1
|
Quan J, Zhang C, Chen X, Cai X, Luo X. Lipid droplet - organelle crosstalk and its implication in cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 197:11-20. [PMID: 40381741 DOI: 10.1016/j.pbiomolbio.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
Lipid droplets (LDs) store lipids in cells, provide phospholipids for membrane synthesis, and maintain the intracellular balance of energy and lipid metabolism. Undoubtedly, the crosstalk between LDs and other organelles is the foundation for performing functions. Many studies indicate that LDs promote tumor progression. LD accumulation has been observed in a variety of cancers, and high LD content is associated with malignant phenotype and poor prognosis of cancers. In this paper, we summarized the intimate crosstalk between LDs and intracellular organelles, including endoplasmic reticulum (ER), mitochondria, lysosomes and peroxisomes, and addressed the effects of LD-organelle crosstalk on cancer initiation and progression. We also integrated the changes of LD-organelle interactions in cancers to provide an insightful knowledge for cancer therapeutics.
Collapse
Affiliation(s)
- Jing Quan
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Chunhong Zhang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China
| | - Xinfei Cai
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, PR China.
| |
Collapse
|
2
|
Kumar R, Arrowood C, Schott MB, Nazarko TY. Microlipophagy from Simple to Complex Eukaryotes. Cells 2025; 14:141. [PMID: 39851569 PMCID: PMC11764314 DOI: 10.3390/cells14020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Lipophagy is a selective degradation of lipid droplets in lysosomes or vacuoles. Apart from its role in generating energy and free fatty acids for membrane repair, growth, and the formation of new membranes, lipophagy emerges as a key player in other cellular processes and disease pathogenesis. While fungal, plant, and algal cells use microlipophagy, the most prominent form of lipophagy in animal cells is macrolipophagy. However, recent studies showed that animal cells can also use microlipophagy to metabolize their lipid droplets. Therefore, to no surprise, microlipophagy is conserved from simple unicellular to the most complex multicellular eukaryotes, and many eukaryotic cells can operate both forms of lipophagy. Macrolipophagy is the most studied and better understood at the molecular level, while our understanding of microlipophagy is very sparse. This review will discuss microlipophagy from the perspective of its conservation in eukaryotes and its importance in diseases. To better appreciate the conserved nature of microlipophagy, different organisms and types of cells in which microlipophagy has been reported are also shown in a tabular form. We also point toward the gaps in our understanding of microlipophagy, including the signaling behind microlipophagy, especially in the cells of complex multicellular organisms.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Colin Arrowood
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Micah B. Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
3
|
Chen W, Chen J, Cheng Z, Chen W, Zhang H. Lipophagy: exploring its association with male reproductive system disorders and investigating potential mechanisms. Arch Physiol Biochem 2025:1-13. [PMID: 39778106 DOI: 10.1080/13813455.2024.2446840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Lipid metabolism, one of the three major metabolic processes, plays a crucial role in male fertility, particularly when lipid homeostasis is disrupted. Lipid droplets (LDs), cellular organelles that store lipids primarily in the form of triglycerides and cholesterol esters, serve as central hubs in lipid metabolism.The degradation of LDs is regulated by lipases and lipophagy. OBJECTIVE: This review explores the various forms of lipophagy, its molecular mechanisms, and its critical role in male fertility. Specifically, it examines the association between lipophagy and male infertility, sexual dysfunction, and reproductive cancers. METHODS: This review synthesizes current research on the molecular pathways regulating lipophagy, focusing on its impact on male reproductive health. RESULTS: Lipophagy is essential for maintaining lipid homeostasis in male reproductive tissues. Dysfunction of lipophagy is associated with impaired sperm function, infertility, sexual dysfunction, and an increased risk of reproductive cancers in men. CONCLUSION: Lipophagy plays a pivotal role in regulating lipid metabolism and maintaining male fertility. It may serve as a potential therapeutic target for treating male reproductive disorders.
Collapse
Affiliation(s)
- Wanyi Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ziqiong Cheng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Weilun Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
4
|
Zhao L, Pang M, Fu Z, Wu H, Song Q. Bibliometric analysis of lipophagy:2013 to 2023. Heliyon 2024; 10:e35299. [PMID: 39165945 PMCID: PMC11334871 DOI: 10.1016/j.heliyon.2024.e35299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Lipophagy is defined as the autophagic degradation of lipid droplets. It is a selective autophagy process that can continuously circulate and redistribute metabolites to maintain the body's energy balance. Over the last ten years, there has been a significant increase in the amount of literature on lipophagy, making it more challenging to track the field's advancement using conventional techniques. The data from the lipophagy literature published in the last ten years was converted into visual representations with the use of bibliometric tools. An increasing number of countries and institutions are delving further into lipophagy research with the support of visualization technologies. The five main illnesses of cancer, atherosclerosis, fatty liver, hyperlipidemia, and neurodegenerative diseases have become study opportunities, as have the mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Mengmeng Pang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Zhenyue Fu
- Beijing University of Chinese Medicine, Beijing, China
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Qingqiao Song
- Department of General Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiange, Xicheng District, Beijing, 100053, China
| |
Collapse
|
5
|
Ke J, Pan J, Lin H, Huang S, Zhang J, Wang C, Chang ACY, Gu J. Targeting Rab7-Rilp Mediated Microlipophagy Alleviates Lipid Toxicity in Diabetic Cardiomyopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401676. [PMID: 38837607 PMCID: PMC11304244 DOI: 10.1002/advs.202401676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/25/2024] [Indexed: 06/07/2024]
Abstract
Diabetic cardiomyopathy (DbCM) is characterized by diastolic dysfunction, which progresses into heart failure and aberrant electrophysiology in diabetic patients. Dyslipidemia in type 2 diabetic patients leads to the accumulation of lipid droplets (LDs) in cardiomyocytes and results in lipid toxicity which has been suggested to drive DbCM. It is aimed to explore potential pathways that may boost LDs degradation in DbCM and restore cardiac function. LDs accumulation resulted in an increase in lipid toxicity in DbCM hearts is confirmed. Microlipophagy pathway, rather than traditional macrolipophagy, is activated in DbCM hearts. RNA-Seq data and Rab7-CKO mice implicate that Rab7 is a major modulator of the microlipophagy pathway. Mechanistically, Rab7 is phosphorylated at Tyrosine 183, which allows the recruitment of Rab-interacting lysosome protein (Rilp) to proceed LDs degradation by lysosome. Treating DbCM mice with Rab7 activator ML-098 enhanced Rilp level and rescued the observed cardiac dysfunction. Overall, Rab7-Rilp-mediated microlipophagy may be a promising target in the treatment of lipid toxicity in DbCM is suggested.
Collapse
Affiliation(s)
- Jiahan Ke
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghai200001China
| | - Jianan Pan
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghai200001China
| | - Hao Lin
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghai200001China
| | - Shuying Huang
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghai200001China
| | - Junfeng Zhang
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghai200001China
| | - Changqian Wang
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghai200001China
| | - Alex Chia Yu Chang
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghai200001China
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghai200120China
| | - Jun Gu
- Department of CardiologyShanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghai200001China
| |
Collapse
|
6
|
Schott MB, Rozeveld CN, Bhatt S, Crossman B, Krueger EW, Weller SG, Rasineni K, Casey CA, McNiven MA. Ethanol disrupts hepatocellular lipophagy by altering Rab5-centric LD-lysosome trafficking. Hepatol Commun 2024; 8:e0446. [PMID: 38780316 PMCID: PMC11124685 DOI: 10.1097/hc9.0000000000000446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Previous reports suggest that lipid droplets (LDs) in the hepatocyte can be catabolized by a direct engulfment from nearby endolysosomes (microlipophagy). Further, it is likely that this process is compromised by chronic ethanol (EtOH) exposure leading to hepatic steatosis. This study investigates the hepatocellular machinery supporting microlipophagy and EtOH-induced alterations in this process with a focus on the small, endosome-associated, GTPase Rab5. METHODS AND RESULTS Here we report that this small Ras-related GTPase is a resident component of LDs, and its activity is important for hepatocellular LD-lysosome proximity and physical interactions. We find that Rab5 siRNA knockdown causes an accumulation of LDs in hepatocytes by inhibiting lysosome dependent LD catabolism. Importantly, Rab5 appears to support this process by mediating the recruitment of early endosomal and or multivesicular body compartments to the LD surface before lysosome fusion. Interestingly, while wild-type or a constituently active GTPase form (Q79L) of Rab5 supports LD-lysosome transport, this process is markedly reduced in cells expressing a GTPase dead (S34N) Rab5 protein or in hepatocytes exposed to chronic EtOH. CONCLUSIONS These findings support the novel premise of an early endosomal/multivesicular body intermediate compartment on the LD surface that provides a "docking" site for lysosomal trafficking, not unlike the process that occurs during the hepatocellular degradation of endocytosed ligands that is also known to be compromised by EtOH exposure.
Collapse
Affiliation(s)
- Micah B. Schott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Cody N. Rozeveld
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Saumya Bhatt
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bridget Crossman
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eugene W. Krueger
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shaun G. Weller
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Veterans’ Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Carol A. Casey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Veterans’ Affairs, VA-Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Raza S, Rajak S, Singh R, Zhou J, Sinha RA, Goel A. Cell-type specific role of autophagy in the liver and its implications in non-alcoholic fatty liver disease. World J Hepatol 2023; 15:1272-1283. [PMID: 38192406 PMCID: PMC7615497 DOI: 10.4254/wjh.v15.i12.1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023] Open
Abstract
Autophagy, a cellular degradative process, has emerged as a key regulator of cellular energy production and stress mitigation. Dysregulated autophagy is a common phenomenon observed in several human diseases, and its restoration offers curative advantage. Non-alcoholic fatty liver disease (NAFLD), more recently renamed metabolic dysfunction-associated steatotic liver disease, is a major metabolic liver disease affecting almost 30% of the world population. Unfortunately, NAFLD has no pharmacological therapies available to date. Autophagy regulates several hepatic processes including lipid metabolism, inflammation, cellular integrity and cellular plasticity in both parenchymal (hepatocytes) and non-parenchymal cells (Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells) with a profound impact on NAFLD progression. Understanding cell type-specific autophagy in the liver is essential in order to develop targeted treatments for liver diseases such as NAFLD. Modulating autophagy in specific cell types can have varying effects on liver function and pathology, making it a promising area of research for liver-related disorders. This review aims to summarize our present understanding of cell-type specific effects of autophagy and their implications in developing autophagy centric therapies for NAFLD.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Rajani Singh
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Jin Zhou
- CVMD, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Amit Goel
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India.
| |
Collapse
|
8
|
Danielli M, Perne L, Jarc Jovičić E, Petan T. Lipid droplets and polyunsaturated fatty acid trafficking: Balancing life and death. Front Cell Dev Biol 2023; 11:1104725. [PMID: 36776554 PMCID: PMC9911892 DOI: 10.3389/fcell.2023.1104725] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Lipid droplets are fat storage organelles ubiquitously distributed across the eukaryotic kingdom. They have a central role in regulating lipid metabolism and undergo a dynamic turnover of biogenesis and breakdown to meet cellular requirements for fatty acids, including polyunsaturated fatty acids. Polyunsaturated fatty acids esterified in membrane phospholipids define membrane fluidity and can be released by the activity of phospholipases A2 to act as ligands for nuclear receptors or to be metabolized into a wide spectrum of lipid signaling mediators. Polyunsaturated fatty acids in membrane phospholipids are also highly susceptible to lipid peroxidation, which if left uncontrolled leads to ferroptotic cell death. On the one hand, lipid droplets act as antioxidant organelles that control polyunsaturated fatty acid storage in triglycerides in order to reduce membrane lipid peroxidation, preserve organelle function and prevent cell death, including ferroptosis. On the other hand, lipid droplet breakdown fine-tunes the delivery of polyunsaturated fatty acids into metabolic and signaling pathways, but unrestricted lipid droplet breakdown may also lead to the release of lethal levels of polyunsaturated fatty acids. Precise regulation of lipid droplet turnover is thus essential for polyunsaturated fatty acid distribution and cellular homeostasis. In this review, we focus on emerging aspects of lipid droplet-mediated regulation of polyunsaturated fatty acid trafficking, including the management of membrane lipid peroxidation, ferroptosis and lipid mediator signaling.
Collapse
Affiliation(s)
| | | | | | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
9
|
Berardi DE, Bock-Hughes A, Terry AR, Drake LE, Bozek G, Macleod KF. Lipid droplet turnover at the lysosome inhibits growth of hepatocellular carcinoma in a BNIP3-dependent manner. SCIENCE ADVANCES 2022; 8:eabo2510. [PMID: 36223464 PMCID: PMC9555787 DOI: 10.1126/sciadv.abo2510] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/23/2022] [Indexed: 05/12/2023]
Abstract
Hepatic steatosis is a major etiological factor in hepatocellular carcinoma (HCC), but factors causing lipid accumulation leading to HCC are not understood. We identify BNIP3 (a mitochondrial cargo receptor) as an HCC suppressor that mitigates against lipid accumulation to attenuate tumor cell growth. Targeted deletion of Bnip3 decreased tumor latency and increased tumor burden in a mouse model of HCC. This was associated with increased lipid in bnip3-/- HCC at early stages of disease, while lipid did not accumulate until later in tumorigenesis in wild-type mice, as Bnip3 expression was attenuated. Low BNIP3 expression in human HCC similarly correlated with increased lipid content and worse prognosis than HCC expressing high BNIP3. BNIP3 suppressed HCC cell growth by promoting lipid droplet turnover at the lysosome in a manner dependent on BNIP3 binding LC3. We have termed this process "mitolipophagy" because it involves the coordinated autophagic degradation of lipid droplets with mitochondria.
Collapse
Affiliation(s)
- Damian E. Berardi
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Althea Bock-Hughes
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
- The Committee on Molecular Metabolism and Nutrition, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Alexander R. Terry
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Lauren E. Drake
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Grazyna Bozek
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Kay F. Macleod
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
- The Committee on Molecular Metabolism and Nutrition, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
- The Committee on Cancer Biology, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Tang Y, Song S, Peng J, Zhang Q, Lin W. An ultrasensitive lipid droplet-targeted NIR emission fluorescent probe for polarity detection and its application in liver disease diagnosis. J Mater Chem B 2022; 10:6974-6982. [PMID: 36000501 DOI: 10.1039/d2tb01145j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared to normal cells, cancer cells require more energy supply during proliferation and metabolism. In living cells, in addition to mitochondria, lipid droplets are also an important organelle for providing energy. Studies have shown that the number and distribution of lipid droplets change significantly during the production of lesions in cells. At this stage, the predisposing factors for the development of cellular lesions are not clear, thus leading to limitations in the early diagnosis and treatment of diseases such as liver injury, fatty liver, and hepatitis. To meet the urgent challenge, we used a near-infrared emission fluorescent probe SSR-LDs based on the intramolecular charge transfer effect (ICT) to detect polarity changes within intracellular lipid droplets. The probe SSR-LDs has ultra-sensitive polarity sensitivity, excellent chemical stability and photo-stability. In addition, by comparing normal and cancer cells through cell imaging experiments, we found that the robust probe has the ability to sensitively monitor the changes in lipid droplet polarity in the living cells. More importantly, using the constructed fluorescent probe, we have achieved an in vitro fluorescence detection of liver injury and fatty liver, and the detection of hepatitis at the in vivo level. The unique fluorescent probe SSR-LDs is expected to serve as a powerful tool for the medical diagnosis of diseases related to lipid droplet polarity.
Collapse
Affiliation(s)
- Yonghe Tang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| | - Sirui Song
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| | - Juanjuan Peng
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| | - Qian Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Peselj C, Ebrahimi M, Broeskamp F, Prokisch S, Habernig L, Alvarez-Guerra I, Kohler V, Vögtle FN, Büttner S. Sterol Metabolism Differentially Contributes to Maintenance and Exit of Quiescence. Front Cell Dev Biol 2022; 10:788472. [PMID: 35237594 PMCID: PMC8882848 DOI: 10.3389/fcell.2022.788472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Nutrient starvation initiates cell cycle exit and entry into quiescence, a reversible, non-proliferative state characterized by stress tolerance, longevity and large-scale remodeling of subcellular structures. Depending on the nature of the depleted nutrient, yeast cells are assumed to enter heterogeneous quiescent states with unique but mostly unexplored characteristics. Here, we show that storage and consumption of neutral lipids in lipid droplets (LDs) differentially impacts the regulation of quiescence driven by glucose or phosphate starvation. Upon prolonged glucose exhaustion, LDs were degraded in the vacuole via Atg1-dependent lipophagy. In contrast, yeast cells entering quiescence due to phosphate exhaustion massively over-accumulated LDs that clustered at the vacuolar surface but were not engulfed via lipophagy. Excessive LD biogenesis required contact formation between the endoplasmic reticulum and the vacuole at nucleus-vacuole junctions and was accompanied by a shift of the cellular lipid profile from membrane towards storage lipids, driven by a transcriptional upregulation of enzymes generating neutral lipids, in particular sterol esters. Importantly, sterol ester biogenesis was critical for long-term survival of phosphate-exhausted cells and supported rapid quiescence exit upon nutrient replenishment, but was dispensable for survival and regrowth of glucose-exhausted cells. Instead, these cells relied on de novo synthesis of sterols and fatty acids for quiescence exit and regrowth. Phosphate-exhausted cells efficiently mobilized storage lipids to support several rounds of cell division even in presence of inhibitors of fatty acid and sterol biosynthesis. In sum, our results show that neutral lipid biosynthesis and mobilization to support quiescence maintenance and exit is tailored to the respective nutrient scarcity.
Collapse
Affiliation(s)
- Carlotta Peselj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mahsa Ebrahimi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Filomena Broeskamp
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Simon Prokisch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Irene Alvarez-Guerra
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - F.-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
12
|
Kannan K, Vimalkumar K. A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. Front Endocrinol (Lausanne) 2021; 12:724989. [PMID: 34484127 PMCID: PMC8416353 DOI: 10.3389/fendo.2021.724989] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
The ubiquitous exposure of humans to microplastics (MPs) through inhalation of particles in air and ingestion in dust, water, and diet is well established. Humans are estimated to ingest tens of thousands to millions of MP particles annually, or on the order of several milligrams daily. Available information suggests that inhalation of indoor air and ingestion of drinking water bottled in plastic are the major sources of MP exposure. Little is known on the occurrence of MPs in human diet. Evidence is accumulating that feeding bottles and medical devices can contribute to MP exposure in newborns and infants. Biomonitoring studies of human stool, fetus, and placenta provide direct evidence of MP exposure in infants and children. MPs <20 µm were reported to cross biological membranes. Although plastics were once perceived as inert materials, MP exposure in laboratory animals is linked to various forms of inflammation, immunological response, endocrine disruption, alteration of lipid and energy metabolism, and other disorders. Whereas exposure to MPs itself is a concern, MPs can also be sources of exposure to plastic additives and other toxicants. Exposure of human cell lines to MP additives such as phthalates, bisphenols, and organotins causes adverse effects through the activation of nuclear receptors, peroxisome proliferator-activated receptors (PPARs) α, β, and γ, and retinoid X receptor (RXR), leading to oxidative stress, cytotoxicity, immunotoxicity, thyroid hormone disruption, and altered adipogenesis and energy production. The size, shape, chemical composition, surface charge, and hydrophobicity of MPs influence their toxicity. Maternal transfer of MPs to the developing fetus has been demonstrated in exposed laboratory animals and through the analysis of human placenta. In laboratory animal studies, maternal exposure to MPs altered energy and lipid metabolism in offspring and subsequent generations. Moreover, concomitant with the global increase in plastics production, the prevalence of overweight and obesity in human populations has increased over the past five decades, and there is evidence to support the hypothesis that MPs and their additives are potential obesogens. Even though MP exposures are ubiquitous and toxic effects from such exposures are a concern, systematic studies on this topic remain urgently needed.
Collapse
Affiliation(s)
- Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | | |
Collapse
|
13
|
Li B, Song S, Wei X, Tang G, Wang C. Activation of microlipophagy during early infection of insect hosts by Metarhizium robertsii. Autophagy 2021; 18:608-623. [PMID: 34130590 DOI: 10.1080/15548627.2021.1943179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The requirement of macroautophagic/autophagic machinery for filamentous fungal development and pathogenicity has been recognized, but the underlying effects and mechanisms remain elusive. The insect pathogenic fungus Metarhizium robertsii infects hosts by cuticular penetration through the formation of the infection structure appressoria. Here, we show that autophagic fluxes were highly activated during the appressorial formation of M. robertsii. Genome-wide deletion of the autophagy-related genes and insect bioassays identified 10 of 23 encoded MrATG genes with requirements for topical fungal infection of insect hosts. Besides the defect in forming appressoria on insects (two null mutants), these virulence-reduced mutants were largely impaired in penetrating cellophane membrane and insect cuticles, suggesting their failures in generating proper appressorium turgor. We found that the conidial storage of lipid droplets (LDs) had no obvious difference between strains, but autophagic LD degradation was impaired in different mutants. After induction of cell autophagy by nitrogen starvation, we found that LD entry into vacuoles was unaffected in the selected mutant cells with potential failures in forming autophagosomes. The finding therefore reveals a microlipophagy machinery employed in this fungus and that the direct engulfment of LDs occurs without inhibition by the downstream defective lipolysis. Our data first unveil the activation and contribution of microlipophagy to fungal infection biology. The obtained technique may benefit future detection of microlipophagy in different organisms by examining vacuolar or lysosomal engulfment of LDs in core autophagic gene deletion mutants.
Collapse
Affiliation(s)
- Bing Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangxiu Song
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefei Wei
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guirong Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
14
|
Boucher DM, Vijithakumar V, Ouimet M. Lipid Droplets as Regulators of Metabolism and Immunity. IMMUNOMETABOLISM 2021; 3. [DOI: 10.20900/immunometab20210021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2025]
Abstract
Abstract
A hallmark of sterile and nonsterile inflammation is the increased accumulation of cytoplasmic lipid droplets (LDs) in non-adipose cells. LDs are ubiquitous organelles specialized in neutral lipid storage and hydrolysis. Originating in the ER, LDs are comprised of a core of neutral lipids (cholesterol esters, triglycerides) surrounded by a phospholipid monolayer and several LD-associated proteins. The perilipin (PLIN1-5) family are the most abundant structural proteins present on the surface of LDs. While PLIN1 is primarily expressed in adipocytes, PLIN2 and PLIN3 are ubiquitously expressed. LDs also acquire a host of enzymes and proteins that regulate LD metabolism. Amongst these are neutral lipases and selective lipophagy factors that promote hydrolysis of LD-associated neutral lipid. In addition, LDs physically associate with other organelles such as mitochondria through inter-organelle membrane contact sites that facilitate lipid transport. Beyond serving as a source of energy storage, LDs participate in inflammatory and infectious diseases, regulating both innate and adaptive host immune responses. Here, we review recent studies on the role of LDs in the regulation of immunometabolism.
Collapse
Affiliation(s)
- Dominique M. Boucher
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Viyashini Vijithakumar
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Mireille Ouimet
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|