1
|
Chandler T, Guo M, Su Y, Chen J, Wu Y, Liu J, Agashe A, Fischer RS, Mehta SB, Kumar A, Baskin TI, Jaumouillé V, Liu H, Swaminathan V, Nain AS, Oldenbourg R, La Riviere PJ, Shroff H. Volumetric imaging of the 3D orientation of cellular structures with a polarized fluorescence light-sheet microscope. Proc Natl Acad Sci U S A 2025; 122:e2406679122. [PMID: 39982748 PMCID: PMC11874040 DOI: 10.1073/pnas.2406679122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations in biological samples, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the diffraction-limited three-dimensional distribution of the orientations and positions of ensembles of fluorescent dipoles that label biological structures. We share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model the distributions based on the polarization-dependent efficiency of excitation and detection of emitted fluorescence, using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labeled giant unilamellar vesicles, fast-scarlet-labeled cellulose in xylem cells, and phalloidin-labeled actin in U2OS cells. Additionally, we observe phalloidin-labeled actin in mouse fibroblasts grown on grids of labeled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.
Collapse
Affiliation(s)
- Talon Chandler
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA94158
- Department of Radiology, University of Chicago, Chicago, IL60637
| | - Min Guo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, China
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
- HHMI, Janelia Research Campus, Ashburn, VA20147
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
| | - Junyu Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Atharva Agashe
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA24061
| | - Robert S. Fischer
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Shalin B. Mehta
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA94158
- Department of Radiology, University of Chicago, Chicago, IL60637
- Bell Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Abhishek Kumar
- Bell Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Tobias I. Baskin
- Department of Biology, University of Massachusetts, Amherst, MA01003
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Valentin Jaumouillé
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Huafeng Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Vinay Swaminathan
- Department of Clinical Sciences, Lund University, Lund, ScaniaSE-221 00, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, ScaniaSE-221 00, Sweden
| | - Amrinder S. Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA24061
| | | | - Patrick J. La Riviere
- Department of Radiology, University of Chicago, Chicago, IL60637
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
- HHMI, Janelia Research Campus, Ashburn, VA20147
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA02543
| |
Collapse
|
2
|
Sarkar A, Jana A, Agashe A, Wang J, Kapania R, Gov NS, DeLuca JG, Paul R, Nain AS. Confinement in fibrous environments positions and orients mitotic spindles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589246. [PMID: 38659898 PMCID: PMC11042200 DOI: 10.1101/2024.04.12.589246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Accurate positioning of the mitotic spindle within the rounded cell body is critical to physiological maintenance. Adherent mitotic cells encounter confinement from neighboring cells or the extracellular matrix (ECM), which can cause rotation of mitotic spindles and, consequently, titling of the metaphase plate (MP). To understand the positioning and orientation of mitotic spindles under confinement by fibers (ECM-confinement), we use flexible ECM-mimicking nanofibers that allow natural rounding of the cell body while confining it to differing levels. Rounded mitotic bodies are anchored in place by actin retraction fibers (RFs) originating from adhesion clusters on the ECM-mimicking fibers. We discover the extent of ECM-confinement patterns RFs in 3D: triangular and band-like at low and high confinement, respectively. A stochastic Monte-Carlo simulation of the centrosome (CS), chromosome (CH), membrane interactions, and 3D arrangement of RFs on the mitotic body recovers MP tilting trends observed experimentally. Our mechanistic analysis reveals that the 3D shape of RFs is the primary driver of the MP rotation. Under high ECM-confinement, the fibers can mechanically pinch the cortex, causing the MP to have localized deformations at contact sites with fibers. Interestingly, high ECM-confinement leads to low and high MP tilts, which mechanistically depend upon the extent of cortical deformation, RF patterning, and MP position. We identify that cortical deformation and RFs work in tandem to limit MP tilt, while asymmetric positioning of MP leads to high tilts. Overall, we provide fundamental insights into how mitosis may proceed in fibrous ECM-confining microenvironments in vivo.
Collapse
Affiliation(s)
- Apurba Sarkar
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Aniket Jana
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061
| | - Atharva Agashe
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061
| | - Ji Wang
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061
| | - Rakesh Kapania
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA
| | - Nir S. Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Raja Paul
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amrinder S. Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
3
|
Chandler T, Guo M, Su Y, Chen J, Wu Y, Liu J, Agashe A, Fischer RS, Mehta SB, Kumar A, Baskin TI, Jamouillé V, Liu H, Swaminathan V, Nain A, Oldenbourg R, Riviére PL, Shroff H. Three-dimensional spatio-angular fluorescence microscopy with a polarized dual-view inverted selective-plane illumination microscope (pol-diSPIM). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584243. [PMID: 38712306 PMCID: PMC11071302 DOI: 10.1101/2024.03.09.584243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the three-dimensional orientations and diffraction-limited positions of ensembles of fluorescent dipoles that label biological structures, and we share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model our samples, their excitation, and their detection using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labelled giant unilamellar vesicles, fast-scarlet-labelled cellulose in xylem cells, and phalloidin-labelled actin in U2OS cells. Additionally, we observe phalloidin-labelled actin in mouse fibroblasts grown on grids of labelled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.
Collapse
Affiliation(s)
- Talon Chandler
- CZ Biohub SF, San Francisco, 94158, California, USA
- Department of Radiology, University of Chicago, Chicago, 60637, Illinois, USA
| | - Min Guo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, Virginia, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Junyu Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Atharva Agashe
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, 24061, Virginia, USA
| | - Robert S. Fischer
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Shalin B. Mehta
- CZ Biohub SF, San Francisco, 94158, California, USA
- Department of Radiology, University of Chicago, Chicago, 60637, Illinois, USA
- Bell Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Abhishek Kumar
- Bell Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Tobias I. Baskin
- Biology Department, University of Massachusetts, Amherst, 01003, Maryland, USA
- Whitman Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Valentin Jamouillé
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A 1S6, British Columbia, Canada
| | - Huafeng Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Vinay Swaminathan
- Department of Clinical Sciences, Lund University, Lund, SE-221 00, Scania, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, SE-221 00, Scania, Sweden
| | - Amrinder Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, 24061, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, 24061, Virginia, USA
| | - Rudolf Oldenbourg
- Bell Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Patrick La Riviére
- Department of Radiology, University of Chicago, Chicago, 60637, Illinois, USA
- Whitman Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, Virginia, USA
- Whitman Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| |
Collapse
|