1
|
Tan X, Xiao GY, Banerjee P, Wang S, Kurie JM. The cancer-associated secretory phenotype: a new frontier in targeted therapeutics. J Clin Invest 2024; 134:e182652. [PMID: 39225096 PMCID: PMC11364386 DOI: 10.1172/jci182652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Xiaochao Tan
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Guan-Yu Xiao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Markey Cancer Center, Lexington, Kentucky, USA
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, USA
| | - Shike Wang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Zhang A, He X, Zhang C, Tang X. Molecular subtype identification and prognosis stratification based on golgi apparatus-related genes in head and neck squamous cell carcinoma. BMC Med Genomics 2024; 17:53. [PMID: 38365684 PMCID: PMC10870608 DOI: 10.1186/s12920-024-01823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Abnormal dynamics of the Golgi apparatus reshape the tumor microenvironment and immune landscape, playing a crucial role in the prognosis and treatment response of cancer. This study aims to investigate the potential role of Golgi apparatus-related genes (GARGs) in the heterogeneity and prognosis of head and neck squamous cell carcinoma (HNSCC). METHODS Transcriptional data and corresponding clinical information of HNSCC were obtained from public databases for differential expression analysis, consensus clustering, survival analysis, immune infiltration analysis, immune therapy response assessment, gene set enrichment analysis, and drug sensitivity analysis. Multiple machine learning algorithms were employed to construct a prognostic model based on GARGs. A nomogram was used to integrate and visualize the multi-gene model with clinical pathological features. RESULTS A total of 321 GARGs that were differentially expressed were identified, out of which 69 were associated with the prognosis of HNSCC. Based on these prognostic genes, two molecular subtypes of HNSCC were identified, which showed significant differences in prognosis. Additionally, a risk signature consisting of 28 GARGs was constructed and demonstrated good performance for assessing the prognosis of HNSCC. This signature divided HNSCC into the high-risk and low-risk groups with significant differences in multiple clinicopathological characteristics, including survival outcome, grade, T stage, chemotherapy. Immune response-related pathways were significantly activated in the high-risk group with better prognosis. There were significant differences in chemotherapy drug sensitivity and immune therapy response between the high-risk and low-risk groups, with the low-risk group being more suitable for receiving immunotherapy. Riskscore, age, grade, and radiotherapy were independent prognostic factors for HNSCC and were used to construct a nomogram, which had good clinical applicability. CONCLUSIONS We successfully identified molecular subtypes and prognostic signature of HNSCC that are derived from GARGs, which can be used for the assessment of HNSCC prognosis and treatment responses.
Collapse
Affiliation(s)
- Aichun Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, Hangzhou, Zhejiang Province, P. R. China
| | - Xiao He
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, Hangzhou, Zhejiang Province, P. R. China
| | - Chen Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, Hangzhou, Zhejiang Province, P. R. China
| | - Xuxia Tang
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 310006, Hangzhou, Zhejiang Province, P. R. China.
| |
Collapse
|
3
|
Baldavira CM, Prieto TG, Nagai MA, Capelozzi VL. PI4K2A: a novel potential therapeutic target for lung cancer. Transl Lung Cancer Res 2024; 13:199-204. [PMID: 38404996 PMCID: PMC10891409 DOI: 10.21037/tlcr-23-734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024]
Affiliation(s)
| | | | - Maria Aparecida Nagai
- Department of Radiology and Oncology, Medical School, University of São Paulo (USP), São Paulo, Brazil
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of São Paulo (ICESP), São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
4
|
Lu Y, He W, Huang X, Xiao X. Pulsatilla saponin D regulates ras-related C3 botulinum toxin substrate 3 (RAC3) to overcome resistance to paclitaxel in lung adenocarcinoma cells. BMC Cancer 2024; 24:55. [PMID: 38200409 PMCID: PMC10777557 DOI: 10.1186/s12885-024-11841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Paclitaxel, a tubulin-binding agent, is a Food and Drug Administration-approved first-line drug for the treatment of non-small cell lung cancer (NSCLC), for both squamous and non-squamous cell lung carcinoma, with paclitaxel/carboplatin + bevacizumab a common chemotherapy regimen for stage IV non-squamous NSCLC; however, primary or acquired resistance to paclitaxel is gradually increasing, leading to treatment failure. METHODS Our results show that Ras-related C3 botulinum toxin substrate 3 (RAC3) is overexpressed in cultured paclitaxel-resistant cells and that RAC3 expression levels are negatively correlated with sensitivity of lung adenocarcinoma cells to paclitaxel. Pulsatilla saponin D could inhibit RAC3 expression, and we hypothesize that it may block paclitaxel resistance. Further, we found that treatment with paclitaxel combined with Pulsatilla saponin D, can overcome lung adenocarcinoma cell resistance to paclitaxel alone in cell culture and mouse xenograft models.
Collapse
Affiliation(s)
- Yanyan Lu
- Laboratory Department of Orthopedic Spine Surgery of The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wubin He
- Key Laboratory of Surgery of Liaoning Province of The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiaoxu Huang
- Key Laboratory of Molecular Cell Biology and New Drug Development of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xuyang Xiao
- Department of Thoracic Surgery of The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
5
|
Liu J, Wei L. Construction and validation of an efferocytosis-related prognostic signature in lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:14577-14596. [PMID: 37578523 DOI: 10.1007/s00432-023-05251-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Accumulating evidence highlights the potential significance of efferocytosis in tumor progression. This study is directed towards the construction of a prognostic risk model for lung adenocarcinoma (LUAD), grounded on efferocytosis-related genes (ERGs). METHODS Employing LASSO-COX regression analysis, a risk-prognostic model was formulated, centered on seven ERGs. Concurrently, a nomogram was established that incorporated patient clinical features and risk scores. The predictive accuracy of the risk model and the nomogram was substantiated via external validation sets. The landscapes of immune infiltration and genetic mutation were evaluated for high- and low-risk groups, with the expression of seven key genes validated through RT-PCR. RESULTS Our findings reveal that the high-risk group displayed considerably inferior survival outcomes in comparison to the low-risk group. A diminished abundance of immune cell infiltrates and a higher prevalence of gene mutations characterized the high-risk group. Genes with high expression were markedly enriched in pathways related to cell proliferation. The superior predictive performance of the risk model and nomogram was adequately substantiated by the external validation sets (GSE31210, GSE30219, and GSE50081). In addition, we discerned several potential therapeutic drugs demonstrating different sensitivities across patient risk groups. The differential expression of seven central genes was confirmed in A549, H1299, and BEAS-2B cell lines. CONCLUSION The constructed risk model and nomogram display high accuracy in predicting the survival and immune landscape of LUAD patients, thus providing invaluable prognostic tools in clinical scenarios.
Collapse
Affiliation(s)
- Jian Liu
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
6
|
Obata Y, Kurokawa K, Tojima T, Natsume M, Shiina I, Takahashi T, Abe R, Nakano A, Nishida T. Golgi retention and oncogenic KIT signaling via PLCγ2-PKD2-PI4KIIIβ activation in gastrointestinal stromal tumor cells. Cell Rep 2023; 42:113035. [PMID: 37616163 DOI: 10.1016/j.celrep.2023.113035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Most gastrointestinal stromal tumors (GISTs) develop due to gain-of-function mutations in the tyrosine kinase gene, KIT. We recently showed that mutant KIT mislocalizes to the Golgi area and initiates uncontrolled signaling. However, the molecular mechanisms underlying its Golgi retention remain unknown. Here, we show that protein kinase D2 (PKD2) is activated by the mutant, which causes Golgi retention of KIT. In PKD2-inhibited cells, KIT migrates from the Golgi region to lysosomes and subsequently undergoes degradation. Importantly, delocalized KIT cannot trigger downstream activation. In the Golgi/trans-Golgi network (TGN), KIT activates the PKD2-phosphatidylinositol 4-kinase IIIβ (PKD2-PI4KIIIβ) pathway through phospholipase Cγ2 (PLCγ2) to generate a PI4P-rich membrane domain, where the AP1-GGA1 complex is aberrantly recruited. Disruption of any factors in this cascade results in the release of KIT from the Golgi/TGN. Our findings show the molecular mechanisms underlying KIT mislocalization and provide evidence for a strategy for inhibition of oncogenic signaling.
Collapse
Affiliation(s)
- Yuuki Obata
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Miyuki Natsume
- Laboratory of Intracellular Traffic & Oncology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Abe
- Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Toshirou Nishida
- National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
7
|
Bura A, Čabrijan S, Đurić I, Bruketa T, Jurak Begonja A. A Plethora of Functions Condensed into Tiny Phospholipids: The Story of PI4P and PI(4,5)P 2. Cells 2023; 12:1411. [PMID: 37408244 PMCID: PMC10216963 DOI: 10.3390/cells12101411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Phosphoinositides (PIs) are small, phosphorylated lipids that serve many functions in the cell. They regulate endo- and exocytosis, vesicular trafficking, actin reorganization, and cell mobility, and they act as signaling molecules. The most abundant PIs in the cell are phosphatidylinositol-4-monophosphate (PI4P) and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. PI4P is mostly localized at the Golgi apparatus where it regulates the anterograde trafficking from the Golgi apparatus to the plasma membrane (PM), but it also localizes at the PM. On the other hand, the main localization site of PI(4,5)P2 is the PM where it regulates the formation of endocytic vesicles. The levels of PIs are regulated by many kinases and phosphatases. Four main kinases phosphorylate the precursor molecule phosphatidylinositol into PI4P, divided into two classes (PI4KIIα, PI4KIIβ, PI4KIIIα, and PI4KIIIβ), and three main kinases phosphorylate PI4P to form PI(4,5)P2 (PI4P5KIα, PI4P5KIβ, and PI4P5KIγ). In this review, we discuss the localization and function of the kinases that produce PI4P and PI(4,5)P2, as well as the localization and function of their product molecules with an overview of tools for the detection of these PIs.
Collapse
Affiliation(s)
| | | | | | | | - Antonija Jurak Begonja
- Laboratory of Hematopoiesis, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
8
|
Tan X, Xiao GY, Wang S, Shi L, Zhao Y, Liu X, Yu J, Russell WK, Creighton CJ, Kurie JM. EMT-activated secretory and endocytic vesicular trafficking programs underlie a vulnerability to PI4K2A antagonism in lung cancer. J Clin Invest 2023; 133:e165863. [PMID: 36757799 PMCID: PMC10065074 DOI: 10.1172/jci165863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Hypersecretory malignant cells underlie therapeutic resistance, metastasis, and poor clinical outcomes. However, the molecular basis for malignant hypersecretion remains obscure. Here, we showed that epithelial-mesenchymal transition (EMT) initiates exocytic and endocytic vesicular trafficking programs in lung cancer. The EMT-activating transcription factor zinc finger E-box-binding homeobox 1 (ZEB1) executed a PI4KIIIβ-to-PI4KIIα (PI4K2A) dependency switch that drove PI4P synthesis in the Golgi and endosomes. EMT enhanced the vulnerability of lung cancer cells to PI4K2A small-molecule antagonists. PI4K2A formed a MYOIIA-containing protein complex that facilitated secretory vesicle biogenesis in the Golgi, thereby establishing a hypersecretory state involving osteopontin (SPP1) and other prometastatic ligands. In the endosomal compartment, PI4K2A accelerated recycling of SPP1 receptors to complete an SPP1-dependent autocrine loop and interacted with HSP90 to prevent lysosomal degradation of AXL receptor tyrosine kinase, a driver of cell migration. These results show that EMT coordinates exocytic and endocytic vesicular trafficking to establish a therapeutically actionable hypersecretory state that drives lung cancer progression.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Guan-Yu Xiao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Shike Wang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Shi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanbin Zhao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Chad J. Creighton
- Department of Medicine and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioinformatics and Computational Biology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
McPhail JA, Burke JE. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic 2023; 24:131-145. [PMID: 35579216 DOI: 10.1111/tra.12841] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Sahu P, Balakrishnan A, Di Martino R, Luini A, Russo D. Role of the Mosaic Cisternal Maturation Machinery in Glycan Synthesis and Oncogenesis. Front Cell Dev Biol 2022; 10:842448. [PMID: 35465326 PMCID: PMC9019784 DOI: 10.3389/fcell.2022.842448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/24/2022] [Indexed: 12/20/2022] Open
Abstract
Tumorigenesis is associated with the deregulation of multiple processes, among which the glycosylation of lipids and proteins is one of the most extensively affected. However, in most cases, it remains unclear whether aberrant glycosylation is a cause, a link in the pathogenetic chain, or a mere consequence of tumorigenesis. In other cases, instead, studies have shown that aberrant glycans can promote oncogenesis. To comprehend how aberrant glycans are generated it is necessary to clarify the underlying mechanisms of glycan synthesis at the Golgi apparatus, which are still poorly understood. Important factors that determine the glycosylation potential of the Golgi apparatus are the levels and intra-Golgi localization of the glycosylation enzymes. These factors are regulated by the process of cisternal maturation which transports the cargoes through the Golgi apparatus while retaining the glycosylation enzymes in the organelle. This mechanism has till now been considered a single, house-keeping and constitutive function. Instead, we here propose that it is a mosaic of pathways, each controlling specific set of functionally related glycosylation enzymes. This changes the conception of cisternal maturation from a constitutive to a highly regulated function. In this new light, we discuss potential new groups oncogenes among the cisternal maturation machinery that can contribute to aberrant glycosylation observed in cancer cells. Further, we also discuss the prospects of novel anticancer treatments targeting the intra-Golgi trafficking process, particularly the cisternal maturation mechanism, to control/inhibit the production of pro-tumorigenic glycans.
Collapse
Affiliation(s)
| | | | | | - A. Luini
- *Correspondence: A. Luini, ; D. Russo,
| | - D. Russo
- *Correspondence: A. Luini, ; D. Russo,
| |
Collapse
|