1
|
Wang W, Wang S, Meng X, Zhao Y, Li N, Wang T, Feng N, Yan F, Xia X. A virus-like particle candidate vaccine based on CRISPR/Cas9 gene editing technology elicits broad-spectrum protection against SARS-CoV-2. Antiviral Res 2024; 225:105854. [PMID: 38447647 DOI: 10.1016/j.antiviral.2024.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with frequent mutations has seriously damaged the effectiveness of the 2019 coronavirus disease (COVID-19) vaccine. There is an urgent need to develop a broad-spectrum vaccine while elucidating the underlying immune mechanisms. Here, we developed a SARS-CoV-2 virus-like particles (VLPs) vaccine based on the Canarypox-virus vector (ALVAC-VLPs) using CRISPR/Cas9. Immunization with ALVAC-VLPs showed the effectively induce SARS-CoV-2 specific T and B cell responses to resist the lethal challenge of mouse adaptive strains. Notably, ALVAC-VLPs conferred protection in golden hamsters against SARS-CoV-2 Wuhan-Hu-1 (wild-type, WT) and variants (Beta, Delta, Omicron BA.1, and BA.2), as evidenced by the prevention of weight loss, reduction in lung and turbinate tissue damage, and decreased viral load. Further investigation into the mechanism of immune response induced by ALVAC-VLPs revealed that toll-like receptor 4 (TLR4) mediates the recruitment of dendritic cells (DCs) to secondary lymphoid organs, thereby initiating follicle assisted T (Tfh) cell differentiation, the proliferation of germinal center (GC) B cells and plasma cell production. These findings demonstrate the immunogenicity and efficacy of the safe ALVAC-VLPs vaccine against SARS-CoV-2 and provide valuable insight into the development of COVID-19 vaccine strategies.
Collapse
Affiliation(s)
- Weiqi Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Xianyong Meng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China.
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China.
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China.
| |
Collapse
|
2
|
Florova M, Abreu-Mota T, Paesen GC, Beetschen AS, Cornille K, Marx AF, Narr K, Sahin M, Dimitrova M, Swarnalekha N, Beil-Wagner J, Savic N, Pelczar P, Buch T, King CG, Bowden TA, Pinschewer DD. Central tolerance shapes the neutralizing B cell repertoire against a persisting virus in its natural host. Proc Natl Acad Sci U S A 2024; 121:e2318657121. [PMID: 38446855 PMCID: PMC10945855 DOI: 10.1073/pnas.2318657121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Viral mimicry of host cell structures has been postulated to curtail the B cell receptor (BCR) repertoire against persisting viruses through tolerance mechanisms. This concept awaits, however, experimental testing in a setting of natural virus-host relationship. We engineered mouse models expressing a monoclonal BCR specific for the envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV), a naturally persisting mouse pathogen. When the heavy chain of the LCMV-neutralizing antibody KL25 was paired with its unmutated ancestor light chain, most B cells underwent receptor editing, a behavior reminiscent of autoreactive clones. In contrast, monoclonal B cells expressing the same heavy chain in conjunction with the hypermutated KL25 light chain did not undergo receptor editing but exhibited low levels of surface IgM, suggesting that light chain hypermutation had lessened KL25 autoreactivity. Upon viral challenge, these IgMlow cells were not anergic but up-regulated IgM, participated in germinal center reactions, produced antiviral antibodies, and underwent immunoglobulin class switch as well as further affinity maturation. These studies on a persisting virus in its natural host species suggest that central tolerance mechanisms prune the protective antiviral B cell repertoire.
Collapse
Affiliation(s)
- Marianna Florova
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Tiago Abreu-Mota
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Anna Sophia Beetschen
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Karen Cornille
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Anna-Friederike Marx
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Kerstin Narr
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Mehmet Sahin
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Mirela Dimitrova
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Nivedya Swarnalekha
- Department of Biomedicine, Immune Cell Biology Laboratory, University Hospital Basel, Basel4031, Switzerland
| | - Jane Beil-Wagner
- Institute of Laboratory Animal Science, University of Zurich, Zurich8093, Switzerland
| | - Natasa Savic
- ETH Phenomics Center, ETH Zürich, Zürich8093, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel4001, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich8093, Switzerland
| | - Carolyn G. King
- Department of Biomedicine, Immune Cell Biology Laboratory, University Hospital Basel, Basel4031, Switzerland
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Daniel D. Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| |
Collapse
|
3
|
Sun W, Zhu Y, Zou Z, Wang L, Zhong J, Shen K, Lin X, Gao Z, Liu W, Li Y, Xu Y, Ren M, Hu T, Wei C, Gu J, Chen Y. An advanced comprehensive muti-cell-type-specific model for predicting anti-PD-1 therapeutic effect in melanoma. Theranostics 2024; 14:2127-2150. [PMID: 38505619 PMCID: PMC10945348 DOI: 10.7150/thno.91626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Rationale: Immune checkpoint inhibitors targeting the programmed cell death (PD)-1/PD-L1 pathway have promise in patients with advanced melanoma. However, drug resistance usually results in limited patient benefits. Recent single-cell RNA sequencing studies have elucidated that MM patients display distinctive transcriptional features of tumor cells, immune cells and interstitial cells, including loss of antigen presentation function of tumor cells, exhaustion of CD8+T and extracellular matrix secreted by fibroblasts to prevents immune infiltration, which leads to a poor response to immune checkpoint inhibitors (ICIs). However, cell subgroups beneficial to anti-tumor immunity and the model developed by them remain to be further identified. Methods: In this clinical study of neoadjuvant therapy with anti-PD-1 in advanced melanoma, tumor tissues were collected before and after treatment for single-nucleus sequencing, and the results were verified using multicolor immunofluorescence staining and public datasets. Results: This study describes four cell subgroups which are closely associated with the effectiveness of anti-PD-1 treatment. It also describes a cell-cell communication network, in which the interaction of the four cell subgroups contributes to anti-tumor immunity. Furthermore, we discuss a newly developed predictive model based on these four subgroups that holds significant potential for assessing the efficacy of anti-PD-1 treatment. Conclusions: These findings elucidate the primary mechanism of anti-PD-1 resistance and offer guidance for clinical drug administration for melanoma.
Collapse
Affiliation(s)
- Wei Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yu Zhu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Zijian Zou
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Jingqin Zhong
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Kangjie Shen
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Xinyi Lin
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zixu Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Wanlin Liu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yinlam Li
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Ming Ren
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Tu Hu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University; Cancer center, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
van Bergen J, Camps MG, Pardieck IN, Veerkamp D, Leung WY, Leijs AA, Myeni SK, Kikkert M, Arens R, Zondag GC, Ossendorp F. Multiantigen pan-sarbecovirus DNA vaccines generate protective T cell immune responses. JCI Insight 2023; 8:e172488. [PMID: 37707962 PMCID: PMC10721273 DOI: 10.1172/jci.insight.172488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
SARS-CoV-2 is the third zoonotic coronavirus to cause a major outbreak in humans in recent years, and many more SARS-like coronaviruses with pandemic potential are circulating in several animal species. Vaccines inducing T cell immunity against broadly conserved viral antigens may protect against hospitalization and death caused by outbreaks of such viruses. We report the design and preclinical testing of 2 T cell-based pan-sarbecovirus vaccines, based on conserved regions within viral proteins of sarbecovirus isolates of human and other carrier animals, like bats and pangolins. One vaccine (CoVAX_ORF1ab) encoded antigens derived from nonstructural proteins, and the other (CoVAX_MNS) encoded antigens from structural proteins. Both multiantigen DNA vaccines contained a large set of antigens shared across sarbecoviruses and were rich in predicted and experimentally validated human T cell epitopes. In mice, the multiantigen vaccines generated both CD8+ and CD4+ T cell responses to shared epitopes. Upon encounter of full-length spike antigen, CoVAX_MNS-induced CD4+ T cells were responsible for accelerated CD8+ T cell and IgG Ab responses specific to the incoming spike, irrespective of its sarbecovirus origin. Finally, both vaccines elicited partial protection against a lethal SARS-CoV-2 challenge in human angiotensin-converting enzyme 2-transgenic mice. These results support clinical testing of these universal sarbecovirus vaccines for pandemic preparedness.
Collapse
Affiliation(s)
| | - Marcel G.M. Camps
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Iris N. Pardieck
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Dominique Veerkamp
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Wing Yan Leung
- Immunetune BV, Leiden, Netherlands
- Synvolux BV, Leiden, Netherlands
| | - Anouk A. Leijs
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Sebenzile K. Myeni
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Gerben C. Zondag
- Immunetune BV, Leiden, Netherlands
- Synvolux BV, Leiden, Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
5
|
Chung YR, Dangi T, Palacio N, Sanchez S, Penaloza-MacMaster P. Adoptive B cell therapy for chronic viral infection. Front Immunol 2022; 13:908707. [PMID: 35958615 PMCID: PMC9361846 DOI: 10.3389/fimmu.2022.908707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
T cell-based therapies have been widely explored for the treatment of cancer and chronic infection, but B cell-based therapies have remained largely unexplored. To study the effect of B cell therapy, we adoptively transferred virus-specific B cells into mice that were chronically infected with lymphocytic choriomeningitis virus (LCMV). Adoptive transfer of virus-specific B cells resulted in increase in antibody titers and reduction of viral loads. Importantly, the efficacy of B cell therapy was partly dependent on antibody effector functions, and was improved by co-transferring virus-specific CD4 T cells. These findings provide a proof-of-concept that adoptive B cell therapy can be effective for the treatment of chronic infections, but provision of virus-specific CD4 T cells may be critical for optimal virus neutralization.
Collapse
|