1
|
Ganzoni RLZ, Bournons SS, Carreira EM, De Bundel D, Smolders I. A Bright Future for Photopharmaceuticals Addressing Central Nervous System Disorders: State of the Art and Challenges Toward Clinical Translation. Med Res Rev 2025. [PMID: 40186449 DOI: 10.1002/med.22105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Photopharmacology is an innovative approach that uses light to activate drugs. This method offers the potential for highly localized and precise drug activation, making it particularly promising for the treatment of neurological disorders. Despite the enticing prospects of photopharmacology, its application to treat human central nervous system (CNS) diseases remains to be demonstrated. In this review, we provide an overview of prominent strategies for the design and activation of photopharmaceutical agents in the field of neuroscience. Photocaged and photoswitchable drugs and bioactive molecules are discussed, and an instructive list of examples is provided to highlight compound design strategies. Special emphasis is placed on photoactivatable compounds for the modulation of glutamatergic, GABAergic, dopaminergic, and serotonergic neurotransmission for the treatment of neurological conditions, as well as various photoresponsive molecules with potential for improved pain management. Compounds holding promise for clinical translation are discussed in-depth and their potential for future applications is assessed. Neurophotopharmaceuticals have yet to achieve breakthrough in the clinic, as both light delivery and drug design have not reached full maturity. However, by describing the current state of the art and providing illustrative case studies, we offer a perspective on future opportunities in the field of neurophotopharmacology focused on addressing CNS disorders.
Collapse
Affiliation(s)
- Rudolf L Z Ganzoni
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Sofie S Bournons
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Dimitri De Bundel
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
2
|
Zhang Q, Wang C, He L. ORAI Ca 2+ Channels in Cancers and Therapeutic Interventions. Biomolecules 2024; 14:417. [PMID: 38672434 PMCID: PMC11048467 DOI: 10.3390/biom14040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The ORAI proteins serve as crucial pore-forming subunits of calcium-release-activated calcium (CRAC) channels, pivotal in regulating downstream calcium-related signaling pathways. Dysregulated calcium homeostasis arising from mutations and post-translational modifications in ORAI can lead to immune disorders, myopathy, cardiovascular diseases, and even cancers. Small molecules targeting ORAI present an approach for calcium signaling modulation. Moreover, emerging techniques like optogenetics and optochemistry aim to offer more precise regulation of ORAI. This review focuses on the role of ORAI in cancers, providing a concise overview of their significance in the initiation and progression of cancers. Additionally, it highlights state-of-the-art techniques for ORAI channel modulation, including advanced optical tools, potent pharmacological inhibitors, and antibodies. These novel strategies offer promising avenues for the functional regulation of ORAI in research and may inspire innovative approaches to cancer therapy targeting ORAI.
Collapse
Affiliation(s)
| | | | - Lian He
- Department of Pharmacology, Joint Laboratory of Guangdong–Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Q.Z.); (C.W.)
| |
Collapse
|
3
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 PMCID: PMC10968988 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria;
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
4
|
Tscherrig D, Bhardwaj R, Biner D, Dernič J, Ross-Kaschitza D, Peinelt C, Hediger MA, Lochner M. Development of chemical tools based on GSK-7975A to study store-operated calcium entry in cells. Cell Calcium 2024; 117:102834. [PMID: 38006628 DOI: 10.1016/j.ceca.2023.102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Many physiological functions, such as cell differentiation, proliferation, muscle contraction, neurotransmission and fertilisation, are regulated by changes of Ca2+ levels. The major Ca2+ store in cells is the endoplasmic reticulum (ER). Certain cellular processes induce ER store depletion, e.g. by activating IP3 receptors, that in turn induces a store refilling process known as store-operated calcium entry (SOCE). This refilling process entails protein-protein interactions between Ca2+ sensing stromal interaction molecules (STIM) in the ER membrane and Orai proteins in the plasma membrane. Fully assembled STIM/Orai complexes then form highly selective Ca2+ channels called Ca2+ release-activated Ca2+ Channels (CRAC) through which Ca2+ ions flow into the cytosol and subsequently are pumped into the ER by the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). Abnormal SOCE has been associated with numerous human diseases and cancers, and therefore key players STIM and Orai have attracted significant therapeutic interest. Several potent experimental and clinical candidate compounds have been developed and have helped to study SOCE in various cell types. We have synthesized multiple novel small-molecule probes based on the known SOCE inhibitor GSK-7975A. Here we present GSK-7975A derivatives, which feature photo-caging, photo-crosslinking, biotin and clickable moieties, and also contain deuterium labels. Evaluation of these GSK-7975A probes using a fluorometric imaging plate reader (FLIPR)-Tetra-based Ca2+ imaging assay showed that most synthetic modifications did not have a detrimental impact on the SOCE inhibitory activity. The photo-caged GSK-7975A was also used in patch-clamp electrophysiology experiments. In summary, we have developed a number of active, GSK-7975A-based molecular probes that have interesting properties and therefore are useful experimental tools to study SOCE in various cells and settings.
Collapse
Affiliation(s)
- Dominic Tscherrig
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Rajesh Bhardwaj
- Department of BioMedical Research, University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Daniel Biner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jan Dernič
- Department of BioMedical Research, University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Daniela Ross-Kaschitza
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Christine Peinelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Matthias A Hediger
- Department of BioMedical Research, University of Bern and Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Freiburgstrasse 15, 3010 Bern, Switzerland.
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
5
|
Ali S, Ma G, Zhou Y. Shedding light on ORAI1 channel with genetic code expansion. Cell Calcium 2023; 113:102755. [PMID: 37196487 PMCID: PMC10484295 DOI: 10.1016/j.ceca.2023.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Genetic code expansion technology has been widely applied to control protein activity and biological systems by taking advantage of an amber stop codon suppressor tRNA and orthogonal aminoacyl-tRNA synthetase pair. With this chemical biology approach, Maltan et al. incorporated photocrosslinking unnatural amino acids (UAAs) into the transmembrane domains of ORAI1 to enable UV light-inducible calcium influx across the plasma membrane, mechanistic interrogation of the calcium release-activated calcium (CRAC) channel at the single amino acid level, and remote control of downstream calcium-modulated signaling in mammalian cells.
Collapse
Affiliation(s)
- Sher Ali
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, United States of America
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, United States of America; Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, 77030, United States of America.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, United States of America; Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, 77030, United States of America.
| |
Collapse
|
6
|
Matera C, Bregestovski P. Light-Controlled Modulation and Analysis of Neuronal Functions. Int J Mol Sci 2022; 23:12921. [PMID: 36361710 PMCID: PMC9657357 DOI: 10.3390/ijms232112921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 04/15/2024] Open
Abstract
Light is an extraordinary tool allowing us to read out and control neuronal functions thanks to its unique properties: it has a great degree of bioorthogonality and is minimally invasive; it can be precisely delivered with high spatial and temporal precision; and it can be used simultaneously or consequently at multiple wavelengths and locations [...].
Collapse
Affiliation(s)
- Carlo Matera
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Piotr Bregestovski
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix-Marseille University, 13005 Marseille, France
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| |
Collapse
|