1
|
Gottfried Y, Lulu-Shimron C, Goldhirsh G, Fisher Y, Ziv T, Hoon DSB, Kravtsova-Ivantsiv Y, Ciechanover A. Vimentin is a ubiquitination and degradation substrate of the ubiquitin ligase KPC1. Biochem Biophys Res Commun 2025; 745:151231. [PMID: 39732122 DOI: 10.1016/j.bbrc.2024.151231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
The ubiquitin proteasome system (UPS), driven by ubiquitin as a degradation signal, eliminates, in a highly specific manner, 'abnormal' proteins and proteins that completed their function. This process involves a hierarchical cascade of E1, E2, and E3 enzymes. The E3 ubiquitin ligases, act as specific receptors that bind their cognate substrates. We have previously shown that the ubiquitin ligase KPC1 possesses a strong tumor-suppressive characteristic caused by the p50 subunit of the NF-κB transcription factor, which is generated by limited, KPC1-mediated processing of its p105 precursor. In this study, we identified vimentin as a novel substrate of the KPC1. We demonstrated that the ligase forms a complex with vimentin and modifies it by ubiquitination. Overexpression of KPC1 in HEK293T cells downregulates vimentin expression. Conversely, deletion of KPC1 in HAP1 cells results in upregulation of vimentin. Importantly, we revealed both in vitro and in a tumor model in mice that at least part of this effect is mediated through the downregulation of vimentin. Furthermore, in human clear cell renal cell carcinoma (ccRCC) samples, we found a negative correlation between KPC1 and vimentin expression. Overall, we demonstrate that the KPC1 ubiquitin E3 ligase downregulates vimentin expression, thereby reducing migration and tumorigenicity of cancer cells.
Collapse
Affiliation(s)
- Yossi Gottfried
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Chen Lulu-Shimron
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Gilad Goldhirsh
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Yael Fisher
- Institue of Pathology, Rambam Health Care Campus, Haifa, 3109601, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint Johns Cancer Institute, PHS, Santa Monica, CA, 90025, USA
| | - Yelena Kravtsova-Ivantsiv
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel.
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa, 3109601, Israel.
| |
Collapse
|
2
|
Kravtsova-Ivantsiv Y, Goldhirsh G, Ciechanover A. CXCL12 restricts tumor growth by suppressing the Ras, ERK1/2, c-Myc, and the immune checkpoint PD-L1 pathways. Proc Natl Acad Sci U S A 2024; 121:e2416909121. [PMID: 39689179 DOI: 10.1073/pnas.2416909121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Cytokines constitute a family of proteins that modulate the immune system and are secreted by many cells. CXCL12, along with its receptor CXCR4, are essential players in numerous processes. Dysregulation of their function underlie the mechanism(s) of several pathologies, including malignancies. Here, we demonstrate an unexpected effect of the cytokine and its receptor: In both cells and animal models, CXCL12 restricts tumorigenicity of the human glioblastoma cells U87-MG and U-118, and of a cell line derived from PyMT mouse breast cancer. Overexpression of CXCL12 inhibits activation of the oncogene Ras which results in downregulation of its proliferative signals, such as reduced phosphorylation of the extracellular signal-regulated kinase 1/2 (ERK1/2), inhibition of c-Myc expression, and subsequent inhibition of cell cycle. Furthermore, CXCL12 induces downregulation of the growth differentiation factor 15 (GDF15), insulin-like growth factor-binding protein 6 (IGFBP6), and matrix metalloproteinase-3 (MMP3), which are implicated in sending metastases. Indeed, monitoring cell migration in vitro and generation of metastases in mice demonstrate that CXCL12 slows the migration of U87-MG and PyMT cells. Remarkably, overexpression of CXCL12 also downregulates the cell surface immune checkpoint protein programmed cell death-ligand 1 (PD-L1), resulting in recruitment of cytotoxic CD8 T cells into xenografts accompanied by their shrinkage. Overall, CXCL12 inhibits tumor growth through several distinct mechanisms: inhibition of cell cycle and migration, as well as impairment of immune checkpoint, thereby stimulating a strong host's immune response. The mechanism(s) that renders CXCL12 a tumor-promoting factor in certain cells and a suppressor in others has remained elusive.
Collapse
Affiliation(s)
- Yelena Kravtsova-Ivantsiv
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Gilad Goldhirsh
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute, and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, Haifa 3109601, Israel
| |
Collapse
|
3
|
Xiao Y, Liu R, Li N, Li Y, Huang X. Role of the ubiquitin-proteasome system on macrophages in the tumor microenvironment. J Cell Physiol 2024; 239:e31180. [PMID: 38219045 DOI: 10.1002/jcp.31180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment, and their different polarization states play multiple roles in tumors by secreting cytokines, chemokines, and so on, which are closely related to tumor development. In addition, the enrichment of TAMs is often associated with poor prognosis of tumors. Thus, targeting TAMs is a potential tumor treatment strategy, in which therapeutic approaches such as reducing TAMs numbers, remodeling TAMs phenotypes, and altering their functions are being extensively investigated. Meanwhile, the ubiquitin-proteasome system (UPS), an important mechanism of protein hydrolysis in eukaryotic cells, participates in cellular processes by regulating the activity and stability of key proteins. Interestingly, UPS plays a dual role in the process of tumor development, and its role in TAMs deserve to be investigated in depth. This review builds on this foundation to further explore the multiple roles of UPS on TAMs and identifies a promising approach to treat tumors by targeting TAMs with UPS.
Collapse
Affiliation(s)
- Yue Xiao
- First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Ruiqian Liu
- School of Future Technology, Nanchang University, Nanchang, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Kravtsova-Ivantsiv Y, Goldhirsh G, Tomuleasa C, Pikarsky E, Ciechanover A. The NF-ĸB p50 subunit generated by KPC1-mediated ubiquitination and limited proteasomal processing, suppresses tumor growth. Cancer Cell Int 2023; 23:67. [PMID: 37055826 PMCID: PMC10100387 DOI: 10.1186/s12935-023-02919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023] Open
Abstract
Nuclear factor-ĸB (NF-ĸB) is an important transcriptional regulator of key cellular processes, including cell cycle, immune response, and malignant transformation. We found that the ubiquitin ligase Kip1 ubiquitination-promoting complex subunit 1 (KPC1; also known as Ring finger protein 123 - RNF123) stimulates ubiquitination and limited proteasomal processing of the p105 NF-ĸB precursor to generate p50, the active subunit of the heterodimeric transcription factor. KPC1 binds to the ankyrin repeats' (AR) domain of NF-ĸB p105 via a short binding site of 7 amino acids-968-WILVRLW-974. Though mature NF-ĸB is overexpressed and constitutively active in different tumors, we found that overexpression of the p50 subunit, exerts a strong tumor suppressive effect. Furthermore, excess of KPC1 that stimulates generation of p50 from the p105 precursor, also results in a similar effect. Analysis of transcripts of glioblastoma and breast tumors revealed that excess of p50 stimulates expression of many NF-ĸB-regulated tumor suppressive genes. Using human xenograft tumor models in different immune compromised mice, we demonstrated that the immune system plays a significant role in the tumor suppressive activity of p50:p50 homodimer stimulating the expression of the pro-inflammatory cytokines CCL3, CCL4, and CCL5 in both cultured cells and in the xenografts. Expression of these cytokines leads to recruitment of macrophages and NK cells, which restrict tumor growth. Finally, p50 inhibits the expression of the programmed cell death-ligand 1 (PDL1), establishing an additional level of a strong tumor suppressive response mediated by the immune system.
Collapse
Affiliation(s)
- Yelena Kravtsova-Ivantsiv
- The Rappaport Faculty of Medicine and Research Institute and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, P.O. Box 9649, 3109601, Haifa, Israel.
| | - Gilad Goldhirsh
- The Rappaport Faculty of Medicine and Research Institute and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, P.O. Box 9649, 3109601, Haifa, Israel
| | - Ciprian Tomuleasa
- Department of Hematology-Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, 9112000, Jerusalem, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute and the Rappaport Technion Integrated Cancer Center (R-TICC), Technion-Israel Institute of Technology, P.O. Box 9649, 3109601, Haifa, Israel.
| |
Collapse
|
5
|
Wang C, Zhang Y, Deng J, Liang B, Xing D. Developments of PROTACs technology in immune-related diseases. Eur J Med Chem 2023; 249:115127. [PMID: 36724631 DOI: 10.1016/j.ejmech.2023.115127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Traditional chemotherapy and immunotherapy are primary disease-treatment strategies. However, they face numerous challenges, including limited therapeutic benefits, off-target effects, serious adverse effects, drug resistance, long half-life time, poor oral bioavailability, and drugging undruggable proteins. Proteolytic targeted chimeras (PROTACs) were suggested to solve these problems. PROTACs are heterogeneous functional molecules linked by a chemical linker and contain a binding ligand for the protein of interest and a recruiting ligand for the E3 ligand. The binding of a PROTAC to a target protein brings the E3 ligand enzyme into proximity, initiating polyubiquitination of the target protein, followed by protease-mediated degradation. To date, PROTACs against dozens of immunological targets have been successfully developed, many of which have been clinically validated drug targets, and several have entered clinical trials for immune-related diseases. This article reviews the role of PROTACs-mediated degradation of critical proteins in immune disorders and cancer immunotherapy. Chemical structures, cellular and in vivo activities, and pharmacodynamics of these PROTACs are summarized. Lastly, we also discuss the prospects and potential limitations that PROTACs face.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|