Tsubonouchi Y, Hayasaka T, Wakai Y, Mohamed EA, Zahran ZN, Yagi M. Highly Efficient and Durable Electrocatalysis by a Molecular Catalyst with Long Alkoxyl Chains Immobilized on a Carbon Electrode for Water Oxidation.
ACS APPLIED MATERIALS & INTERFACES 2022;
14:15154-15164. [PMID:
35319176 DOI:
10.1021/acsami.1c24263]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A dinuclear Ru complex, proximal,proximal-[Ru2L(C8Otpy)2(OH)(OH2)]3+ (C8Otpy = 4'-octyloxy-2,2'; 6',2″-terpyridine) (1) with long alkoxyl chains, was synthesized to be immobilized on a carbon paper (CP) electrode via hydrophobic interactions between the long alkoxyl chains and the CP surface. The 1/CP electrode demonstrated efficient electrocatalytic water oxidation with a low overpotential (ηonset) of 0.26 V (based on the onset potential for water oxidation) in an aqueous medium at pH 7.0, which is compared advantageously with those of hitherto-reported molecular anodes for water oxidation. The active species of RuIIIRuIII(μ-OO) with a μ-OO bridge was involved in water oxidation at 0.95 V versus Ag/AgCl. As the applied potential increased to 1.40 V, water oxidation was promoted by participation of the more active species of RuIIIRuIV(μ-OO), and very durable electrocatalysis was gained for more than 35 h without elution of 1 into the electrolyte solution. The introduced long alkoxyl chains act as a dual role of the linker of 1 on the CP surface and decrease the η value. Theoretical investigation provides insights into the O-O bond formation mechanism and the activity difference between RuIIIRuIII(μ-OO) and RuIIIRuIV(μ-OO) for electrocatalytic water oxidation.
Collapse