1
|
Gong GQ, Anandapadamanaban M, Islam MS, Hay IM, Bourguet M, Špokaitė S, Dessus AN, Ohashi Y, Perisic O, Williams RL. Making PI3K superfamily enzymes run faster. Adv Biol Regul 2025; 95:101060. [PMID: 39592347 DOI: 10.1016/j.jbior.2024.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
The phosphoinositide 3-kinase (PI3K) superfamily includes lipid kinases (PI3Ks and type III PI4Ks) and a group of PI3K-like Ser/Thr protein kinases (PIKKs: mTOR, ATM, ATR, DNA-PKcs, SMG1 and TRRAP) that have a conserved C-terminal kinase domain. A common feature of the superfamily is that they have very low basal activity that can be greatly increased by a range of regulatory factors. Activators reconfigure the active site, causing a subtle realignment of the N-lobe of the kinase domain relative to the C-lobe. This realignment brings the ATP-binding loop in the N-lobe closer to the catalytic residues in the C-lobe. In addition, a conserved C-lobe feature known as the PIKK regulatory domain (PRD) also can change conformation, and PI3K activators can alter an analogous PRD-like region. Recent structures have shown that diverse activating influences can trigger these conformational changes, and a helical region clamping onto the kinase domain transmits regulatory interactions to bring about the active site realignment for more efficient catalysis. A recent report of a small-molecule activator of PI3Kα for application in nerve regeneration suggests that flexibility of these regulatory elements might be exploited to develop specific activators of all PI3K superfamily members. These activators could have roles in wound healing, anti-stroke therapy and treating neurodegeneration. We review common structural features of the PI3K superfamily that may make them amenable to activation.
Collapse
Affiliation(s)
- Grace Q Gong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK; University College London Cancer Institute, University College London, London, UK
| | | | - Md Saiful Islam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Iain M Hay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Maxime Bourguet
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Saulė Špokaitė
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Antoine N Dessus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Yohei Ohashi
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Roger L Williams
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
2
|
Wu S, Gao X, Wu D, Liu L, Yao H, Meng X, Zhang X, Bai F. Motif-guided identification of KRAS-interacting proteins. BMC Biol 2024; 22:264. [PMID: 39563372 PMCID: PMC11575137 DOI: 10.1186/s12915-024-02067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND For decades, KRAS has always been a huge challenge to the field of drug discovery for its significance in cancer progression as well as its difficulties in being targeted as an "undruggable" protein. KRAS regulates downstream signaling pathways through protein-protein interactions, whereas many interaction partners of KRAS remain unknown. RESULTS We developed a workflow to computationally predict and experimentally validate the potential KRAS-interacting proteins based on the interaction mode of KRAS and its known binding partners. We extracted 17 KRAS-interacting motifs from all experimentally determined KRAS-containing protein complexes as queries to identify proteins containing fragments structurally similar to the queries in the human protein structure database using our in-house protein-protein interaction prediction method, PPI-Miner. Finally, out of the 78 predicted potential interacting proteins of KRAS, 10 were selected for experimental validation, including BRAF, a previously reported interacting protein, which served as the positive control in our validation experiments. Additionally, a known peptide that binds to KRAS, KRpep-2d, was also used as a positive control. The predicted interacting motifs of these 10 proteins were synthesized to perform biolayer interferometry assays, with 4 out of 10 exhibiting binding affinities to KRAS, and the strongest, GRB10, was selected for further validation. Additionally, the interaction between GRB10 (RA-PH domain) and KRAS was confirmed via immunofluorescence and co-immunoprecipitation. CONCLUSIONS These results demonstrate the effectiveness of our workflow in predicting potential interacting proteins for KRAS and deepen the understanding of KRAS-driven tumor mechanisms and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Sanan Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoyang Gao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Di Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lu Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Han Yao
- Department of Gastroenterology of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai Jiao Tong University, Shanghai, China.
| | - Xianglei Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
3
|
Chen R, Yang C, Yang F, Yang A, Xiao H, Peng B, Chen C, Geng B, Xia Y. Targeting the mTOR-Autophagy Axis: Unveiling Therapeutic Potentials in Osteoporosis. Biomolecules 2024; 14:1452. [PMID: 39595628 PMCID: PMC11591800 DOI: 10.3390/biom14111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoporosis (OP) is a widespread age-related disorder marked by decreased bone density and increased fracture risk, presenting a significant public health challenge. Central to the development and progression of OP is the dysregulation of the mechanistic target of the rapamycin (mTOR)-signaling pathway, which plays a critical role in cellular processes including autophagy, growth, and proliferation. The mTOR-autophagy axis is emerging as a promising therapeutic target due to its regulatory capacity in bone metabolism and homeostasis. This review aims to (1) elucidate the role of mTOR signaling in bone metabolism and its dysregulation in OP, (2) explore the interplay between mTOR and autophagy in the context of bone cell activity, and (3) assess the therapeutic potential of targeting the mTOR pathway with modulators as innovative strategies for OP treatment. By examining the interactions among autophagy, mTOR, and OP, including insights from various types of OP and the impact on different bone cells, this review underscores the complexity of mTOR's role in bone health. Despite advances, significant gaps remain in understanding the detailed mechanisms of mTOR's effects on autophagy and bone cell function, highlighting the need for comprehensive clinical trials to establish the efficacy and safety of mTOR inhibitors in OP management. Future research directions include clarifying mTOR's molecular interactions with bone metabolism and investigating the combined benefits of mTOR modulation with other therapeutic approaches. Addressing these challenges is crucial for developing more effective treatments and improving outcomes for individuals with OP, thereby unveiling the therapeutic potentials of targeting the mTOR-autophagy axis in this prevalent disease.
Collapse
Affiliation(s)
- Rongjin Chen
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Department of Orthopedics, Tianshui Hand and Foot Surgery Hospital, Tianshui 741000, China
| | - Chenhui Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Department of Orthopedics, Tianshui Hand and Foot Surgery Hospital, Tianshui 741000, China
| | - Fei Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ao Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Hefang Xiao
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Bo Peng
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Changshun Chen
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital of Lanzhou University, Lanzhou 730030, China; (R.C.); (C.Y.); (F.Y.); (A.Y.); (H.X.); (B.P.); (C.C.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
4
|
Xu W, Chen H, Xiao H. mTORC2: A neglected player in aging regulation. J Cell Physiol 2024; 239:e31363. [PMID: 38982866 DOI: 10.1002/jcp.31363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.
Collapse
Affiliation(s)
- Weitong Xu
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Wang Y, Vandewalle N, De Veirman K, Vanderkerken K, Menu E, De Bruyne E. Targeting mTOR signaling pathways in multiple myeloma: biology and implication for therapy. Cell Commun Signal 2024; 22:320. [PMID: 38862983 PMCID: PMC11165851 DOI: 10.1186/s12964-024-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Multiple Myeloma (MM), a cancer of terminally differentiated plasma cells, is the second most prevalent hematological malignancy and is incurable due to the inevitable development of drug resistance. Intense protein synthesis is a distinctive trait of MM cells, supporting the massive production of clonal immunoglobulins or free light chains. The mammalian target of rapamycin (mTOR) kinase is appreciated as a master regulator of vital cellular processes, including regulation of metabolism and protein synthesis, and can be found in two multiprotein complexes, mTORC1 and mTORC2. Dysregulation of these complexes is implicated in several types of cancer, including MM. Since mTOR has been shown to be aberrantly activated in a large portion of MM patients and to play a role in stimulating MM cell survival and resistance to several existing therapies, understanding the regulation and functions of the mTOR complexes is vital for the development of more effective therapeutic strategies. This review provides a general overview of the mTOR pathway, discussing key discoveries and recent insights related to the structure and regulation of mTOR complexes. Additionally, we highlight findings on the mechanisms by which mTOR is involved in protein synthesis and delve into mTOR-mediated processes occurring in MM. Finally, we summarize the progress and current challenges of drugs targeting mTOR complexes in MM.
Collapse
Affiliation(s)
- Yanmeng Wang
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Niels Vandewalle
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Universitair Ziekenhuis Brussel (UZ Brussel), Jette, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium
| | - Eline Menu
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC) - Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Jette, Belgium.
| |
Collapse
|
6
|
Bao H, Wang W, Sun H, Chen J. The switch states of the GDP-bound HRAS affected by point mutations: a study from Gaussian accelerated molecular dynamics simulations and free energy landscapes. J Biomol Struct Dyn 2024; 42:3363-3381. [PMID: 37216340 DOI: 10.1080/07391102.2023.2213355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Point mutations play a vital role in the conformational transformation of HRAS. In this work, Gaussian accelerated molecular dynamics (GaMD) simulations followed by constructions of free energy landscapes (FELs) were adopted to explore the effect of mutations D33K, A59T and L120A on conformation states of the GDP-bound HRAS. The results from the post-processing analyses on GaMD trajectories suggest that mutations alter the flexibility and motion modes of the switch domains from HRAS. The analyses from FELs show that mutations induce more disordered states of the switch domains and affect interactions of GDP with HRAS, implying that mutations yield a vital effect on the binding of HRAS to effectors. The GDP-residue interaction network revealed by our current work indicates that salt bridges and hydrogen bonding interactions (HBIs) play key roles in the binding of GDP to HRAS. Furthermore, instability in the interactions of magnesium ions and GDP with the switch SI leads to the extreme disorder of the switch domains. This study is expected to provide the energetic basis and molecular mechanism for further understanding the function of HRAS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
7
|
Tagad A, Patwari GN. Unraveling the Significance of Mg 2+ Dependency and Nucleotide Binding Specificity of H-RAS. J Phys Chem B 2024; 128:1618-1626. [PMID: 38351706 DOI: 10.1021/acs.jpcb.3c06998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
RAS is a small GTPase and acts as a binary molecular switch; the transition from its active to inactive state plays a crucial role in various cell signaling processes. Molecular dynamics simulations at the atomistic level suggest that the absence of cofactor Mg2+ ion generally leads to pronounced structural changes in the Switch-I than Switch-II regions and assists GTP binding. The presence of the Mg2+ ion also restricts the rotation of ϒ phosphate and enhances the hydrolysis rate of GTP. Further, the simulations reveal that the stability of the protein is almost uncompromised when Mg2+ is replaced with Zn2+ and not the Ca2+ ion. The specificity of H-RAS to GTP was evaluated by substituting with ATP and CTP, which indicates that the binding pocket tolerates purine bases over pyrimidine bases. However, the D119 residue specifically interacts with the guanine base and serves as one of the primary interactions that leads to the selectivity of GTP over ATP. The ring displacement of 32Y serves as gate dynamics in H-RAS which are important for its interaction with GAP for the nucleotide exchange and is restricted in the presence of ATP. Finally, the point mutations 61, 16, and 32 influence the structural changes, specifically in the Switch-II region, which are expected to impact the GTP hydrolysis and thus are termed oncogenic mutations.
Collapse
Affiliation(s)
- Amol Tagad
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Yu Z, Wang Z, Cui X, Cao Z, Zhang W, Sun K, Hu G. Conformational States of the GDP- and GTP-Bound HRAS Affected by A59E and K117R: An Exploration from Gaussian Accelerated Molecular Dynamics. Molecules 2024; 29:645. [PMID: 38338389 PMCID: PMC10856033 DOI: 10.3390/molecules29030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/01/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The HRAS protein is considered a critical target for drug development in cancers. It is vital for effective drug development to understand the effects of mutations on the binding of GTP and GDP to HRAS. We conducted Gaussian accelerated molecular dynamics (GaMD) simulations and free energy landscape (FEL) calculations to investigate the impacts of two mutations (A59E and K117R) on GTP and GDP binding and the conformational states of the switch domain. Our findings demonstrate that these mutations not only modify the flexibility of the switch domains, but also affect the correlated motions of these domains. Furthermore, the mutations significantly disrupt the dynamic behavior of the switch domains, leading to a conformational change in HRAS. Additionally, these mutations significantly impact the switch domain's interactions, including their hydrogen bonding with ligands and electrostatic interactions with magnesium ions. Since the switch domains are crucial for the binding of HRAS to effectors, any alterations in their interactions or conformational states will undoubtedly disrupt the activity of HRAS. This research provides valuable information for the design of drugs targeting HRAS.
Collapse
Affiliation(s)
- Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China; (Z.Y.); (Z.C.)
| | - Zhen Wang
- Pingyin People’s Hospital, Jinan 250400, China; (Z.W.); (X.C.)
| | - Xiuzhen Cui
- Pingyin People’s Hospital, Jinan 250400, China; (Z.W.); (X.C.)
| | - Zanxia Cao
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China; (Z.Y.); (Z.C.)
| | - Wanyunfei Zhang
- School of Science, Xi’an Polytechnic University, Xi’an 710048, China; (W.Z.); (K.S.)
| | - Kunxiao Sun
- School of Science, Xi’an Polytechnic University, Xi’an 710048, China; (W.Z.); (K.S.)
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China; (Z.Y.); (Z.C.)
| |
Collapse
|
9
|
Ragupathi A, Kim C, Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481:45-91. [PMID: 38270460 PMCID: PMC10903481 DOI: 10.1042/bcj20220325] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.
Collapse
Affiliation(s)
- Aparna Ragupathi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Christian Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| |
Collapse
|
10
|
Liu Y, Zhang M, Jang H, Nussinov R. The allosteric mechanism of mTOR activation can inform bitopic inhibitor optimization. Chem Sci 2024; 15:1003-1017. [PMID: 38239681 PMCID: PMC10793652 DOI: 10.1039/d3sc04690g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
mTOR serine/threonine kinase is a cornerstone in the PI3K/AKT/mTOR pathway. Yet, the detailed mechanism of activation of its catalytic core is still unresolved, likely due to mTOR complexes' complexity. Its dysregulation was implicated in cancer and neurodevelopmental disorders. Using extensive molecular dynamics (MD) simulations and compiled published experimental data, we determine exactly how mTOR's inherent motifs can control the conformational changes in the kinase domain, thus kinase activity. We also chronicle the critical regulation by the unstructured negative regulator domain (NRD). When positioned inside the catalytic cleft (NRD IN state), mTOR tends to adopt a deep and closed catalytic cleft. This is primarily due to the direct interaction with the FKBP-rapamycin binding (FRB) domain which restricts it, preventing substrate access. Conversely, when outside the catalytic cleft (NRD OUT state), mTOR favors an open conformation, exposing the substrate-binding site on the FRB domain. We further show how an oncogenic mutation (L2427R) promotes shifting the mTOR ensemble toward the catalysis-favored state. Collectively, we extend mTOR's "active-site restriction" mechanism and clarify mutation action. In particular, our mechanism suggests that RMC-5552 (RMC-6272) bitopic inhibitors may benefit from adjustment of the (PEG8) linker length when targeting certain mTOR variants. In the cryo-EM mTOR/RMC-5552 structure, the distance between the allosteric and orthosteric inhibitors is ∼22.7 Å. With a closed catalytic cleft, this linker bridges the sites. However, in our activation mechanism, in the open cleft it expands to ∼24.7 Å, offering what we believe to be the first direct example of how discovering an activation mechanism can potentially increase the affinity of inhibitors targeting mutants.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute Frederick MD 21702 USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA +1-301-846-5579
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA +1-301-846-5579
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research Frederick MD 21702 USA +1-301-846-5579
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv 69978 Israel
| |
Collapse
|
11
|
Ezine E, Lebbe C, Dumaz N. Unmasking the tumourigenic role of SIN1/MAPKAP1 in the mTOR complex 2. Clin Transl Med 2023; 13:e1464. [PMID: 37877351 PMCID: PMC10599286 DOI: 10.1002/ctm2.1464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Although the PI3K/AKT/mTOR pathway is one of the most altered pathways in human tumours, therapies targeting this pathway have shown numerous adverse effects due to positive feedback paradoxically activating upstream signaling nodes. The somewhat limited clinical efficacy of these inhibitors calls for the development of novel and more effective approaches for targeting the PI3K pathway for therapeutic benefit in cancer. MAIN BODY Recent studies have shown the central role of mTOR complex 2 (mTORC2) as a pro-tumourigenic factor of the PI3K/AKT/mTOR pathway in a number of cancers. SIN1/MAPKAP1 is a major partner of mTORC2, acting as a scaffold and responsible for the substrate specificity of the mTOR catalytic subunit. Its overexpression promotes the proliferation, invasion and metastasis of certain cancers whereas its inhibition decreases tumour growth in vitro and in vivo. It is also involved in epithelial-mesenchymal transition, stress response and lipogenesis. Moreover, the numerous interactions of SIN1 inside or outside mTORC2 connect it with other signaling pathways, which are often disrupted in human tumours such as Hippo, WNT, Notch and MAPK. CONCLUSION Therefore, SIN1's fundamental characteristics and numerous connexions with oncogenic pathways make it a particularly interesting therapeutic target. This review is an opportunity to highlight the tumourigenic role of SIN1 across many solid cancers and demonstrates the importance of targeting SIN1 with a specific therapy.
Collapse
Affiliation(s)
- Emilien Ezine
- INSERMU976Team 1Human Immunology Pathophysiology & Immunotherapy (HIPI)ParisFrance
- Département de DermatologieHôpital Saint LouisAP‐HPParisFrance
| | - Céleste Lebbe
- INSERMU976Team 1Human Immunology Pathophysiology & Immunotherapy (HIPI)ParisFrance
- Département de DermatologieHôpital Saint LouisAP‐HPParisFrance
- Université Paris CitéInstitut de Recherche Saint Louis (IRSL)ParisFrance
| | - Nicolas Dumaz
- INSERMU976Team 1Human Immunology Pathophysiology & Immunotherapy (HIPI)ParisFrance
- Université Paris CitéInstitut de Recherche Saint Louis (IRSL)ParisFrance
| |
Collapse
|
12
|
Linde-Garelli KY, Rogala KB. Structural mechanisms of the mTOR pathway. Curr Opin Struct Biol 2023; 82:102663. [PMID: 37572585 DOI: 10.1016/j.sbi.2023.102663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
The mTOR signaling pathway is essential for regulating cell growth and mammalian metabolism. The mTOR kinase forms two complexes, mTORC1 and mTORC2, which respond to external stimuli and regulate differential downstream targets. Cellular membrane-associated translocation mediates function and assembly of the mTOR complexes, and recent structural studies have begun uncovering the molecular basis by which the mTOR pathway (1) regulates signaling inputs, (2) recruits substrates, (3) localizes to biological membranes, and (4) becomes activated. Moreover, indications of dysregulated mTOR signaling are implicated in a wide range of diseases and an increasingly comprehensive understanding of structural mechanisms is driving novel translational development.
Collapse
Affiliation(s)
- Karen Y Linde-Garelli
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kacper B Rogala
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Smith MJ. Defining bone fide effectors of RAS GTPases. Bioessays 2023; 45:e2300088. [PMID: 37401638 DOI: 10.1002/bies.202300088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
RAS GTPases play essential roles in normal development and are direct drivers of human cancers. Three decades of study have failed to wholly characterize pathways stimulated by activated RAS, driven by engagement with 'effector' proteins that have RAS binding domains (RBDs). Bone fide effectors must bind directly to RAS GTPases in a nucleotide-dependent manner, and this interaction must impart a clear change in effector activity. Despite this, for most proteins currently deemed effectors there is little mechanistic understanding of how binding to the GTPase alters protein function. There has also been limited effort to comprehensively resolve the specificity of effector binding to the full array of RAS superfamily GTPase proteins. This review will summarize what is known about RAS-driven activation for an array of potential effector proteins, focusing on structural and mechanistic effects and highlighting how little is still known regarding this key paradigm of cellular signal transduction.
Collapse
Affiliation(s)
- Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Sriwastva MK, Teng Y, Mu J, Xu F, Kumar A, Sundaram K, Malhotra RK, Xu Q, Hood JL, Zhang L, Yan J, Merchant ML, Park JW, Dryden GW, Egilmez NK, Zhang H. An extracellular vesicular mutant KRAS-associated protein complex promotes lung inflammation and tumor growth. J Extracell Vesicles 2023; 12:e12307. [PMID: 36754903 PMCID: PMC9908562 DOI: 10.1002/jev2.12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Extracellular vesicles (EVs) contain more than 100 proteins. Whether there are EVs proteins that act as an 'organiser' of protein networks to generate a new or different biological effect from that identified in EV-producing cells has never been demonstrated. Here, as a proof-of-concept, we demonstrate that EV-G12D-mutant KRAS serves as a leader that forms a protein complex and promotes lung inflammation and tumour growth via the Fn1/IL-17A/FGF21 axis. Mechanistically, in contrast to cytosol derived G12D-mutant KRAS complex from EVs-producing cells, EV-G12D-mutant KRAS interacts with a group of extracellular vesicular factors via fibronectin-1 (Fn1), which drives the activation of the IL-17A/FGF21 inflammation pathway in EV recipient cells. We show that: (i), depletion of EV-Fn1 leads to a reduction of a number of inflammatory cytokines including IL-17A; (ii) induction of IL-17A promotes lung inflammation, which in turn leads to IL-17A mediated induction of FGF21 in the lung; and (iii) EV-G12D-mutant KRAS complex mediated lung inflammation is abrogated in IL-17 receptor KO mice. These findings establish a new concept in EV function with potential implications for novel therapeutic interventions in EV-mediated disease processes.
Collapse
Affiliation(s)
- Mukesh K. Sriwastva
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Yun Teng
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Jingyao Mu
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Fangyi Xu
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Anil Kumar
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Kumaran Sundaram
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Rajiv Kumar Malhotra
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Qingbo Xu
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Joshua L. Hood
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Lifeng Zhang
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Jun Yan
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Michael L. Merchant
- Kidney Disease Program and Clinical Proteomics CenterUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Juw Won Park
- KBRIN Bioinformatics CoreUniversity of LouisvilleLouisvilleKentuckyUSA
- Department of Computer Engineering and Computer ScienceUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Gerald W. Dryden
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
- Department of Pharmacology and ToxicologyUniversity of LouisvilleLouisvilleKentuckyUSA
- Department of Computer Engineering and Computer ScienceUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Nejat K. Egilmez
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
| | - Huang‐Ge Zhang
- Brown Cancer Center, Department of Microbiology & ImmunologyUniversity of LouisvilleLouisvilleKentuckyUSA
- Robley Rex Veterans Affairs Medical CenterLouisvilleKentuckyUSA
| |
Collapse
|
15
|
Kolch W, Berta D, Rosta E. Dynamic regulation of RAS and RAS signaling. Biochem J 2023; 480:1-23. [PMID: 36607281 PMCID: PMC9988006 DOI: 10.1042/bcj20220234] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
RAS proteins regulate most aspects of cellular physiology. They are mutated in 30% of human cancers and 4% of developmental disorders termed Rasopathies. They cycle between active GTP-bound and inactive GDP-bound states. When active, they can interact with a wide range of effectors that control fundamental biochemical and biological processes. Emerging evidence suggests that RAS proteins are not simple on/off switches but sophisticated information processing devices that compute cell fate decisions by integrating external and internal cues. A critical component of this compute function is the dynamic regulation of RAS activation and downstream signaling that allows RAS to produce a rich and nuanced spectrum of biological outputs. We discuss recent findings how the dynamics of RAS and its downstream signaling is regulated. Starting from the structural and biochemical properties of wild-type and mutant RAS proteins and their activation cycle, we examine higher molecular assemblies, effector interactions and downstream signaling outputs, all under the aspect of dynamic regulation. We also consider how computational and mathematical modeling approaches contribute to analyze and understand the pleiotropic functions of RAS in health and disease.
Collapse
Affiliation(s)
- Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dénes Berta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
16
|
Pudewell S, Lissy J, Nakhaeizadeh H, Mosaddeghzadeh N, Nakhaei-Rad S, Dvorsky R, Ahmadian MR. New mechanistic insights into the RAS-SIN1 interaction at the membrane. Front Cell Dev Biol 2022; 10:987754. [PMID: 36274845 PMCID: PMC9583166 DOI: 10.3389/fcell.2022.987754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Stress-activated MAP kinase-interacting protein 1 (SIN1) is a central member of the mTORC2 complex that contains an N-terminal domain (NTD), a conserved region in the middle (CRIM), a RAS-binding domain (RBD), and a pleckstrin homology domain. Recent studies provided valuable structural and functional insights into the interactions of SIN1 and the RAS-binding domain of RAS proteins. However, the mechanism for a reciprocal interaction of the RBD-PH tandem with RAS proteins and the membrane as an upstream event to spatiotemporal mTORC2 regulation is not clear. The biochemical assays in this study led to the following results: 1) all classical RAS paralogs, including HRAS, KRAS4A, KRAS4B, and NRAS, can bind to SIN1-RBD in biophysical and SIN1 full length (FL) in cell biology experiments; 2) the SIN1-PH domain modulates interactions with various types of membrane phosphoinositides and constantly maintains a pool of SIN1 at the membrane; and 3) a KRAS4A-dependent decrease in membrane binding of the SIN1-RBD-PH tandem was observed, suggesting for the first time a mechanistic influence of KRAS4A on SIN1 membrane association. Our study strengthens the current mechanistic understanding of SIN1-RAS interaction and suggests membrane interaction as a key event in the control of mTORC2-dependent and mTORC2-independent SIN1 function.
Collapse
Affiliation(s)
- Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jana Lissy
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hossein Nakhaeizadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Mohammad R. Ahmadian,
| |
Collapse
|
17
|
Thorner J. TOR complex 2 is a master regulator of plasma membrane homeostasis. Biochem J 2022; 479:1917-1940. [PMID: 36149412 PMCID: PMC9555796 DOI: 10.1042/bcj20220388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
As first demonstrated in budding yeast (Saccharomyces cerevisiae), all eukaryotic cells contain two, distinct multi-component protein kinase complexes that each harbor the TOR (Target Of Rapamycin) polypeptide as the catalytic subunit. These ensembles, dubbed TORC1 and TORC2, function as universal, centrally important sensors, integrators, and controllers of eukaryotic cell growth and homeostasis. TORC1, activated on the cytosolic surface of the lysosome (or, in yeast, on the cytosolic surface of the vacuole), has emerged as a primary nutrient sensor that promotes cellular biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane, plays a major role in maintaining the proper levels and bilayer distribution of all plasma membrane components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins). This article surveys what we have learned about signaling via the TORC2 complex, largely through studies conducted in S. cerevisiae. In this yeast, conditions that challenge plasma membrane integrity can, depending on the nature of the stress, stimulate or inhibit TORC2, resulting in, respectively, up-regulation or down-regulation of the phosphorylation and thus the activity of its essential downstream effector the AGC family protein kinase Ypk1. Through the ensuing effect on the efficiency with which Ypk1 phosphorylates multiple substrates that control diverse processes, membrane homeostasis is maintained. Thus, the major focus here is on TORC2, Ypk1, and the multifarious targets of Ypk1 and how the functions of these substrates are regulated by their Ypk1-mediated phosphorylation, with emphasis on recent advances in our understanding of these processes.
Collapse
Affiliation(s)
- Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, U.S.A
| |
Collapse
|