1
|
Puerto A, Alvis-Zakzuk NR, Annicchiarico W, Alvis-Guzmán N, Zakzuk J. Relationship between serum ferritin and proinflammatory markers in late pregnancy: An exploratory analysis from Cartagena, Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2025; 45:94-106. [PMID: 40257949 DOI: 10.7705/biomedica.7467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/18/2024] [Indexed: 04/23/2025]
Abstract
INTRODUCTION In a previous study, we identified an inverse relationship between adverse perinatal outcomes and iron status during late pregnancy of women recruited from a maternal hospital in Cartagena, Colombia. Some of these outcomes have also been linked to maternal inflammatory states. However, there is currently no clarity regarding the relationship between iron levels and proinflammatory markers during this period. OBJECTIVE To estimate the relationship between inflammatory markers and serum ferritin in third-trimester pregnancies. MATERIALS AND METHODS Serum ferritin, hemoglobin, and proinflammatory cytokine levels were determined in women in Cartagena in their third trimester of pregnancy. We analyzed the relationship between ferritin levels and proinflammatory cytokines, as well as the relationship between serum ferritin, hemoglobin, and inflammatory cytokine levels with adverse perinatal outcomes. RESULTS The levels of IL-6 were significantly associated with serum ferritin levels (β = 0.42, SE = 0.21, p = 0.04) but not with maternal age. Maternal serum ferritin had a positive weak correlation with the absolute number of lymphocytes and monocytes. Hemoglobin and maternal serum ferritin were weakly and inversely associated with birth weight. Serum ferritin but not IL-6 or IL-8 was associated with preterm birth. CONCLUSIONS We observed direct and mild associations of serum iron markers (serum ferritin, hemoglobin, and hematocrit) with lymphocyte counts. The inflammation marker, IL-6, was mildly associated with serum ferritin levels in late pregnancy. Women with elevated white blood cell counts and serum ferritin levels tended to have infants with lower birth weights. This fact suggests a potential involvement of iron in inflammatory processes during pregnancy, and conditions associated with inflammation in the final trimester may have adverse effects on perinatal outcomes.
Collapse
Affiliation(s)
- Alejandra Puerto
- Instituto de Investigaciones Inmunológicas, Universidad de Cartagena, Cartagena de Indias, Colombia
| | | | - Walter Annicchiarico
- Medicina Materno-Fetal, Universidad Pontificia Bolivariana, Bogotá, D. C., Colombia
| | - Nelson Alvis-Guzmán
- Instituto de Investigaciones Inmunológicas, Universidad de Cartagena, Cartagena de Indias, Colombia; Ciencias de la Salud, Universidad de la Costa, Barranquilla, Colombia
| | - Josefina Zakzuk
- Instituto de Investigaciones Inmunológicas, Universidad de Cartagena, Cartagena de Indias, Colombia; Línea de Salud Materna, ALZAK Foundation, Cartagena de Indias, Colombia
| |
Collapse
|
2
|
Huang Y, Li X, Zhang Z, Xiong L, Wang Y, Wen Y. Photodynamic Therapy Combined with Ferroptosis Is a Synergistic Antitumor Therapy Strategy. Cancers (Basel) 2023; 15:5043. [PMID: 37894410 PMCID: PMC10604985 DOI: 10.3390/cancers15205043] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ferroptosis is a programmed death mode that regulates redox homeostasis in cells, and recent studies suggest that it is a promising mode of tumor cell death. Ferroptosis is regulated by iron metabolism, lipid metabolism, and intracellular reducing substances, which is the mechanism basis of its combination with photodynamic therapy (PDT). PDT generates reactive oxygen species (ROS) and 1O2 through type I and type II photochemical reactions, and subsequently induces ferroptosis through the Fenton reaction and the peroxidation of cell membrane lipids. PDT kills tumor cells by generating excessive cytotoxic ROS. Due to the limited laser depth and photosensitizer enrichment, the systemic treatment effect of PDT is not good. Combining PDT with ferroptosis can compensate for these shortcomings. Nanoparticles constructed by photosensitizers and ferroptosis agonists are widely used in the field of combination therapy, and their targeting and biological safety can be improved through modification. These nanoparticles not only directly kill tumor cells but also further exert the synergistic effect of PDT and ferroptosis by activating antitumor immunity, improving the hypoxia microenvironment, and inhibiting the tumor angiogenesis. Ferroptosis-agonist-induced chemotherapy and PDT-induced ablation also have good clinical application prospects. In this review, we summarize the current research progress on PDT and ferroptosis and how PDT and ferroptosis promote each other.
Collapse
Affiliation(s)
- Yunpeng Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Xiaoyu Li
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha 410011, China;
| | - Zijian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yongxiang Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| |
Collapse
|
3
|
Rogers AP, Mileto SJ, Lyras D. Impact of enteric bacterial infections at and beyond the epithelial barrier. Nat Rev Microbiol 2023; 21:260-274. [PMID: 36175770 DOI: 10.1038/s41579-022-00794-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
The mucosal lining of the gut has co-evolved with a diverse microbiota over millions of years, leading to the development of specialized mechanisms to actively limit the invasion of pathogens. However, some enteric microorganisms have adapted against these measures, developing ways to hijack or overcome epithelial micro-integrity mechanisms. This breach of the gut barrier not only enables the leakage of host factors out of circulation but can also initiate a cascade of detrimental systemic events as microbiota, pathogens and their affiliated secretions passively leak into extra-intestinal sites. Under normal circumstances, gut damage is rapidly repaired by intestinal stem cells. However, with substantial and deep perturbation to the gut lining and the systemic dissemination of gut contents, we now know that some enteric infections can cause the impairment of host regenerative processes. Although these local and systemic aspects of enteric disease are often studied in isolation, they heavily impact one another. In this Review, by examining the journey of enteric infections from initial establishment to systemic sequelae and how, or if, the host can successfully repair damage, we will tie together these complex interactions to provide a holistic overview of the impact of enteric infections at and beyond the epithelial barrier.
Collapse
Affiliation(s)
- Ashleigh P Rogers
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Steven J Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia. .,Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Ni S, Yuan Y, Song S, Li X. A double-edged sword with a therapeutic target: iron and ferroptosis in immune regulation. Nutr Rev 2022; 81:587-596. [PMID: 36130411 DOI: 10.1093/nutrit/nuac071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cellular activities such as DNA synthesis, adenosine triphosphate production, and mitochondrial respiration are affected by iron metabolism. Disturbance of iron homeostasis usually leads to damage in cells and organs in the context of iron overload or deficiency. Thus, iron, a key regulator in nutritional immunity, was shown to be critical in innate and adaptive immunity. Unlike apoptosis, ferroptosis, a feature of iron-dependent lipid peroxidation, is thought to be associated with immune regulation because of its immunogenic nature. In this review, we summarize the role of iron and ferroptosis in immune regulation and discuss their therapeutic potential in the treatment of arthropathies like osteoarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Shuo Ni
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yin Yuan
- the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shangdao Song
- the Department of Rehabilitation Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiaolin Li
- the Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
5
|
Tie H, Yu D, Yang F, Jiang Q, Xu Y, Xia W. Postmortem grass carp (
Ctenopharyngodon idella
) muscle towards the disruption of integrity: A likely cause of abnormal regulation of tight junction and decreased antioxidant capacity. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Huaimao Tie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
6
|
Protection Induced by Oral Vaccination with a Recombinant Yersinia pseudotuberculosis Delivering Yersinia pestis LcrV and F1 Antigens in Mice and Rats against Pneumonic Plague. Infect Immun 2022; 90:e0016522. [PMID: 35900096 PMCID: PMC9387218 DOI: 10.1128/iai.00165-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A newly attenuated Yersinia pseudotuberculosis strain (designated Yptb1) with triple mutation Δasd ΔyopK ΔyopJ and chromosomal insertion of the Y. pestis caf1R-caf1M-caf1A-caf1 operon was constructed as a live vaccine platform. Yptb1 tailored with an Asd+ plasmid (pYA5199) (designated Yptb1[pYA5199]) simultaneously delivers Y. pestis LcrV and F1. The attenuated Yptb1(pYA5199) localized in the Peyer's patches, lung, spleen, and liver for a few weeks after oral immunization without causing any disease symptoms in immunized rodents. An oral prime-boost Yptb1(pYA5199) immunization stimulated potent antibody responses to LcrV, F1, and Y. pestis whole-cell lysate (YPL) in Swiss Webster mice and Brown Norway rats. The prime-boost Yptb1(pYA5199) immunization induced higher antigen-specific humoral and cellular immune responses in mice than a single immunization did, and it provided complete short-term and long-term protection against a high dose of intranasal Y. pestis challenge in mice. Moreover, the prime-boost immunization afforded substantial protection for Brown Norway rats against an aerosolized Y. pestis challenge. Our study highlights that Yptb1(pYA5199) has high potential as an oral vaccine candidate against pneumonic plague.
Collapse
|
7
|
Ni S, Yuan Y, Kuang Y, Li X. Iron Metabolism and Immune Regulation. Front Immunol 2022; 13:816282. [PMID: 35401569 PMCID: PMC8983924 DOI: 10.3389/fimmu.2022.816282] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Iron is a critical element for living cells in terrestrial life. Although iron metabolism is strictly controlled in the body, disturbance of iron homeostasis under certain type of condition leads to innate and adaptive immune response. In innate immunity, iron regulates macrophage polarizations, neutrophils recruitment, and NK cells activity. In adaptive immunity, iron had an effect on the activation and differentiation of Th1, Th2, and Th17 and CTL, and antibody response in B cells. In this review, we focused on iron and immune regulation and listed the specific role of iron in macrophage polarization, T-cell activation, and B-cells antibody response. In addition, correlations between iron and several diseases such as cancer and aging degenerative diseases and some therapeutic strategies targeting those diseases are also discussed.
Collapse
Affiliation(s)
- Shuo Ni
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanbin Kuang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolin Li
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|