1
|
Valentino IM, Llivicota-Guaman JG, Dao TP, Mulvey EO, Lehman AM, Galagedera SKK, Mallon EL, Castañeda CA, Kraut DA. Phase separation of polyubiquitinated proteins in UBQLN2 condensates controls substrate fate. Proc Natl Acad Sci U S A 2024; 121:e2405964121. [PMID: 39121161 PMCID: PMC11331126 DOI: 10.1073/pnas.2405964121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/26/2024] [Indexed: 08/11/2024] Open
Abstract
Ubiquitination is one of the most common posttranslational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity toward K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage-dependent manner, thus serving as an interpreter of the ubiquitin code.
Collapse
Affiliation(s)
| | | | - Thuy P. Dao
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
| | - Erin O. Mulvey
- Department of Chemistry, Villanova University, Villanova, PA19085
| | - Andrew M. Lehman
- Department of Chemistry, Villanova University, Villanova, PA19085
| | - Sarasi K. K. Galagedera
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
| | - Erica L. Mallon
- Department of Chemistry, Villanova University, Villanova, PA19085
| | - Carlos A. Castañeda
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
| | - Daniel A. Kraut
- Department of Chemistry, Villanova University, Villanova, PA19085
| |
Collapse
|
2
|
Valentino IM, Llivicota-Guaman JG, Dao TP, Mulvey EO, Lehman AM, Galagedera SKK, Mallon EL, Castañeda CA, Kraut DA. Phase separation of polyubiquitinated proteins in UBQLN2 condensates controls substrate fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585243. [PMID: 38559018 PMCID: PMC10980000 DOI: 10.1101/2024.03.15.585243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ubiquitination is one of the most common post-translational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity towards K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage dependent manner, thus serving as an interpreter of the ubiquitin code.
Collapse
Affiliation(s)
| | | | - Thuy P. Dao
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244
| | - Erin O. Mulvey
- Department of Chemistry, Villanova University, Villanova, PA 19085
| | - Andrew M. Lehman
- Department of Chemistry, Villanova University, Villanova, PA 19085
| | - Sarasi K. K. Galagedera
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244
| | - Erica L. Mallon
- Department of Chemistry, Villanova University, Villanova, PA 19085
| | - Carlos A. Castañeda
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244
| | - Daniel A. Kraut
- Department of Chemistry, Villanova University, Villanova, PA 19085
| |
Collapse
|
3
|
Jonsson E, Htet ZM, Bard JA, Dong KC, Martin A. Ubiquitin modulates 26 S proteasome conformational dynamics and promotes substrate degradation. SCIENCE ADVANCES 2022; 8:eadd9520. [PMID: 36563145 PMCID: PMC9788759 DOI: 10.1126/sciadv.add9520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The 26S proteasome recognizes thousands of appropriate protein substrates in eukaryotic cells through attached ubiquitin chains and uses its adenosine triphosphatase (ATPase) motor for mechanical unfolding and translocation into a proteolytic chamber. Here, we used single-molecule Förster resonance energy transfer measurements to monitor the conformational dynamics of the proteasome, observe individual substrates during their progression toward degradation, and elucidate how these processes are regulated by ubiquitin chains. Rapid transitions between engagement- and processing-competent proteasome conformations control substrate access to the ATPase motor. Ubiquitin chain binding functions as an allosteric regulator to slow these transitions, stabilize the engagement-competent state, and aid substrate capture to accelerate degradation initiation. Upon substrate engagement, the proteasome remains in processing-competent states for translocation and unfolding, except for apparent motor slips when encountering stably folded domains. Our studies revealed how ubiquitin chains allosterically regulate degradation initiation, which ensures substrate selectivity in a crowded cellular environment.
Collapse
Affiliation(s)
- Erik Jonsson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Zaw Min Htet
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | - Ken C. Dong
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
The RPN12a proteasome subunit is essential for the multiple hormonal homeostasis controlling the progression of leaf senescence. Commun Biol 2022; 5:1043. [PMID: 36180574 PMCID: PMC9525688 DOI: 10.1038/s42003-022-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
The 26S proteasome is a conserved multi-subunit machinery in eukaryotes. It selectively degrades ubiquitinated proteins, which in turn provides an efficient molecular mechanism to regulate numerous cellular functions and developmental processes. Here, we studied a new loss-of-function allele of RPN12a, a plant ortholog of the yeast and human structural component of the 19S proteasome RPN12. Combining a set of biochemical and molecular approaches, we confirmed that a rpn12a knock-out had exacerbated 20S and impaired 26S activities. The altered proteasomal activity led to a pleiotropic phenotype affecting both the vegetative growth and reproductive phase of the plant, including a striking repression of leaf senescence associate cell-death. Further investigation demonstrated that RPN12a is involved in the regulation of several conjugates associated with the auxin, cytokinin, ethylene and jasmonic acid homeostasis. Such enhanced aptitude of plant cells for survival in rpn12a contrasts with reports on animals, where 26S proteasome mutants generally show an accelerated cell death phenotype.
Collapse
|
5
|
The 26S Proteasome Switches between ATP-Dependent and -Independent Mechanisms in Response to Substrate Ubiquitination. Biomolecules 2022; 12:biom12060750. [PMID: 35740875 PMCID: PMC9220805 DOI: 10.3390/biom12060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin–proteasome system is responsible for the bulk of protein degradation in eukaryotic cells. Proteins are generally targeted to the 26S proteasome through the attachment of polyubiquitin chains. Several proteins also contain ubiquitin-independent degrons (UbIDs) that allow for proteasomal targeting without the need for ubiquitination. Our laboratory previously showed that UbID substrates are less processively degraded than ubiquitinated substrates, but the mechanism underlying this difference remains unclear. We therefore designed two model substrates containing both a ubiquitination site and a UbID for a more direct comparison. We found UbID degradation to be overall less robust, with complete degradation only occurring with loosely folded substrates. UbID degradation was unaffected by the nonhydrolyzable ATP analog ATPγS, indicating that UbID degradation proceeds in an ATP-independent manner. Stabilizing substrates halted UbID degradation, indicating that the proteasome can only capture UbID substrates if they are already at least transiently unfolded, as confirmed using native-state proteolysis. The 26S proteasome therefore switches between ATP-independent weak degradation and ATP-dependent robust unfolding and degradation depending on whether or not the substrate is ubiquitinated.
Collapse
|
6
|
Fauvet B, Rebeaud ME, Tiwari S, De Los Rios P, Goloubinoff P. Repair or Degrade: the Thermodynamic Dilemma of Cellular Protein Quality-Control. Front Mol Biosci 2021; 8:768888. [PMID: 34778379 PMCID: PMC8578701 DOI: 10.3389/fmolb.2021.768888] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022] Open
Abstract
Life is a non-equilibrium phenomenon. Owing to their high free energy content, the macromolecules of life tend to spontaneously react with ambient oxygen and water and turn into more stable inorganic molecules. A similar thermodynamic picture applies to the complex shapes of proteins: While a polypeptide is emerging unfolded from the ribosome, it may spontaneously acquire secondary structures and collapse into its functional native conformation. The spontaneity of this process is evidence that the free energy of the unstructured state is higher than that of the structured native state. Yet, under stress or because of mutations, complex polypeptides may fail to reach their native conformation and form instead thermodynamically stable aggregates devoid of biological activity. Cells have evolved molecular chaperones to actively counteract the misfolding of stress-labile proteins dictated by equilibrium thermodynamics. HSP60, HSP70 and HSP100 can inject energy from ATP hydrolysis into the forceful unfolding of stable misfolded structures in proteins and convert them into unstable intermediates that can collapse into the native state, even under conditions inauspicious for that state. Aggregates and misfolded proteins may also be forcefully unfolded and degraded by chaperone-gated endo-cellular proteases, and in eukaryotes also by chaperone-mediated autophagy, paving the way for their replacement by new, unaltered functional proteins. The greater energy cost of degrading and replacing a polypeptide, with respect to the cost of its chaperone-mediated repair represents a thermodynamic dilemma: some easily repairable proteins are better to be processed by chaperones, while it can be wasteful to uselessly try recover overly compromised molecules, which should instead be degraded and replaced. Evolution has solved this conundrum by creating a host of unfolding chaperones and degradation machines and by tuning their cellular amounts and activity rates.
Collapse
Affiliation(s)
- Bruno Fauvet
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - Mathieu E Rebeaud
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Satyam Tiwari
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland.,Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|