1
|
Matsumoto I, Nobukawa S, Kanamaru T, Sakemi Y, Sviridova N, Kurikawa T, Wagatsuma N, Aihara K. Neural activity responsiveness by maturation of inhibition underlying critical period plasticity. Front Neural Circuits 2025; 18:1519704. [PMID: 39911753 PMCID: PMC11794837 DOI: 10.3389/fncir.2024.1519704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Neural circuits develop during critical periods (CPs) and exhibit heightened plasticity to adapt to the surrounding environment. Accumulating evidence indicates that the maturation of inhibitory circuits, such as gamma-aminobutyric acid and parvalbumin-positive interneurons, plays a crucial role in CPs and contributes to generating gamma oscillations. A previous theory of the CP mechanism suggested that the maturation of inhibition suppresses internally driven spontaneous activity and enables synaptic plasticity to respond to external stimuli. However, the neural response to external stimuli and neuronal oscillations at the neural population level during CPs has not yet been fully clarified. In the present study, we aimed to investigate neuronal activity responsiveness with respect to the maturation of inhibition at gamma-band frequencies. Method We calculated inter-trial phase coherence (ITPC), which quantifies event-related phase modulations across trials, using a biologically plausible spiking neural network that generates gamma oscillations through interactions between excitatory and inhibitory neurons. Results Our results demonstrated that the neuronal response coherence to external periodic inputs exhibits an inverted U-shape with respect to the maturation of inhibition. Additionally, the peak of this profile was consistent with the moderate suppression of the gamma-band spontaneous activity. Discussion This finding suggests that the neuronal population's highly reproducible response to increased inhibition may lead to heightened synaptic plasticity. Our computational model can help elucidate the underlying mechanisms that maximize synaptic plasticity at the neuronal population level during CPs.
Collapse
Affiliation(s)
- Ibuki Matsumoto
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Chiba, Japan
| | - Sou Nobukawa
- Graduate School of Information and Computer Science, Chiba Institute of Technology, Chiba, Japan
- Department of Computer Science, Chiba Institute of Technology, Chiba, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Center of Neurology and Psychiatry, Tokyo, Japan
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Chiba, Japan
| | - Takashi Kanamaru
- Department of Mechanical Science and Engineering, Kogakuin University, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Yusuke Sakemi
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Chiba, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Nina Sviridova
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
- Department of Intelligent Systems, Tokyo City University, Tokyo, Japan
| | - Tomoki Kurikawa
- Department of Complex and Intelligent Systems, Future University, Hakodate, Hokkaido, Japan
| | | | - Kazuyuki Aihara
- Research Center for Mathematical Engineering, Chiba Institute of Technology, Chiba, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Hille M, Kühn S, Kempermann G, Bonhoeffer T, Lindenberger U. From animal models to human individuality: Integrative approaches to the study of brain plasticity. Neuron 2024; 112:3522-3541. [PMID: 39461332 DOI: 10.1016/j.neuron.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Plasticity allows organisms to form lasting adaptive changes in neural structures in response to interactions with the environment. It serves both species-general functions and individualized skill acquisition. To better understand human plasticity, we need to strengthen the dialogue between human research and animal models. Therefore, we propose to (1) enhance the interpretability of macroscopic methods used in human research by complementing molecular and fine-structural measures used in animals with such macroscopic methods, preferably applied to the same animals, to create macroscopic metrics common to both examined species; (2) launch dedicated cross-species research programs, using either well-controlled experimental paradigms, such as motor skill acquisition, or more naturalistic environments, where individuals of either species are observed in their habitats; and (3) develop conceptual and computational models linking molecular and fine-structural events to phenomena accessible by macroscopic methods. In concert, these three component strategies can foster new insights into the nature of plastic change.
Collapse
Affiliation(s)
- Maike Hille
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
| | - Simone Kühn
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany; Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany; CRTD - Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Tobias Bonhoeffer
- Synapses-Circuits-Plasticity, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK.
| |
Collapse
|
4
|
Sydnor VJ, Bagautdinova J, Larsen B, Arcaro MJ, Barch DM, Bassett DS, Alexander-Bloch AF, Cook PA, Covitz S, Franco AR, Gur RE, Gur RC, Mackey AP, Mehta K, Meisler SL, Milham MP, Moore TM, Müller EJ, Roalf DR, Salo T, Schubiner G, Seidlitz J, Shinohara RT, Shine JM, Yeh FC, Cieslak M, Satterthwaite TD. A sensorimotor-association axis of thalamocortical connection development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598749. [PMID: 38915591 PMCID: PMC11195180 DOI: 10.1101/2024.06.13.598749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Human cortical development follows a sensorimotor-to-association sequence during childhood and adolescence1-6. The brain's capacity to enact this sequence over decades indicates that it relies on intrinsic mechanisms to regulate inter-regional differences in the timing of cortical maturation, yet regulators of human developmental chronology are not well understood. Given evidence from animal models that thalamic axons modulate windows of cortical plasticity7-12, here we evaluate the overarching hypothesis that structural connections between the thalamus and cortex help to coordinate cortical maturational heterochronicity during youth. We first introduce, cortically annotate, and anatomically validate a new atlas of human thalamocortical connections using diffusion tractography. By applying this atlas to three independent youth datasets (ages 8-23 years; total N = 2,676), we reproducibly demonstrate that thalamocortical connections develop along a maturational gradient that aligns with the cortex's sensorimotor-association axis. Associative cortical regions with thalamic connections that take longest to mature exhibit protracted expression of neurochemical, structural, and functional markers indicative of higher circuit plasticity as well as heightened environmental sensitivity. This work highlights a central role for the thalamus in the orchestration of hierarchically organized and environmentally sensitive windows of cortical developmental malleability.
Collapse
Affiliation(s)
- Valerie J. Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joëlle Bagautdinova
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Michael J. Arcaro
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University in St Louis, St Louis, Missouri, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Philip A. Cook
- Penn Image Computing and Science Lab (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Covitz
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA
| | - Alexandre R. Franco
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Strategic Data Initiatives, Child Mind Institute, New York, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Raquel E. Gur
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Neurodevelopment and Psychosis Section, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C. Gur
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allyson P. Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Kahini Mehta
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven L. Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Division of Medical Sciences, Cambridge, MA, USA
| | - Michael P. Milham
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Tyler M. Moore
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eli J. Müller
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - David R. Roalf
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taylor Salo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jakob Seidlitz
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, & Informatics, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - James M. Shine
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Damera SR, De Asis-Cruz J, Cook KM, Kapse K, Spoehr E, Murnick J, Basu S, Andescavage N, Limperopoulos C. Regional homogeneity as a marker of sensory cortex dysmaturity in preterm infants. iScience 2024; 27:109662. [PMID: 38665205 PMCID: PMC11043889 DOI: 10.1016/j.isci.2024.109662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Atypical perinatal sensory experience in preterm infants is thought to increase their risk of neurodevelopmental disabilities by altering the development of the sensory cortices. Here, we used resting-state fMRI data from preterm and term-born infants scanned between 32 and 48 weeks post-menstrual age to assess the effect of early ex-utero exposure on sensory cortex development. Specifically, we utilized a measure of local correlated-ness called regional homogeneity (ReHo). First, we demonstrated that the brain-wide distribution of ReHo mirrors the known gradient of cortical maturation. Next, we showed that preterm birth differentially reduces ReHo across the primary sensory cortices. Finally, exploratory analyses showed that the reduction of ReHo in the primary auditory cortex of preterm infants is related to increased risk of autism at 18 months. In sum, we show that local connectivity within sensory cortices has different developmental trajectories, is differentially affected by preterm birth, and may be associated with later neurodevelopment.
Collapse
Affiliation(s)
- Srikanth R. Damera
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kevin M. Cook
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kushal Kapse
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Emma Spoehr
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Jon Murnick
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Sudeepta Basu
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|