the Brownian-Brownian collisions rate. The latter property entails that this behavior persists in the collisionless case, where the fluid is described by the nonlinear Fokker-Planck equation. The observed response, which includes nonexponential, algebraic, relaxation, and strong memory effects, presents scaling properties: the time evolution of the temperature-for both relaxation and memory effects-falls onto a master curve, regardless of the details of the experiment. To account for the observed behavior in simulations, it is necessary to develop an extended Sonine approximation for the kinetic equation-which considers not only the fourth cumulant but also the sixth one.
Collapse
Affiliation(s)
- A Patrón
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - B Sánchez-Rey
- Departamento de Física Aplicada I, E.P.S., Universidad de Sevilla, Virgen de África 7, E-41011 Sevilla, Spain
| | - A Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
10
|
Foffi R, Sciortino F. Structure of High-Pressure Supercooled and Glassy Water. PHYSICAL REVIEW LETTERS 2021; 127:175502. [PMID: 34739286 DOI: 10.1103/physrevlett.127.175502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
We numerically investigate the structure of deep supercooled and glassy water under pressure, covering the range of densities corresponding to the experimentally produced high- and very-high-density amorphous phases. At T=188 K, a continuous increase in density is observed on varying pressure from 2.5 to 13 kbar, with no signs of first-order transitions. Exploiting a recently proposed approach to the analysis of the radial distribution function-based on topological properties of the hydrogen-bond network-we are able to identify well-defined local geometries that involve pairs of molecules separated by multiple hydrogen bonds, specific to the high- and very-high-density structures.
Collapse
Affiliation(s)
- Riccardo Foffi
- Department of Physics, Sapienza Università di Roma, Piazzale Aldo Moro, 2, 00185 Rome, Italy
| | - Francesco Sciortino
- Department of Physics, Sapienza Università di Roma, Piazzale Aldo Moro, 2, 00185 Rome, Italy
| |
Collapse
|