1
|
Campbell I, Sharifpour R, Balda Aizpurua JF, Beckers E, Paparella I, Berger A, Koshmanova E, Mortazavi N, Read J, Zubkov M, Talwar P, Collette F, Sherif S, Phillips C, Lamalle L, Vandewalle G. Regional response to light illuminance across the human hypothalamus. eLife 2024; 13:RP96576. [PMID: 39466317 PMCID: PMC11517251 DOI: 10.7554/elife.96576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Light exerts multiple non-image-forming biological effects on physiology including the stimulation of alertness and cognition. However, the subcortical circuitry underlying the stimulating impact of light is not established in humans. We used 7 Tesla functional magnetic resonance imaging to assess the impact of variations in light illuminance on the regional activity of the hypothalamus while healthy young adults (N=26; 16 women; 24.3±2.9 y) were completing two auditory cognitive tasks. We find that, during both the executive and emotional tasks, higher illuminance triggered an activity increase over the posterior part of the hypothalamus, which includes part of the tuberomamillary nucleus and the posterior part of the lateral hypothalamus. In contrast, increasing illuminance evoked a decrease in activity over the anterior and ventral parts of the hypothalamus, encompassing notably the suprachiasmatic nucleus and another part of the tuberomammillary nucleus. Critically, the performance of the executive task was improved under higher illuminance and was negatively correlated with the activity of the posterior hypothalamus area. These findings reveal the distinct local dynamics of different hypothalamus regions that underlie the impact of light on cognition.
Collapse
Affiliation(s)
| | | | | | - Elise Beckers
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht UniversityMaastrichtNetherlands
| | | | - Alexandre Berger
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
- Synergia Medical SAMont-Saint-GuibertBelgium
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain (UCLouvain)Woluwe-Saint-LambertBelgium
| | | | | | - John Read
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Puneet Talwar
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | - Siya Sherif
- GIGA-CRC Human Imaging, University of LiègeLiègeBelgium
| | | | | | | |
Collapse
|
2
|
Chanel PNC, Bennett NC, Oosthuizen MK. Light sensitivity of the circadian system in the social Highveld mole-rat Cryptomys hottentotus pretoriae. J Exp Biol 2024; 227:jeb247793. [PMID: 39207238 PMCID: PMC11449439 DOI: 10.1242/jeb.247793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Highveld mole-rats (Cryptomys hottentotus pretoriae) are social rodents that inhabit networks of subterranean tunnels. In their natural environment, they are rarely exposed to light, and consequently their visual systems have regressed over evolutionary time. However, in the laboratory they display nocturnal activity, suggesting that they are sensitive to changes in ambient illumination. We examined the robustness of the Highveld mole-rat circadian system by assessing its locomotor activity under decreasing light intensities. Mole-rats were subjected to seven consecutive light cycles commencing with a control cycle (overhead fluorescent lighting at 150 lx), followed by decreasing LED lighting (500, 300, 100, 10 and 1 lx) on a 12 h light:12 h dark (L:D) photoperiod and finally a constant darkness (DD) cycle. Mole-rats displayed nocturnal activity under the whole range of experimental lighting conditions, with a distinct spike in activity at the end of the dark phase in all cycles. The mole-rats were least active during the control cycle under fluorescent light, locomotor activity increased steadily with decreasing LED light intensities, and the highest activity was exhibited when the light was completely removed. In constant darkness, mole-rats displayed free-running rhythms with periods (τ) ranging from 23.77 to 24.38 h, but was overall very close to 24 h at 24.07 h. Our findings confirm that the Highveld mole-rat has a higher threshold for light compared with aboveground dwelling rodents, which is congruent with previous neurological findings, and has implications for behavioural rhythms.
Collapse
Affiliation(s)
- Pauline N. C. Chanel
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Nigel C. Bennett
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - Maria K. Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
3
|
Grotzinger H, Pritschet L, Shapturenka P, Santander T, Murata EM, Jacobs EG. Diurnal Fluctuations in Steroid Hormones Tied to Variation in Intrinsic Functional Connectivity in a Densely Sampled Male. J Neurosci 2024; 44:e1856232024. [PMID: 38627091 PMCID: PMC11140665 DOI: 10.1523/jneurosci.1856-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/30/2024] Open
Abstract
Most of mammalian physiology is under the control of biological rhythms, including the endocrine system with time-varying hormone secretion. Precision neuroimaging studies provide unique insights into how the endocrine system dynamically regulates aspects of the human brain. Recently, we established estrogen's ability to drive widespread patterns of connectivity and enhance the global efficiency of large-scale brain networks in a woman sampled every 24 h across 30 consecutive days, capturing a complete menstrual cycle. Steroid hormone production also follows a pronounced sinusoidal pattern, with a peak in testosterone between 6 and 7 A.M. and nadir between 7 and 8 P.M. To capture the brain's response to diurnal changes in hormone production, we carried out a companion precision imaging study of a healthy adult man who completed MRI and venipuncture every 12-24 h across 30 consecutive days. Results confirmed robust diurnal fluctuations in testosterone, 17β-estradiol-the primary form of estrogen-and cortisol. Standardized regression analyses revealed widespread associations between testosterone, estradiol, and cortisol concentrations and whole-brain patterns of coherence. In particular, functional connectivity in the Dorsal Attention Network was coupled with diurnally fluctuating hormones. Further, comparing dense-sampling datasets between a man and a naturally cycling woman revealed that fluctuations in sex hormones are tied to patterns of whole-brain coherence in both sexes and to a heightened degree in the male. Together, these findings enhance our understanding of steroid hormones as rapid neuromodulators and provide evidence that diurnal changes in steroid hormones are associated with patterns of whole-brain functional connectivity.
Collapse
Affiliation(s)
- Hannah Grotzinger
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Laura Pritschet
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Pavel Shapturenka
- Chemical Engineering, University of California, Santa Barbara, California 93106
| | - Tyler Santander
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Elle M Murata
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
| | - Emily G Jacobs
- Departments of Psychological & Brain Sciences, University of California, Santa Barbara, California 93106
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106
| |
Collapse
|
4
|
Sumová A, Sládek M. Circadian Disruption as a Risk Factor for Development of Cardiovascular and Metabolic Disorders - From Animal Models to Human Population. Physiol Res 2024; 73:S321-S334. [PMID: 38634651 PMCID: PMC11412342 DOI: 10.33549/physiolres.935304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The lifestyle of human society is drifting apart from the natural environmental cycles that have influenced it since its inception. These cycles were fundamental in structuring the daily lives of people in the pre-industrial era, whether they were seasonal or daily. Factors that disrupt the regularity of human behaviour and its alignment with solar cycles, such as late night activities accompanied with food intake, greatly disturb the internal temporal organization in the body. This is believed to contribute to the rise of the so-called diseases of civilization. In this review, we discuss the connection between misalignment in daily (circadian) regulation and its impact on health, with a focus on cardiovascular and metabolic disorders. Our aim is to review selected relevant research findings from laboratory and human studies to assess the extent of evidence for causality between circadian clock disruption and pathology. Keywords: Circadian clock, Chronodisruption, Metabolism, Cardiovascular disorders, Spontaneously hypertensive rat, Human, Social jetlag, Chronotype.
Collapse
Affiliation(s)
- A Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
5
|
Faraci FM, Scheer FA. Hypertension: Causes and Consequences of Circadian Rhythms in Blood Pressure. Circ Res 2024; 134:810-832. [PMID: 38484034 PMCID: PMC10947115 DOI: 10.1161/circresaha.124.323515] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
Hypertension is extremely common, affecting approximately 1 in every 2 adults globally. Chronic hypertension is the leading modifiable risk factor for cardiovascular disease and premature mortality worldwide. Despite considerable efforts to define mechanisms that underlie hypertension, a potentially major component of the disease, the role of circadian biology has been relatively overlooked in both preclinical models and humans. Although the presence of daily and circadian patterns has been observed from the level of the genome to the whole organism, the functional and structural impact of biological rhythms, including mechanisms such as circadian misalignment, remains relatively poorly defined. Here, we review the impact of daily rhythms and circadian systems in regulating blood pressure and the onset, progression, and consequences of hypertension. There is an emphasis on the impact of circadian biology in relation to vascular disease and end-organ effects that, individually or in combination, contribute to complex phenotypes such as cognitive decline and the loss of cardiac and brain health. Despite effective treatment options for some individuals, control of blood pressure remains inadequate in a substantial portion of the hypertensive population. Greater insight into circadian biology may form a foundation for novel and more widely effective molecular therapies or interventions to help in the prevention, treatment, and management of hypertension and its related pathophysiology.
Collapse
Affiliation(s)
- Frank M. Faraci
- Department of Internal Medicine, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081
- Department of Neuroscience and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081
| | - Frank A.J.L. Scheer
- Division of Sleep Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, 02115
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115
| |
Collapse
|
6
|
Oka S, Ogawa A, Osada T, Tanaka M, Nakajima K, Kamagata K, Aoki S, Oshima Y, Tanaka S, Kirino E, Nakamura TJ, Konishi S. Diurnal Variation of Brain Activity in the Human Suprachiasmatic Nucleus. J Neurosci 2024; 44:e1730232024. [PMID: 38238074 PMCID: PMC10883613 DOI: 10.1523/jneurosci.1730-23.2024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) is the central clock for circadian rhythms. Animal studies have revealed daily rhythms in the neuronal activity in the SCN. However, the circadian activity of the human SCN has remained elusive. In this study, to reveal the diurnal variation of the SCN activity in humans, we localized the SCN by employing an areal boundary mapping technique to resting-state functional images and investigated the SCN activity using perfusion imaging. In the first experiment (n = 27, including both sexes), we scanned each participant four times a day, every 6 h. Higher activity was observed at noon, while lower activity was recorded in the early morning. In the second experiment (n = 20, including both sexes), the SCN activity was measured every 30 min for 6 h from midnight to dawn. The results showed that the SCN activity gradually decreased and was not associated with the electroencephalography. Furthermore, the SCN activity was compatible with the rodent SCN activity after switching off the lights. These results suggest that the diurnal variation of the human SCN follows the zeitgeber cycles of nocturnal and diurnal mammals and is modulated by physical lights rather than the local time.
Collapse
Affiliation(s)
- Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo Shizuoka Hospital, Shizuoka 410-2211, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
7
|
Grotzinger H, Pritschet L, Shapturenka P, Santander T, Murata E, Jacobs EG. Diurnal fluctuations in steroid hormones tied to variation in intrinsic functional connectivity in a densely sampled male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562607. [PMID: 37905054 PMCID: PMC10614853 DOI: 10.1101/2023.10.16.562607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Most of mammalian physiology is under the control of biological rhythms, including the endocrine system with time-varying hormone secretion. Precision neuroimaging studies provide unique insights into the means through which our endocrine system regulates dynamic properties of the human brain. Recently, we established estrogen's ability to drive widespread patterns of connectivity and enhance the functional efficiency of large-scale brain networks in a woman sampled every 24h across 30 consecutive days, capturing a complete menstrual cycle. Steroid hormone production also follows a pronounced sinusoidal pattern, with a peak in testosterone between 6-7am and nadir between 7-8pm. To capture the brain's response to diurnal changes in hormone production, we carried out a companion precision imaging study of a healthy adult man who completed MRI and venipuncture every 12-24 hours across 30 consecutive days. Results confirmed robust diurnal fluctuations in testosterone, cortisol, and estradiol. Standardized regression analyses revealed predominantly positive associations between testosterone, cortisol, and estradiol concentrations and whole-brain patterns of coherence. In particular, functional connectivity in Dorsal Attention and Salience/Ventral Attention Networks were coupled with diurnally fluctuating hormones. Further, comparing dense-sampling datasets between a man and naturally-cycling woman revealed that fluctuations in sex hormones are tied to patterns of whole-brain coherence to a comparable degree in both sexes. Together, these findings enhance our understanding of steroid hormones as rapid neuromodulators and provide evidence that diurnal changes in steroid hormones are tied to patterns of whole-brain functional connectivity.
Collapse
Affiliation(s)
- Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
| | - Laura Pritschet
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
| | - Pavel Shapturenka
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA
| | - Tyler Santander
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
| | - Elle Murata
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
| | - Emily G. Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA
| |
Collapse
|
8
|
Rach H, Reynaud E, Kilic-Huck U, Ruppert E, Comtet H, Roy de Belleplaine V, Fuchs F, Van Someren EJW, Geoffroy PA, Bourgin P. Pupillometry to differentiate idiopathic hypersomnia from narcolepsy type 1. J Sleep Res 2023; 32:e13885. [PMID: 37002816 DOI: 10.1111/jsr.13885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Idiopathic hypersomnia is poorly diagnosed in the absence of biomarkers to distinguish it from other central hypersomnia subtypes. Given that light plays a main role in the regulation of sleep and wake, we explored the retinal melanopsin-based pupil response in patients with idiopathic hypersomnia and narcolepsy type 1, and healthy subjects. Twenty-seven patients with narcolepsy type 1 (women 59%, 36 ± 11.5 years old), 36 patients with idiopathic hypersomnia (women 83%, 27.2 ± 7.2 years old) with long total sleep time (> 11/24 hr), and 43 controls (women 58%, 30.6 ± 9.3 years old) were included in this study. All underwent a pupillometry protocol to assess pupil diameter, and the relative post-illumination pupil response to assess melanopsin-driven pupil responses in the light non-visual input pathway. Differences between groups were assessed using logistic regressions adjusted on age and sex. We found that patients with narcolepsy type 1 had a smaller baseline pupil diameter as compared with idiopathic hypersomnia and controls (p < 0.05). In addition, both narcolepsy type 1 and idiopathic hypersomnia groups had a smaller relative post-illumination pupil response (respectively, 31.6 ± 13.9% and 33.2 ± 9.9%) as compared with controls (38.7 ± 9.7%), suggesting a reduced melanopsin-mediated pupil response in both types of central hypersomnia (p < 0.01). Both narcolepsy type 1 and idiopathic hypersomnia showed a smaller melanopsin-mediated pupil response, and narcolepsy type 1, unlike idiopathic hypersomnia, also displayed a smaller basal pupil diameter. Importantly, we found that the basal pupil size permitted to well discriminate idiopathic hypersomnia from narcolepsy type 1 with a specificity = 66.67% and a sensitivity = 72.22%. Pupillometry may aid to multi-feature differentiation of central hypersomnia subtypes.
Collapse
Affiliation(s)
- Héloïse Rach
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Eve Reynaud
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Ulker Kilic-Huck
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Elisabeth Ruppert
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Henri Comtet
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Virginie Roy de Belleplaine
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Fanny Fuchs
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam Public Health, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Pierre A Geoffroy
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, F-75018, Paris, France
- Université de Paris, NeuroDiderot, Inserm, FHU I2-D2, F-75019, Paris, France
| | - Patrice Bourgin
- Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 & Strasbourg University, 8 Allée du Général Rouvillois, F-67000, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, 1 place de l'hôpital, F-67000, Strasbourg, France
| |
Collapse
|
9
|
Zhang N, Zhang Z. The application of cognitive neuroscience to judicial models: recent progress and trends. Front Neurosci 2023; 17:1257004. [PMID: 37811324 PMCID: PMC10556240 DOI: 10.3389/fnins.2023.1257004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Legal prediction presents one of the most significant challenges when applying artificial intelligence (AI) to the legal field. The legal system is a complex adaptive system characterized by the ambiguity of legal language and the diversity of value functions. The imprecision and procedural knowledge inherent in law makes judicial issues difficult to be expressed in a computer symbol system. Current semantic processing and machine learning technologies cannot fully capture the complex nature of legal relations, thereby raising doubts about the accuracy of legal predictions and reliability of judicial models. Cognitive computing, designed to emulate human brain functions and aid in enhancing decision-making processes, offers a better understanding of legal data and the processes of legal reasoning. This paper discusses the advancements made in cognitive methods applied to legal concept learning, semantic extraction, judicial data processing, legal reasoning, understanding of judicial bias, and the interpretability of judicial models. The integration of cognitive neuroscience with law has facilitated several constructive attempts, indicating that the evolution of cognitive law could be the next frontier in the intersection of AI and legal practice.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Sichuan University, Chengdu, China
| | - Zixuan Zhang
- School of Law, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Cao L, Feng R, Gao Y, Bao W, Zhou Z, Liang K, Hu X, Li H, Zhang L, Li Y, Zhuo L, Huang G, Huang X. Suprachiasmatic nucleus functional connectivity related to insomnia symptoms in adolescents with major depressive disorder. Front Psychiatry 2023; 14:1154095. [PMID: 37260759 PMCID: PMC10228684 DOI: 10.3389/fpsyt.2023.1154095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Background Insomnia is a commonly seen symptom in adolescents with major depressive disorder (MDD). The suprachiasmatic nucleus (SCN), which is the circadian rhythm regulation center, plays a crucial role in the regulation of sleep-wake circulation. Nevertheless, how SCN function contributes to the exact neural mechanisms underlying the associations between insomnia and depressive symptoms has not been explored in adolescents. In the current study, we aimed to explore the relationship between SCN functional connectivity (FC) and insomnia symptoms in adolescents with MDD using a seed-based FC method. Methods In the current study, we recruited sixty-eight first-episode drug-naïve adolescents with MDD and classified them into high insomnia (MDD-HI) and low insomnia (MDD-LI) groups according to the sleep disturbance subscale of the Hamilton Depression Rating Scale (HAMD-S). Forty-three age/gender-matched healthy controls (HCs) were also recruited. SCN FC maps were generally for all subjects and compared among three groups using one-way ANOVA with age, gender and adjusted HAMD score as covariates. We used partial correlations to explore associations between altered FC and clinical symptoms, including sleep quality scores. Results Adolescents with MDD showed worse sleep quality, which positively correlated with the severity of depression. Compared to MDD-LI and HCs, MDD-HI adolescents demonstrated significantly decreased FC between the right SCN and bilateral precuneus, and there was no significant difference between the MDD-LI and HC groups. The HAMD-S scores were negatively correlated with bilateral SCN-precuneus connectivity, and the retardation factor score of HAMD was negatively correlated with right SCN-precuneus connectivity. Conclusion The altered FC between the SCN and precuneus may underline the neural mechanism of sleep-related symptoms in depressive adolescents and provide potential targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Lingling Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sichuan Mianyang 404 Hospital, Mianyang, China
| | - Ruohan Feng
- Department of Radiology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kaili Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yang Li
- Department of Psychiatry, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Lihua Zhuo
- Department of Radiology, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Guoping Huang
- Department of Psychiatry, Sichuan Mental Health Center, The Third Hospital of Mianyang, Mianyang, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
11
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
12
|
Wang HB, Zhou D, Luk SHC, In Cha H, Mac A, Chae R, Matynia A, Harrison B, Afshari S, Block GD, Ghiani CA, Colwell CS. Long wavelength light reduces the negative consequences of dim light at night. Neurobiol Dis 2023; 176:105944. [PMID: 36493974 PMCID: PMC10594349 DOI: 10.1016/j.nbd.2022.105944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Many patients with autism spectrum disorders (ASD) show disturbances in their sleep/wake cycles, and they may be particularly vulnerable to the impact of circadian disruptors. We have previously shown that a 2-weeks exposure to dim light at night (DLaN) disrupts diurnal rhythms, increases repetitive behaviors and reduces social interactions in contactin-associated protein-like 2 knock out (Cntnap2 KO) mice. The deleterious effects of DLaN may be mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin, which is maximally sensitive to blue light (480 nm). In this study, the usage of a light-emitting diode array enabled us to shift the spectral properties of the DLaN while keeping the intensity of the illumination at 10 lx. First, we confirmed that the short-wavelength enriched lighting produced strong acute suppression of locomotor activity (masking), robust light-induced phase shifts, and cFos expression in the suprachiasmatic nucleus in wild-type (WT) mice, while the long-wavelength enriched lighting evoked much weaker responses. Opn4DTA mice, lacking the melanopsin expressing ipRGCs, were resistant to DLaN effects. Importantly, shifting the DLaN stimulus to longer wavelengths mitigated the negative impact on the activity rhythms and 'autistic' behaviors (i.e. reciprocal social interactions, repetitive grooming) in the Cntnap2 KO as well as in WT mice. The short-, but not the long-wavelength enriched, DLaN triggered cFos expression in in the basolateral amygdala (BLA) as well as in the peri-habenula region raising that possibility that these cell populations may mediate the effects. Broadly, our findings are consistent with the recommendation that spectral properties of light at night should be considered to optimize health in neurotypical as well as vulnerable populations.
Collapse
Affiliation(s)
- Huei-Bin Wang
- Molecular, Cellular, Integrative Physiology Graduate Program, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - David Zhou
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Shu Hon Christopher Luk
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Hye In Cha
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Amanda Mac
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Rim Chae
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Anna Matynia
- Laboratory of Ocular Molecular and Cellular Biology and Genetics, Jules Stein Eye Institute, David Geffen School of Medicine, University of California Los Angeles, USA
| | | | | | - Gene D Block
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Cristina A Ghiani
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, USA; Intellectual and Developmental Disabilities Center, David Geffen School of Medicine, University of California Los Angeles, USA
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, USA; Intellectual and Developmental Disabilities Center, David Geffen School of Medicine, University of California Los Angeles, USA.
| |
Collapse
|
13
|
Pitfalls in recording BOLD signal responses to light in small hypothalamic nuclei using Ultra-High-Field 7 Tesla MRI. Proc Natl Acad Sci U S A 2022; 119:e2212123119. [PMID: 36445960 PMCID: PMC9894239 DOI: 10.1073/pnas.2212123119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
14
|
Reply to Sharifpour et al.: Light response measurement of the human SCN by 7T fMRI. Proc Natl Acad Sci U S A 2022; 119:e2215410119. [PMID: 36445962 PMCID: PMC9894227 DOI: 10.1073/pnas.2215410119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
15
|
Jidigam VK, Sawant OB, Fuller RD, Wilcots K, Singh R, Lang RA, Rao S. Neuronal Bmal1 regulates retinal angiogenesis and neovascularization in mice. Commun Biol 2022; 5:792. [PMID: 35933488 PMCID: PMC9357084 DOI: 10.1038/s42003-022-03774-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks in the mammalian retina regulate a diverse range of retinal functions that allow the retina to adapt to the light-dark cycle. Emerging evidence suggests a link between the circadian clock and retinopathies though the causality has not been established. Here we report that clock genes are expressed in the mouse embryonic retina, and the embryonic retina requires light cues to maintain robust circadian expression of the core clock gene, Bmal1. Deletion of Bmal1 and Per2 from the retinal neurons results in retinal angiogenic defects similar to when animals are maintained under constant light conditions. Using two different models to assess pathological neovascularization, we show that neuronal Bmal1 deletion reduces neovascularization with reduced vascular leakage, suggesting that a dysregulated circadian clock primarily drives neovascularization. Chromatin immunoprecipitation sequencing analysis suggests that semaphorin signaling is the dominant pathway regulated by Bmal1. Our data indicate that therapeutic silencing of the retinal clock could be a common approach for the treatment of certain retinopathies like diabetic retinopathy and retinopathy of prematurity.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Onkar B Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Eversight, Cleveland, OH, 44103, USA
| | - Rebecca D Fuller
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kenya Wilcots
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, 44115, USA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Richard A Lang
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
| |
Collapse
|
16
|
Schoonderwoerd RA, de Torres Gutiérrez P, Blommers R, van Beurden AW, Coenen TCJJ, Klett NJ, Michel SH, Meijer JH. Inhibitory responses to retinohypothalamic tract stimulation in the circadian clock of the diurnal rodent Rhabdomys pumilio. FASEB J 2022; 36:e22415. [PMID: 35867045 PMCID: PMC9544711 DOI: 10.1096/fj.202200477r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
In both diurnal and nocturnal mammals, the timing of activity is regulated by the central circadian clock of the suprachiasmatic nucleus (SCN). The SCN is synchronized to the external light cycle via the retinohypothalamic tract (RHT). To investigate potential differences in light processing between nocturnal mice and the diurnal rodent Rhabdomys pumilio, we mimicked retinal input by stimulation of the RHT ex vivo. Using Ca2+ imaging, we observed excitations as well as inhibitions of SCN neurons in response to electrical RHT stimulation. In mice, the vast majority of responses were excitatory (85%), whereas in Rhabdomys, the proportion of excitatory and inhibitory responses was similar (51% excitatory, 49% inhibitory). Glutamate blockers AP5 and CNQX blocked the excitatory responses to RHT stimulation but did not abolish the inhibitory responses in mice or Rhabdomys, indicating that the inhibitions were monosynaptically transmitted via the RHT. Simultaneous application of glutamate blockers with the GABAA antagonist gabazine blocked all inhibitory responses in mice, but not in Rhabdomys. Collectively, our results indicate that in Rhabdomys, considerably more inhibitory responses to light are present and that these responses are driven directly by the RHT. We propose that this increased proportion of inhibitory input could reflect a difference in the entrainment mechanism employed by diurnal rodents.
Collapse
Affiliation(s)
- Robin A Schoonderwoerd
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ruben Blommers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anouk W van Beurden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tineke C J J Coenen
- Central Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Nathan J Klett
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan H Michel
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Senesi P, Ferrulli A, Luzi L, Terruzzi I. Chrono-communication and cardiometabolic health: The intrinsic relationship and therapeutic nutritional promises. Front Endocrinol (Lausanne) 2022; 13:975509. [PMID: 36176473 PMCID: PMC9513421 DOI: 10.3389/fendo.2022.975509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythm, an innate 24-h biological clock, regulates several mammalian physiological activities anticipating daily environmental variations and optimizing available energetic resources. The circadian machinery is a complex neuronal and endocrinological network primarily organized into a central clock, suprachiasmatic nucleus (SCN), and peripheral clocks. Several small molecules generate daily circadian fluctuations ensuring inter-organ communication and coordination between external stimuli, i.e., light, food, and exercise, and body metabolism. As an orchestra, this complex network can be out of tone. Circadian disruption is often associated with obesity development and, above all, with diabetes and cardiovascular disease onset. Moreover, accumulating data highlight a bidirectional relationship between circadian misalignment and cardiometabolic disease severity. Food intake abnormalities, especially timing and composition of meal, are crucial cause of circadian disruption, but evidence from preclinical and clinical studies has shown that food could represent a unique therapeutic approach to promote circadian resynchronization. In this review, we briefly summarize the structure of circadian system and discuss the role playing by different molecules [from leptin to ghrelin, incretins, fibroblast growth factor 21 (FGF-21), growth differentiation factor 15 (GDF15)] to guarantee circadian homeostasis. Based on the recent data, we discuss the innovative nutritional interventions aimed at circadian re-synchronization and, consequently, improvement of cardiometabolic health.
Collapse
Affiliation(s)
- Pamela Senesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Anna Ferrulli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
- *Correspondence: Ileana Terruzzi,
| |
Collapse
|