1
|
Brekke C, Gjuvsland AB, Berg P, Johnston SE. Independent genetic basis of meiotic crossover positioning and interference in domestic pigs. Sci Rep 2025; 15:9260. [PMID: 40102600 PMCID: PMC11920276 DOI: 10.1038/s41598-025-93003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Meiotic crossover patterning shows huge variation within and between chromosomes, individuals, and species, yet the molecular and evolutionary causes and consequences of this variation remain poorly understood. A key step is to understand the genetic architecture of the crossover rate, positioning, and interference to determine if these factors are governed by common or distinct genetic processes. Here, we investigate individual variation in autosomal crossover count, crossover position (measured as both intra-chromosomal shuffling and distance to telomere), and crossover interference in a large breeding population of domestic pigs (N = 82,474 gametes). We show that all traits are heritable in females at the gamete (h2 = 0.07-0.11) and individual mean levels (h2 = 0.08-0.41). In females, crossover count, and interference are strongly associated with RNF212, but crossover positioning is associated with SYCP2, MEI4, and PRDM9. Our results show that crossover positioning and rate/interference are driven by distinct genetic processes in female pigs and have the capacity to evolve independently.
Collapse
Affiliation(s)
- Cathrine Brekke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, Ås, 1433, Norway.
| | - Arne B Gjuvsland
- Norsvin, Storhamargata 44, Hamar, 2317, Norway
- Geno, Storhamargata 44, Hamar, 2317, Norway
| | - Peer Berg
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Oluf Thesens vei 6, Ås, 1433, Norway
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
2
|
Ishigohoka J, Liedvogel M. High-recombining genomic regions affect demography inference based on ancestral recombination graphs. Genetics 2025; 229:iyaf004. [PMID: 39790013 PMCID: PMC11912872 DOI: 10.1093/genetics/iyaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Multiple methods of demography inference are based on the ancestral recombination graph. This powerful approach uses observed mutations to model local genealogies changing along chromosomes by historical recombination events. However, inference of underlying genealogies is difficult in regions with high recombination rate relative to mutation rate due to the lack of mutations representing genealogies. Despite the prevalence of high-recombining genomic regions in some organisms, such as birds, its impact on demography inference based on ancestral recombination graphs has not been well studied. Here, we use population genomic simulations to investigate the impact of high-recombining regions on demography inference based on ancestral recombination graphs. We demonstrate that inference of effective population size and the time of population split events is systematically affected when high-recombining regions cover wide breadths of the chromosomes. Excluding high-recombining genomic regions can practically mitigate this impact, and population genomic inference of recombination maps is informative in defining such regions although the estimated values of local recombination rate can be biased. Finally, we confirm the relevance of our findings in empirical analysis by contrasting demography inferences applied for a bird species, the Eurasian blackcap (Sylvia atricapilla), using different parts of the genome with high and low recombination rates. Our results suggest that demography inference methods based on ancestral recombination graphs should be carried out with caution when applied in species whose genomes contain long stretches of high-recombining regions.
Collapse
Affiliation(s)
- Jun Ishigohoka
- Max Planck Research Group Behavioural Genomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, Plön 24306, Germany
| | - Miriam Liedvogel
- Max Planck Research Group Behavioural Genomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, Plön 24306, Germany
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
- Department of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg 26129, Germany
| |
Collapse
|
3
|
Talbi M, Turner GF, Malinsky M. Rapid evolution of recombination landscapes during the divergence of cichlid ecotypes in Lake Masoko. Evolution 2025; 79:364-379. [PMID: 39589917 DOI: 10.1093/evolut/qpae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 11/28/2024]
Abstract
Variation of recombination rate along the genome is of crucial importance to rapid adaptation and organismal diversification. Many unknowns remain regarding how and why recombination landscapes evolve in nature. Here, we reconstruct recombination maps based on linkage disequilibrium and use subsampling and simulations to derive a new measure of recombination landscape evolution: the Population Recombination Divergence Index (PRDI). Using PRDI, we show that fine-scale recombination landscapes differ substantially between two cichlid fish ecotypes of Astatotilapia calliptera that diverged only ~2,500 generations ago. Perhaps surprisingly, recombination landscape differences are not driven by divergence in terms of allele frequency (FST) and nucleotide diversity (Δ(π)): although there is some association, we observe positive PRDI in regions where FST and Δ(π) are zero. We found a stronger association between the evolution of recombination and 47 large haplotype blocks that are polymorphic in Lake Masoko, cover 21% of the genome, and appear to include multiple inversions. Among haplotype blocks, there is a strong and clear association between the degree of recombination divergence and differences between ecotypes in heterozygosity, consistent with recombination suppression in heterozygotes. Overall, our work provides a holistic view of changes in population recombination landscapes during the early stages of speciation with gene flow.
Collapse
Affiliation(s)
- Marion Talbi
- Biology Department, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| | - George F Turner
- School of Natural & Environmental Sciences, Bangor University, Bangor, United Kingdom
| | - Milan Malinsky
- Biology Department, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, Kastanienbaum, Switzerland
| |
Collapse
|
4
|
Marshall KL, Stadtmauer DJ, Maziarz J, Wagner GP, Lesch BJ. Evolutionary innovations in germline biology of placental mammals identified by transcriptomics of first-wave spermatogenesis in opossum. Dev Cell 2025; 60:646-664.e8. [PMID: 39536760 PMCID: PMC11859772 DOI: 10.1016/j.devcel.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mammalian spermatogenesis is a highly stereotyped and conserved developmental process that is essential for fitness. At the same time, gene expression in spermatogenic cells is rapidly evolving. This combination of features has been suggested to drive rapid fixation of new gene expression patterns. Using a high-resolution dataset comprising bulk and single-cell data from juvenile and adult testes of the opossum Monodelphis domestica, a model marsupial, we define the developmental timing of the spermatogenic first wave in opossum and delineate conserved and divergent gene expression programs across the placental-marsupial split by comparison to equivalent data from mouse, a model placental mammal. Epigenomic data confirmed divergent regulation at the level of transcription, and comparison to data from four additional amniote species identified hundreds of genes with evidence of rapid fixation of expression. This gene set encompasses known and previously undescribed regulators of spermatogenic development.
Collapse
Affiliation(s)
- Kira L Marshall
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bluma J Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
5
|
Brown T, Mishra K, Elewa A, Iarovenko S, Subramanian E, Araus AJ, Petzold A, Fromm B, Friedländer MR, Rikk L, Suzuki M, Suzuki KIT, Hayashi T, Toyoda A, Oliveira CR, Osipova E, Leigh ND, Yun MH, Simon A. Chromosome-scale genome assembly reveals how repeat elements shape non-coding RNA landscapes active during newt limb regeneration. CELL GENOMICS 2025; 5:100761. [PMID: 39874962 PMCID: PMC11872487 DOI: 10.1016/j.xgen.2025.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025]
Abstract
Newts have large genomes harboring many repeat elements. How these elements shape the genome and relate to newts' unique regeneration ability remains unknown. We present here the chromosome-scale assembly of the 20.3 Gb genome of the Iberian ribbed newt, Pleurodeles waltl, with a hitherto unprecedented contiguity and completeness among giant genomes. Utilizing this assembly, we demonstrate conserved synteny as well as genetic rearrangements, such as in the major histocompatibility complex locus. We provide evidence suggesting that intronic repeat elements drive newt-specific circular RNA (circRNA) biogenesis and show their regeneration-specific expression. We also present a comprehensive in-depth annotation and chromosomal mapping of microRNAs, highlighting genomic expansion profiles as well as a distinct regulatory pattern in the regenerating limb. These data reveal links between repeat elements, non-coding RNAs, and adult regeneration and provide key resources for addressing developmental, regenerative, and evolutionary principles.
Collapse
Affiliation(s)
- Thomas Brown
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Ketan Mishra
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Ahmed Elewa
- Department of Biology, Augsburg University, Minneapolis, MN 55454, USA
| | - Svetlana Iarovenko
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Elaiyaraja Subramanian
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Andreas Petzold
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, 9006 Tromsø, Norway
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 114 18 Stockholm, Sweden
| | - Lennart Rikk
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Miyuki Suzuki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ken-Ichi T Suzuki
- Emerging Model Organisms Facility, Trans-scale Biology Center, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Toshinori Hayashi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8511, Japan; Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-0801, Japan
| | - Catarina R Oliveira
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ekaterina Osipova
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Maximina H Yun
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Physics of Life Excellence Cluster Dresden, 01307 Dresden, Germany.
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden.
| |
Collapse
|
6
|
Odenthal-Hesse L. Conserved features of recombination control in vertebrates. PLoS Biol 2025; 23:e3002959. [PMID: 39775336 PMCID: PMC11706403 DOI: 10.1371/journal.pbio.3002959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
A recent study in PLOS Biology on the epigenetic recombination regulator PRDM9 in salmonid fish reveals that its function has been preserved across vertebrates for hundreds of millions of years, with rapidly evolving DNA-binding domains being a defining attribute.
Collapse
Affiliation(s)
- Linda Odenthal-Hesse
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
7
|
Zinner AC, Jakt LM. Multiple losses of aKRAB from PRDM9 coincide with a teleost-specific intron size distribution. BMC Biol 2024; 22:275. [PMID: 39604973 PMCID: PMC11600626 DOI: 10.1186/s12915-024-02059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Primary transcripts are largely comprised of intronic sequences that are excised and discarded shortly after synthesis. In vertebrates, the shape of the intron size distribution is largely constant; however, most teleost fish have a diverged log-bimodal 'teleost distribution' (TD) that is seen only in teleosts. How the TD evolved and to what extent this was affected by adaptative or non-adaptive mechanisms is unknown. RESULTS Here, we show that the TD has evolved independently at least six times and that its appearance is linked to the loss of the aKRAB domain from PRDM9. We determined intron size distributions and identified PRDM9 orthologues from annotated genomes in addition to scanning 1193 teleost assemblies for the aKRAB domain. We show that a diverged form of PRDM9 ( β ) is predominant in teleosts whereas the α version is absent from most species. Only a subset of PRDM9- α proteins contain aKRAB, and hence, it is present only in a small number of teleost lineages. Almost all lineages lacking aKRAB (but no species with) had TDs. CONCLUSIONS In mammals, PRDM9 defines the sites of meiotic recombination through a mechanism that increases structural variance and depends on aKRAB. The loss of aKRAB is likely to have shifted the locations of both recombination and structural variance hotspots. Our observations suggest that the TD evolved as a side-effect of these changes and link recombination to the evolution of intron size illustrating how genome architectures can evolve in the absence of selection.
Collapse
Affiliation(s)
- Ann-Christin Zinner
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, Bodø, 8026, Norway
| | - Lars Martin Jakt
- Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, Bodø, 8026, Norway.
| |
Collapse
|
8
|
Joseph J, Prentout D, Laverré A, Tricou T, Duret L. High prevalence of PRDM9-independent recombination hotspots in placental mammals. Proc Natl Acad Sci U S A 2024; 121:e2401973121. [PMID: 38809707 PMCID: PMC11161765 DOI: 10.1073/pnas.2401973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.
Collapse
Affiliation(s)
- Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Alexandre Laverré
- Department of Ecology and Evolution, University of Lausanne, LausanneCH-1015, Switzerland
- Swiss Institute of Bioinformatics, LausanneCH-1015, Switzerland
| | - Théo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| |
Collapse
|
9
|
Kovac L, Goj T, Ouni M, Irmler M, Jähnert M, Beckers J, Hrabé De Angelis M, Peter A, Moller A, Birkenfeld AL, Weigert C, Schürmann A. Skeletal Muscle Gene Expression Signatures of Obese High and Low Responders to Endurance Exercise Training. J Clin Endocrinol Metab 2024; 109:1318-1327. [PMID: 37988600 PMCID: PMC11031218 DOI: 10.1210/clinem/dgad677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
CONTEXT Exercise training is known to improve glucose tolerance and reverse insulin resistance in people with obesity. However, some individuals fail to improve or even decline in their clinical traits following exercise intervention. OBJECTIVE This study focused on gene expression and DNA methylation signatures in skeletal muscle of low (LRE) and high responders (RES) to 8 weeks of supervised endurance training. METHODS We performed skeletal muscle gene expression and DNA methylation analyses in LRE and RES before and after exercise intervention. Additionally, we applied the least absolute shrinkage and selection operator (LASSO) approach to identify predictive marker genes of exercise outcome. RESULTS We show that the two groups differ markedly already before the intervention. RES were characterized by lower expression of genes involved in DNA replication and repair, and higher expression of extracellular matrix (ECM) components. The LASSO approach identified several novel candidates (eg, ZCWPW2, FOXRED1, STK40) that have not been previously described in the context of obesity and exercise response. Following the intervention, LRE reacted with expression changes of genes related to inflammation and apoptosis, RES with genes related to mitochondrial function. LRE exhibited significantly higher expression of ECM components compared to RES, suggesting improper remodeling and potential negative effects on insulin sensitivity. Between 45% and 70% of differences in gene expression could be linked to differences in DNA methylation. CONCLUSION Together, our data offer an insight into molecular mechanisms underlying differences in response to exercise and provide potential novel markers for the success of intervention.
Collapse
Affiliation(s)
- Leona Kovac
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal 14558, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg 14469, Germany
| | - Thomas Goj
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen 72076, Germany
| | - Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal 14558, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal 14558, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
- School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising 85764, Germany
| | - Martin Hrabé De Angelis
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
- School of Life Sciences, Chair of Experimental Genetics, Technical University Munich, Freising 85764, Germany
| | - Andreas Peter
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen 72076, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen 72076, Germany
| | - Anja Moller
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen 72076, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen 72076, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany
| | - Cora Weigert
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen 72076, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, Tübingen 72076, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal 14558, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg 85764, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal 14558, Germany
| |
Collapse
|
10
|
Armstrong EE, Bissell KL, Fatima HS, Heikkinen MA, Jessup A, Junaid MO, Lee DH, Lieb EC, Liem JT, Martin EM, Moreno M, Otgonbayar K, Romans BW, Royar K, Adler MB, Needle DB, Harkess A, Kelley JL, Mooney JA, Mychajliw AM. Chromosome-level assembly of the gray fox (Urocyon cinereoargenteus) confirms the basal loss of PRDM9 in Canidae. G3 (BETHESDA, MD.) 2024; 14:jkae034. [PMID: 38366575 PMCID: PMC10989890 DOI: 10.1093/g3journal/jkae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Reference genome assemblies have been created from multiple lineages within the Canidae family; however, despite its phylogenetic relevance as a basal genus within the clade, there is currently no reference genome for the gray fox (Urocyon cinereoargenteus). Here, we present a chromosome-level assembly for the gray fox (U. cinereoargenteus), which represents the most contiguous, non-domestic canid reference genome available to date, with 90% of the genome contained in just 34 scaffolds and a contig N50 and scaffold N50 of 59.4 and 72.9 Megabases, respectively. Repeat analyses identified an increased number of simple repeats relative to other canids. Based on mitochondrial DNA, our Vermont sample clusters with other gray fox samples from the northeastern United States and contains slightly lower levels of heterozygosity than gray foxes on the west coast of California. This new assembly lays the groundwork for future studies to describe past and present population dynamics, including the delineation of evolutionarily significant units of management relevance. Importantly, the phylogenetic position of Urocyon allows us to verify the loss of PRDM9 functionality in the basal canid lineage, confirming that pseudogenization occurred at least 10 million years ago.
Collapse
Affiliation(s)
- Ellie E Armstrong
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Ky L Bissell
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - H Sophia Fatima
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - Maya A Heikkinen
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - Anika Jessup
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - Maryam O Junaid
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - Dong H Lee
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - Emily C Lieb
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - Josef T Liem
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - Estelle M Martin
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - Mauricio Moreno
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | | | - Betsy W Romans
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
| | - Kim Royar
- Vermont Department of Fish and Wildlife, Montpelier, VT 05620, USA
| | - Mary Beth Adler
- Vermont Department of Fish and Wildlife, Montpelier, VT 05620, USA
| | - David B Needle
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jazlyn A Mooney
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90007, USA
| | - Alexis M Mychajliw
- Department of Biology, Middlebury College, Middlebury, VT 05753, USA
- Program in Environmental Studies, Middlebury College, Middlebury, VT 05753, USA
| |
Collapse
|
11
|
Hoge C, de Manuel M, Mahgoub M, Okami N, Fuller Z, Banerjee S, Baker Z, McNulty M, Andolfatto P, Macfarlan TS, Schumer M, Tzika AC, Przeworski M. Patterns of recombination in snakes reveal a tug-of-war between PRDM9 and promoter-like features. Science 2024; 383:eadj7026. [PMID: 38386752 DOI: 10.1126/science.adj7026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
In some mammals, notably humans, recombination occurs almost exclusively where the protein PRDM9 binds, whereas in vertebrates lacking an intact PRDM9, such as birds and canids, recombination rates are elevated near promoter-like features. To determine whether PRDM9 directs recombination in nonmammalian vertebrates, we focused on an exemplar species with a single, intact PRDM9 ortholog, the corn snake (Pantherophis guttatus). Analyzing historical recombination rates along the genome and crossovers in pedigrees, we found evidence that PRDM9 specifies the location of recombination events, but we also detected a separable effect of promoter-like features. These findings reveal that the uses of PRDM9 and promoter-like features need not be mutually exclusive and instead reflect a tug-of-war that is more even in some species than others.
Collapse
Affiliation(s)
- Carla Hoge
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marc de Manuel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Mohamed Mahgoub
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Naima Okami
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Zachary Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Shreya Banerjee
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Zachary Baker
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Morgan McNulty
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
12
|
Bascón-Cardozo K, Bours A, Manthey G, Durieux G, Dutheil JY, Pruisscher P, Odenthal-Hesse L, Liedvogel M. Fine-Scale Map Reveals Highly Variable Recombination Rates Associated with Genomic Features in the Eurasian Blackcap. Genome Biol Evol 2024; 16:evad233. [PMID: 38198800 PMCID: PMC10781513 DOI: 10.1093/gbe/evad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Recombination is responsible for breaking up haplotypes, influencing genetic variability, and the efficacy of selection. Bird genomes lack the protein PR domain-containing protein 9, a key determinant of recombination dynamics in most metazoans. Historical recombination maps in birds show an apparent stasis in positioning recombination events. This highly conserved recombination pattern over long timescales may constrain the evolution of recombination in birds. At the same time, extensive variation in recombination rate is observed across the genome and between different species of birds. Here, we characterize the fine-scale historical recombination map of an iconic migratory songbird, the Eurasian blackcap (Sylvia atricapilla), using a linkage disequilibrium-based approach that accounts for population demography. Our results reveal variable recombination rates among and within chromosomes, which associate positively with nucleotide diversity and GC content and negatively with chromosome size. Recombination rates increased significantly at regulatory regions but not necessarily at gene bodies. CpG islands are associated strongly with recombination rates, though their specific position and local DNA methylation patterns likely influence this relationship. The association with retrotransposons varied according to specific family and location. Our results also provide evidence of heterogeneous intrachromosomal conservation of recombination maps between the blackcap and its closest sister taxon, the garden warbler. These findings highlight the considerable variability of recombination rates at different scales and the role of specific genomic features in shaping this variation. This study opens the possibility of further investigating the impact of recombination on specific population-genomic features.
Collapse
Affiliation(s)
- Karen Bascón-Cardozo
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Andrea Bours
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Georg Manthey
- Institute of Avian Research “Vogelwarte Helgoland”, Wilhelmshaven 26386, Germany
| | - Gillian Durieux
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Julien Y Dutheil
- Department for Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Peter Pruisscher
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
- Department of Zoology, Stockholm University, Stockholm SE-106 91, Sweden
| | - Linda Odenthal-Hesse
- Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Miriam Liedvogel
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
- Institute of Avian Research “Vogelwarte Helgoland”, Wilhelmshaven 26386, Germany
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| |
Collapse
|
13
|
Baker Z, Przeworski M, Sella G. Down the Penrose stairs, or how selection for fewer recombination hotspots maintains their existence. eLife 2023; 12:e83769. [PMID: 37830496 PMCID: PMC10703446 DOI: 10.7554/elife.83769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/12/2023] [Indexed: 10/14/2023] Open
Abstract
In many species, meiotic recombination events tend to occur in narrow intervals of the genome, known as hotspots. In humans and mice, double strand break (DSB) hotspot locations are determined by the DNA-binding specificity of the zinc finger array of the PRDM9 protein, which is rapidly evolving at residues in contact with DNA. Previous models explained this rapid evolution in terms of the need to restore PRDM9 binding sites lost to gene conversion over time, under the assumption that more PRDM9 binding always leads to more DSBs. This assumption, however, does not align with current evidence. Recent experimental work indicates that PRDM9 binding on both homologs facilitates DSB repair, and that the absence of sufficient symmetric binding disrupts meiosis. We therefore consider an alternative hypothesis: that rapid PRDM9 evolution is driven by the need to restore symmetric binding because of its role in coupling DSB formation and efficient repair. To this end, we model the evolution of PRDM9 from first principles: from its binding dynamics to the population genetic processes that govern the evolution of the zinc finger array and its binding sites. We show that the loss of a small number of strong binding sites leads to the use of a greater number of weaker ones, resulting in a sharp reduction in symmetric binding and favoring new PRDM9 alleles that restore the use of a smaller set of strong binding sites. This decrease, in turn, drives rapid PRDM9 evolutionary turnover. Our results therefore suggest that the advantage of new PRDM9 alleles is in limiting the number of binding sites used effectively, rather than in increasing net PRDM9 binding. By extension, our model suggests that the evolutionary advantage of hotspots may have been to increase the efficiency of DSB repair and/or homolog pairing.
Collapse
Affiliation(s)
- Zachary Baker
- Department of Systems Biology, Columbia UniversityNew YorkUnited States
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Molly Przeworski
- Department of Systems Biology, Columbia UniversityNew YorkUnited States
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
- Program for Mathematical Genomics, Columbia UniversityNew YorkUnited States
| | - Guy Sella
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
- Program for Mathematical Genomics, Columbia UniversityNew YorkUnited States
| |
Collapse
|
14
|
Úbeda F, Fyon F, Bürger R. The Recombination Hotspot Paradox: Co-evolution between PRDM9 and its target sites. Theor Popul Biol 2023; 153:69-90. [PMID: 37451508 DOI: 10.1016/j.tpb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Recombination often concentrates in small regions called recombination hotspots where recombination is much higher than the genome's average. In many vertebrates, including humans, gene PRDM9 specifies which DNA motifs will be the target for breaks that initiate recombination, ultimately determining the location of recombination hotspots. Because the sequence that breaks (allowing recombination) is converted into the sequence that does not break (preventing recombination), the latter sequence is over-transmitted to future generations and recombination hotspots are self-destructive. Given their self-destructive nature, recombination hotspots should eventually become extinct in genomes where they are found. While empirical evidence shows that individual hotspots do become inactive over time (die), hotspots are abundant in many vertebrates: a contradiction called the Recombination Hotspot Paradox. What saves recombination hotspots from their foretold extinction? Here we formulate a co-evolutionary model of the interaction among sequence-specific gene conversion, fertility selection, and recurrent mutation. We find that allelic frequencies oscillate leading to stable limit cycles. From a biological perspective this means that when fertility selection is weaker than gene conversion, it cannot stop individual hotspots from dying but can save them from extinction by driving their re-activation (resuscitation). In our model, mutation balances death and resuscitation of hotspots, thus maintaining their number over evolutionary time. Interestingly, we find that multiple alleles result in oscillations that are chaotic and multiple targets in oscillations that are asynchronous between targets thus helping to maintain the average genomic recombination probability constant. Furthermore, we find that the level of expression of PRDM9 should control for the fraction of targets that are hotspots and the overall temperature of the genome. Therefore, our co-evolutionary model improves our understanding of how hotspots may be replaced, thus contributing to solve the Recombination Hotspot Paradox. From a more applied perspective our work provides testable predictions regarding the relation between mutation probability and fertility selection with life expectancy of hotspots.
Collapse
Affiliation(s)
- Francisco Úbeda
- Department of Biology, Royal Holloway University of London, Egham TW20 0EX, UK.
| | - Frédéric Fyon
- Department of Biology, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Reinhard Bürger
- Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
15
|
Scheben A, Mendivil Ramos O, Kramer M, Goodwin S, Oppenheim S, Becker DJ, Schatz MC, Simmons NB, Siepel A, McCombie WR. Long-Read Sequencing Reveals Rapid Evolution of Immunity- and Cancer-Related Genes in Bats. Genome Biol Evol 2023; 15:evad148. [PMID: 37728212 PMCID: PMC10510315 DOI: 10.1093/gbe/evad148] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023] Open
Abstract
Bats are exceptional among mammals for their powered flight, extended lifespans, and robust immune systems and therefore have been of particular interest in comparative genomics. Using the Oxford Nanopore Technologies long-read platform, we sequenced the genomes of two bat species with key phylogenetic positions, the Jamaican fruit bat (Artibeus jamaicensis) and the Mesoamerican mustached bat (Pteronotus mesoamericanus), and carried out a comprehensive comparative genomic analysis with a diverse collection of bats and other mammals. The high-quality, long-read genome assemblies revealed a contraction of interferon (IFN)-α at the immunity-related type I IFN locus in bats, resulting in a shift in relative IFN-ω and IFN-α copy numbers. Contradicting previous hypotheses of constitutive expression of IFN-α being a feature of the bat immune system, three bat species lost all IFN-α genes. This shift to IFN-ω could contribute to the increased viral tolerance that has made bats a common reservoir for viruses that can be transmitted to humans. Antiviral genes stimulated by type I IFNs also showed evidence of rapid evolution, including a lineage-specific duplication of IFN-induced transmembrane genes and positive selection in IFIT2. In addition, 33 tumor suppressors and 6 DNA-repair genes showed signs of positive selection, perhaps contributing to increased longevity and reduced cancer rates in bats. The robust immune systems of bats rely on both bat-wide and lineage-specific evolution in the immune gene repertoire, suggesting diverse immune strategies. Our study provides new genomic resources for bats and sheds new light on the extraordinary molecular evolution in this critically important group of mammals.
Collapse
Affiliation(s)
- Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Oppenheim
- American Museum of Natural History, Institute for Comparative Genomics, New York, New York, USA
| | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael C Schatz
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | |
Collapse
|
16
|
Zhang C, Reid K, Sands AF, Fraimout A, Schierup MH, Merilä J. De Novo Mutation Rates in Sticklebacks. Mol Biol Evol 2023; 40:msad192. [PMID: 37648662 PMCID: PMC10503787 DOI: 10.1093/molbev/msad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
Mutation rate is a fundamental parameter in population genetics. Apart from being an important scaling parameter for demographic and phylogenetic inference, it allows one to understand at what rate new genetic diversity is generated and what the expected level of genetic diversity is in a population at equilibrium. However, except for well-established model organisms, accurate estimates of de novo mutation rates are available for a very limited number of organisms from the wild. We estimated mutation rates (µ) in two marine populations of the nine-spined stickleback (Pungitius pungitius) with the aid of several 2- and 3-generational family pedigrees, deep (>50×) whole-genome resequences and a high-quality reference genome. After stringent filtering, we discovered 308 germline mutations in 106 offspring translating to µ = 4.83 × 10-9 and µ = 4.29 × 10-9 per base per generation in the two populations, respectively. Up to 20% of the mutations were shared by full-sibs showing that the level of parental mosaicism was relatively high. Since the estimated µ was 3.1 times smaller than the commonly used substitution rate, recalibration with µ led to substantial increase in estimated divergence times between different stickleback species. Our estimates of the de novo mutation rate should provide a useful resource for research focused on fish population genetics and that of sticklebacks in particular.
Collapse
Affiliation(s)
- Chaowei Zhang
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kerry Reid
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Arthur F Sands
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Antoine Fraimout
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Research Program in Organismal & Evolutionary Biology, Faculty Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Juha Merilä
- Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Research Program in Organismal & Evolutionary Biology, Faculty Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Hoge C, de Manuel M, Mahgoub M, Okami N, Fuller Z, Banerjee S, Baker Z, McNulty M, Andolfatto P, Macfarlan TS, Schumer M, Tzika AC, Przeworski M. Patterns of recombination in snakes reveal a tug of war between PRDM9 and promoter-like features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548536. [PMID: 37502971 PMCID: PMC10369914 DOI: 10.1101/2023.07.11.548536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In vertebrates, there are two known mechanisms by which meiotic recombination is directed to the genome: in humans, mice, and other mammals, recombination occurs almost exclusively where the protein PRDM9 binds, while in species lacking an intact PRDM9, such as birds and canids, recombination rates are elevated near promoter-like features. To test if PRDM9 also directs recombination in non-mammalian vertebrates, we focused on an exemplar species, the corn snake (Pantherophis guttatus). Unlike birds, this species possesses a single, intact PRDM9 ortholog. By inferring historical recombination rates along the genome from patterns of linkage disequilibrium and identifying crossovers in pedigrees, we found that PRDM9 specifies the location of recombination events outside of mammals. However, we also detected an independent effect of promoter-like features on recombination, which is more pronounced on macro- than microchromosomes. Thus, our findings reveal that the uses of PRDM9 and promoter-like features are not mutually-exclusive, and instead reflect a tug of war, which varies in strength along the genome and is more lopsided in some species than others.
Collapse
Affiliation(s)
- Carla Hoge
- Dept. of Biological Sciences, Columbia University
| | | | - Mohamed Mahgoub
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Naima Okami
- Dept. of Biological Sciences, Columbia University
| | | | | | | | | | | | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Molly Schumer
- Dept. of Biology, Stanford University
- Howard Hughes Medical Institute, Stanford, CA
| | - Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva
| | - Molly Przeworski
- Dept. of Biological Sciences, Columbia University
- Howard Hughes Medical Institute, Stanford, CA
| |
Collapse
|
18
|
Valero-Regalón FJ, Solé M, López-Jiménez P, Valerio-de Arana M, Martín-Ruiz M, de la Fuente R, Marín-Gual L, Renfree MB, Shaw G, Berríos S, Fernández-Donoso R, Waters PD, Ruiz-Herrera A, Gómez R, Page J. Divergent patterns of meiotic double strand breaks and synapsis initiation dynamics suggest an evolutionary shift in the meiosis program between American and Australian marsupials. Front Cell Dev Biol 2023; 11:1147610. [PMID: 37181752 PMCID: PMC10166821 DOI: 10.3389/fcell.2023.1147610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
In eutherian mammals, hundreds of programmed DNA double-strand breaks (DSBs) are generated at the onset of meiosis. The DNA damage response is then triggered. Although the dynamics of this response is well studied in eutherian mammals, recent findings have revealed different patterns of DNA damage signaling and repair in marsupial mammals. To better characterize these differences, here we analyzed synapsis and the chromosomal distribution of meiotic DSBs markers in three different marsupial species (Thylamys elegans, Dromiciops gliorides, and Macropus eugenii) that represent South American and Australian Orders. Our results revealed inter-specific differences in the chromosomal distribution of DNA damage and repair proteins, which were associated with differing synapsis patterns. In the American species T. elegans and D. gliroides, chromosomal ends were conspicuously polarized in a bouquet configuration and synapsis progressed exclusively from the telomeres towards interstitial regions. This was accompanied by sparse H2AX phosphorylation, mainly accumulating at chromosomal ends. Accordingly, RAD51 and RPA were mainly localized at chromosomal ends throughout prophase I in both American marsupials, likely resulting in reduced recombination rates at interstitial positions. In sharp contrast, synapsis initiated at both interstitial and distal chromosomal regions in the Australian representative M. eugenii, the bouquet polarization was incomplete and ephemeral, γH2AX had a broad nuclear distribution, and RAD51 and RPA foci displayed an even chromosomal distribution. Given the basal evolutionary position of T. elegans, it is likely that the meiotic features reported in this species represent an ancestral pattern in marsupials and that a shift in the meiotic program occurred after the split of D. gliroides and the Australian marsupial clade. Our results open intriguing questions about the regulation and homeostasis of meiotic DSBs in marsupials. The low recombination rates observed at the interstitial chromosomal regions in American marsupials can result in the formation of large linkage groups, thus having an impact in the evolution of their genomes.
Collapse
Affiliation(s)
| | - Mireia Solé
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular, Universitat Autònoma de Barcelona, Spain
| | - Pablo López-Jiménez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Valerio-de Arana
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of The Polish Academy of Sciences, Jastrzębiec, Poland
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Barcelona, Spain
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Soledad Berríos
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Raúl Fernández-Donoso
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Barcelona, Spain
| | - Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Kliesmete Z, Wange LE, Vieth B, Esgleas M, Radmer J, Hülsmann M, Geuder J, Richter D, Ohnuki M, Götz M, Hellmann I, Enard W. Regulatory and coding sequences of TRNP1 co-evolve with brain size and cortical folding in mammals. eLife 2023; 12:e83593. [PMID: 36947129 PMCID: PMC10032658 DOI: 10.7554/elife.83593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Brain size and cortical folding have increased and decreased recurrently during mammalian evolution. Identifying genetic elements whose sequence or functional properties co-evolve with these traits can provide unique information on evolutionary and developmental mechanisms. A good candidate for such a comparative approach is TRNP1, as it controls proliferation of neural progenitors in mice and ferrets. Here, we investigate the contribution of both regulatory and coding sequences of TRNP1 to brain size and cortical folding in over 30 mammals. We find that the rate of TRNP1 protein evolution (ω) significantly correlates with brain size, slightly less with cortical folding and much less with body size. This brain correlation is stronger than for >95% of random control proteins. This co-evolution is likely affecting TRNP1 activity, as we find that TRNP1 from species with larger brains and more cortical folding induce higher proliferation rates in neural stem cells. Furthermore, we compare the activity of putative cis-regulatory elements (CREs) of TRNP1 in a massively parallel reporter assay and identify one CRE that likely co-evolves with cortical folding in Old World monkeys and apes. Our analyses indicate that coding and regulatory changes that increased TRNP1 activity were positively selected either as a cause or a consequence of increases in brain size and cortical folding. They also provide an example how phylogenetic approaches can inform biological mechanisms, especially when combined with molecular phenotypes across several species.
Collapse
Affiliation(s)
- Zane Kliesmete
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Lucas Esteban Wange
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Beate Vieth
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Miriam Esgleas
- Physiological Genomics, BioMedical Center - BMC, Ludwig-Maximilians-UniversitätMunichGermany
- Institute for Stem Cell Research, Helmholtz Zentrum München, Germany Research Center for Environmental HealthMunichGermany
| | - Jessica Radmer
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Matthias Hülsmann
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
- Department of Environmental Microbiology, EawagDübendorfSwitzerland
- Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
| | - Johanna Geuder
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Daniel Richter
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Mari Ohnuki
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Magdelena Götz
- Physiological Genomics, BioMedical Center - BMC, Ludwig-Maximilians-UniversitätMunichGermany
- Institute for Stem Cell Research, Helmholtz Zentrum München, Germany Research Center for Environmental HealthMunichGermany
- SYNERGY, Excellence Cluster of Systems Neurology, BioMedical Center (BMC), Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Ines Hellmann
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| |
Collapse
|
20
|
Genome-Wide Association Screening Determines Peripheral Players in Male Fertility Maintenance. Int J Mol Sci 2022; 24:ijms24010524. [PMID: 36613967 PMCID: PMC9820667 DOI: 10.3390/ijms24010524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Deciphering the functional relationships of genes resulting from genome-wide screens for polymorphisms that are associated with phenotypic variations can be challenging. However, given the common association with certain phenotypes, a functional link should exist. We have tested this prediction in newly sequenced exomes of altogether 100 men representing different states of fertility. Fertile subjects presented with normal semen parameters and had naturally fathered offspring. In contrast, infertile probands were involuntarily childless and had reduced sperm quantity and quality. Genome-wide association study (GWAS) linked twelve non-synonymous single-nucleotide polymorphisms (SNPs) to fertility variation between both cohorts. The SNPs localized to nine genes for which previous evidence is in line with a role in male fertility maintenance: ANAPC1, CES1, FAM131C, HLA-DRB1, KMT2C, NOMO1, SAA1, SRGAP2, and SUSD2. Most of the SNPs residing in these genes imply amino acid exchanges that should only moderately affect protein functionality. In addition, proteins encoded by genes from present GWAS occupied peripheral positions in a protein-protein interaction network, the backbone of which consisted of genes listed in the Online Mendelian Inheritance in Man (OMIM) database for their implication in male infertility. Suggestive of an indirect impact on male fertility, the genes focused were indeed linked to each other, albeit mediated by other interactants. Thus, the chances of identifying a central player in male infertility by GWAS could be limited in general. Furthermore, the SNPs determined and the genes containing these might prove to have potential as biomarkers in the diagnosis of male fertility.
Collapse
|
21
|
Abstract
CRISPR-associated (Cas) enzymes have revolutionized biology by enabling RNA-guided genome editing. Homology-directed repair (HDR) in the presence of donor templates is currently the most versatile method to introduce precise edits following CRISPR-Cas-induced double-stranded DNA cuts, but HDR efficiency is generally low relative to end-joining pathways that lead to insertions and deletions (indels). We tested the hypothesis that HDR could be increased using a Cas9 construct fused to PRDM9, a chromatin remodeling factor that deposits histone methylations H3K36me3 and H3K4me3 to mediate homologous recombination in human cells. Our results show that the fusion protein contacts chromatin specifically at the Cas9 cut site in the genome to increase the observed HDR efficiency by threefold and HDR:indel ratio by fivefold compared with that induced by unmodified Cas9. HDR enhancement occurred in multiple cell lines with no increase in off-target genome editing. These findings underscore the importance of chromatin features for the balance between DNA repair mechanisms during CRISPR-Cas genome editing and provide a strategy to increase HDR efficiency.
Collapse
|
22
|
Marín-Gual L, González-Rodelas L, M. Garcias M, Kratochvíl L, Valenzuela N, Georges A, Waters PD, Ruiz-Herrera A. Meiotic chromosome dynamics and double strand break formation in reptiles. Front Cell Dev Biol 2022; 10:1009776. [PMID: 36313577 PMCID: PMC9597255 DOI: 10.3389/fcell.2022.1009776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
During meiotic prophase I, tightly regulated processes take place, from pairing and synapsis of homologous chromosomes to recombination, which are essential for the generation of genetically variable haploid gametes. These processes have canonical meiotic features conserved across different phylogenetic groups. However, the dynamics of meiotic prophase I in non-mammalian vertebrates are poorly known. Here, we compare four species from Sauropsida to understand the regulation of meiotic prophase I in reptiles: the Australian central bearded dragon (Pogona vitticeps), two geckos (Paroedura picta and Coleonyx variegatus) and the painted turtle (Chrysemys picta). We first performed a histological characterization of the spermatogenesis process in both the bearded dragon and the painted turtle. We then analyzed prophase I dynamics, including chromosome pairing, synapsis and the formation of double strand breaks (DSBs). We show that meiosis progression is highly conserved in reptiles with telomeres clustering forming the bouquet, which we propose promotes homologous pairing and synapsis, along with facilitating the early pairing of micro-chromosomes during prophase I (i.e., early zygotene). Moreover, we detected low levels of meiotic DSB formation in all taxa. Our results provide new insights into reptile meiosis.
Collapse
Affiliation(s)
- Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria M. Garcias
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, NSW, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- *Correspondence: Aurora Ruiz-Herrera,
| |
Collapse
|