1
|
Pei ZF, Vior NM, Zhu L, Truman AW, Nair SK. Biosynthesis of peptide-nucleobase hybrids in ribosomal peptides. Nat Chem Biol 2025; 21:143-154. [PMID: 39285006 PMCID: PMC11912545 DOI: 10.1038/s41589-024-01736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/20/2024] [Indexed: 12/25/2024]
Abstract
The main biopolymers in nature are oligonucleotides and polypeptides. However, naturally occurring peptide-nucleobase hybrids are rare. Here we report the characterization of the founding member of a class of peptide-nucleobase hybrid natural products with a pyrimidone motif from a widely distributed ribosomally synthesized and post-translationally modified (RiPP) biosynthetic pathway. This pathway features two steps where a heteromeric RRE-YcaO-dehydrogenase complex catalyzes the formation of a six-membered pyrimidone ring from an asparagine residue on the precursor peptide, and an acyl esterase selectively recognizes this moiety to cleave the C-terminal follower peptide. Mechanistic studies reveal that the pyrimidone formation occurs in a substrate-assisted catalysis manner, requiring a His residue in the precursor to activate asparagine for heterocyclization. Our study expands the chemotypes of RiPP natural products and the catalytic scope of YcaO enzymes. This discovery opens avenues to create artificial biohybrid molecules that resemble both peptide and nucleobase, a modality of growing interest.
Collapse
Affiliation(s)
- Zeng-Fei Pei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Natalia M Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Schröder MP, Pfeiffer IPM, Mordhorst S. Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry. Beilstein J Org Chem 2024; 20:1652-1670. [PMID: 39076295 PMCID: PMC11285071 DOI: 10.3762/bjoc.20.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
This review article aims to highlight the role of methyltransferases within the context of ribosomally synthesised and post-translationally modified peptide (RiPP) natural products. Methyltransferases play a pivotal role in the biosynthesis of diverse natural products with unique chemical structures and bioactivities. They are highly chemo-, regio-, and stereoselective allowing methylation at various positions. The different possible acceptor regions in ribosomally synthesised peptides are described in this article. Furthermore, we will discuss the potential application of these methyltransferases as powerful biocatalytic tools in the synthesis of modified peptides and other bioactive compounds. By providing an overview of the various methylation options available, this review is intended to emphasise the biocatalytic potential of RiPP methyltransferases and their impact on the field of natural product chemistry.
Collapse
Affiliation(s)
- Maria-Paula Schröder
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Isabel P-M Pfeiffer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Silja Mordhorst
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Walls WG, Vagstad A, Delridge T, Piel J, Broderick WE, Broderick JB. Direct Detection of the α-Carbon Radical Intermediate Formed by OspD: Mechanistic Insights into Radical S-Adenosyl-l-methionine Peptide Epimerization. J Am Chem Soc 2024; 146:5550-5559. [PMID: 38364824 PMCID: PMC11302384 DOI: 10.1021/jacs.3c13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
OspD is a radical S-adenosyl-l-methionine (SAM) peptide epimerase that converts an isoleucine (Ile) and valine (Val) of the OspA substrate to d-amino acids during biosynthesis of the ribosomally synthesized and post-translationally modified peptide (RiPP) natural product landornamide A. OspD is proposed to carry out this reaction via α-carbon (Cα) H-atom abstraction to form a peptidyl Cα radical that is stereospecifically quenched by hydrogen atom transfer (HAT) from a conserved cysteine (Cys). Here we use site-directed mutagenesis, freeze-quench trapping, isotopic labeling, and electron paramagnetic resonance (EPR) spectroscopy to provide new insights into the OspD catalytic mechanism including the direct observation of the substrate peptide Cα radical intermediate. The putative quenching Cys334 was changed to serine to generate an OspD C334S variant impaired in HAT quenching. The reaction of reduced OspD C334S with SAM and OspA freeze-quenched at 15 s exhibits a doublet EPR signal characteristic of a Cα radical coupled to a single β-H. Using isotopologues of OspA deuterated at either Ile or Val, or both Ile and Val, reveals that the initial Cα radical intermediate forms exclusively on the Ile of OspA. Time-dependent freeze quench coupled with EPR spectroscopy provided evidence for loss of the Ile Cα radical concomitant with gain of a Val Cα radical, directly demonstrating the N-to-C directionality of epimerization by OspD. These results provide direct evidence for the aforementioned OspD-catalyzed peptide epimerization mechanism via a central Cα radical intermediate during RiPP maturation of OspA, a mechanism that may extend to other proteusin peptide epimerases.
Collapse
Affiliation(s)
- William G. Walls
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Anna Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Tyler Delridge
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - William E. Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Joan B. Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, United States
| |
Collapse
|
4
|
Xu C, Yang Y, He L, Li C, Wang X, Zeng X. Flavor, physicochemical properties, and storage stability of P. lobata-coix seed fermented beverage produced by A. aegerita. Food Chem 2024; 434:137428. [PMID: 37716144 DOI: 10.1016/j.foodchem.2023.137428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Pueraria lobata and coix seeds have complementary nutritional profiles, and their nutritional value can be enhanced through biotransformation. Agrocybe aegerita (A. aegerita) is a highly nutritious mushroom with a rich enzyme content. This study investigated the flavor, physicochemical properties, and storage stability of P. lobata-coix seed fermented beverage (PCFB) by A. aegerita. Sixty volatile compounds were detected by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Compared to unfermented PCFB, fermentation with A. aegerita enhanced its physicochemical properties, with the contents of essential amino acids, γ-Aminobutyric acid, and soluble proteins increasing from 16.81%, 2.64 mg/100 mL, and 49.40% to 21.06%, 4.20 mg/100 mL, and 53.08%, respectively. Two efficient shelf-life prediction models of PCFB were established with the Arrhenius model using pH and sensory evaluation as indexes. These findings demonstrate that PCFB is a novel, high-quality beverage and provide a foundation for potential industrial production of PCFB using A. aegerita.
Collapse
Affiliation(s)
- Changli Xu
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Yun Yang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Laping He
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Cuiqin Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China; School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Xiao Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Xuefeng Zeng
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| |
Collapse
|
5
|
Wang X, Chen X, Wang ZJ, Zhuang M, Zhong L, Fu C, Garcia R, Müller R, Zhang Y, Yan J, Wu D, Huo L. Discovery and Characterization of a Myxobacterial Lanthipeptide with Unique Biosynthetic Features and Anti-inflammatory Activity. J Am Chem Soc 2023. [PMID: 37466996 DOI: 10.1021/jacs.3c06014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The genomes of myxobacteria harbor a variety of biosynthetic gene clusters encoding numerous secondary metabolites, including ribosomally synthesized and post-translationally modified peptides (RiPPs) with diverse chemical structures and biological activities. However, the biosynthetic potential of RiPPs from myxobacteria remains barely explored. Herein, we report a novel myxobacteria lanthipeptide myxococin identified from Myxococcus fulvus. Myxococins represent the first example of lanthipeptides, of which the characteristic multiple thioether rings are installed by employing a Class II lanthipeptide synthetase MfuM and a Class I lanthipeptide cyclase MfuC in a cascaded way. Unprecedentedly, we biochemically characterized the first M61 family aminopeptidase MfuP involved in RiPP biosynthesis, demonstrating that MfuP showed the activity of an endopeptidase activity. MfuP is leader-independent but strictly selective for the multibridge structure of myxococin A and responsible for unwrapping two rings via amide bond hydrolysis, yielding myxococin B. Furthermore, the X-ray crystal structure of MfuP and structural analysis, including active-site mutations, are reported. Finally, myxococins are evaluated to exhibit anti-inflammatory activity in lipopolysaccharide-induced macrophages without detectable cytotoxicity.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Xiaoyu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Zong-Jie Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Mengwei Zhuang
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Chin
| | - Chengzhang Fu
- Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Jie Yan
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|