1
|
Ling JA, Frevert Z, Washington MT. Recent Advances in Understanding the Structures of Translesion Synthesis DNA Polymerases. Genes (Basel) 2022; 13:genes13050915. [PMID: 35627300 PMCID: PMC9141541 DOI: 10.3390/genes13050915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
DNA damage in the template strand causes replication forks to stall because replicative DNA polymerases are unable to efficiently incorporate nucleotides opposite template DNA lesions. To overcome these replication blocks, cells are equipped with multiple translesion synthesis polymerases that have evolved specifically to incorporate nucleotides opposite DNA lesions. Over the past two decades, X-ray crystallography has provided a wealth of information about the structures and mechanisms of translesion synthesis polymerases. This approach, however, has been limited to ground state structures of these polymerases bound to DNA and nucleotide substrates. Three recent methodological developments have extended our understanding of the structures and mechanisms of these polymerases. These include time-lapse X-ray crystallography, which allows one to identify novel reaction intermediates; full-ensemble hybrid methods, which allow one to examine the conformational flexibility of the intrinsically disordered regions of proteins; and cryo-electron microscopy, which allows one to determine the high-resolution structures of larger protein complexes. In this article, we will discuss how these three methodological developments have added to our understanding of the structures and mechanisms of translesion synthesis polymerases.
Collapse
|
2
|
Yoon JH, Basu D, Sellamuthu K, Johnson RE, Prakash S, Prakash L. A novel role of DNA polymerase λ in translesion synthesis in conjunction with DNA polymerase ζ. Life Sci Alliance 2021; 4:4/4/e202000900. [PMID: 33514655 PMCID: PMC7898466 DOI: 10.26508/lsa.202000900] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
As an integral scaffolding component of DNA polymerase (Pol) zeta, Pol lambda adapts Pol zeta–dependent translesion synthesis to operate in a predominantly error-free manner in human cells. By extending synthesis opposite from a diverse array of DNA lesions, DNA polymerase (Pol) ζ performs a crucial role in translesion synthesis (TLS). In yeast and cancer cells, Rev1 functions as an indispensable scaffolding component of Polζ and it imposes highly error-prone TLS upon Polζ. However, for TLS that occurs during replication in normal human cells, Rev1 functions instead as a scaffolding component of Pols η, ι, and κ and Rev1-dependent TLS by these Pols operates in a predominantly error-free manner. The lack of Rev1 requirement for Polζ function in TLS in normal cells suggested that some other protein substitutes for this Rev1 role. Here, we identify a novel role of Polλ as an indispensable scaffolding component of Polζ. TLS studies opposite a number of DNA lesions support the conclusion that as an integral component, Polλ adapts Polζ-dependent TLS to operate in a predominantly error-free manner in human cells, essential for genome integrity and cellular homeostasis.
Collapse
Affiliation(s)
- Jung-Hoon Yoon
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Debashree Basu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karthi Sellamuthu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert E Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
3
|
UV-exposure, endogenous DNA damage, and DNA replication errors shape the spectra of genome changes in human skin. PLoS Genet 2021; 17:e1009302. [PMID: 33444353 PMCID: PMC7808690 DOI: 10.1371/journal.pgen.1009302] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Human skin is continuously exposed to environmental DNA damage leading to the accumulation of somatic mutations over the lifetime of an individual. Mutagenesis in human skin cells can be also caused by endogenous DNA damage and by DNA replication errors. The contributions of these processes to the somatic mutation load in the skin of healthy humans has so far not been accurately assessed because the low numbers of mutations from current sequencing methodologies preclude the distinction between sequencing errors and true somatic genome changes. In this work, we sequenced genomes of single cell-derived clonal lineages obtained from primary skin cells of a large cohort of healthy individuals across a wide range of ages. We report here the range of mutation load and a comprehensive view of the various somatic genome changes that accumulate in skin cells. We demonstrate that UV-induced base substitutions, insertions and deletions are prominent even in sun-shielded skin. In addition, we detect accumulation of mutations due to spontaneous deamination of methylated cytosines as well as insertions and deletions characteristic of DNA replication errors in these cells. The endogenously induced somatic mutations and indels also demonstrate a linear increase with age, while UV-induced mutation load is age-independent. Finally, we show that DNA replication stalling at common fragile sites are potent sources of gross chromosomal rearrangements in human cells. Thus, somatic mutations in skin of healthy individuals reflect the interplay of environmental and endogenous factors in facilitating genome instability and carcinogenesis. Skin forms the first barrier against a variety of environmental toxins and DNA damaging agents. Additionally, DNA of skin cells suffer from endogenous damage and errors during replication. Altogether, these lesions cause a variety of genome changes resulting in disease including cancer. However, the accurate measurement of the range and complete spectrum of genome changes in healthy skin was missing due to technical or biological limitations of prior studies. We present here accurate measurements of the various types of somatic genome changes that we found in skin fibroblasts and melanocytes from 21 donors ranging in ages from 25 to 79 years, which allowed to distinguish age related from age independent changes. Our cohort contains both White and African American donors, allowing an estimation of the impacts of skin color on mutagenesis. As a result, we revealed the complete spectrum and determined the range of somatic genome changes and their etiologies in healthy human skin fibroblasts and melanocytes and highlighted molecular mechanisms underlying these changes. Therefore, our study introduces a base line for defining disease levels of genome instability in skin.
Collapse
|
4
|
Kondratick CM, Washington MT, Spies M. Making Choices: DNA Replication Fork Recovery Mechanisms. Semin Cell Dev Biol 2020; 113:27-37. [PMID: 33967572 DOI: 10.1016/j.semcdb.2020.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA replication is laden with obstacles that slow, stall, collapse, and break DNA replication forks. At each obstacle, there is a decision to be made whether to bypass the lesion, repair or restart the damaged fork, or to protect stalled forks from further demise. Each "decision" draws upon multitude of proteins participating in various mechanisms that allow repair and restart of replication forks. Specific functions for many of these proteins have been described and an understanding of how they come together in supporting replication forks is starting to emerge. Many questions, however, remain regarding selection of the mechanisms that enable faithful genome duplication and how "normal" intermediates in these mechanisms are sometimes funneled into "rogue" processes that destabilize the genome and lead to cancer, cell death, and emergence of chemotherapeutic resistance. In this review we will discuss molecular mechanisms of DNA damage bypass and replication fork protection and repair. We will specifically focus on the key players that define which mechanism is employed including: PCNA and its control by posttranslational modifications, translesion synthesis DNA polymerases, molecular motors that catalyze reversal of stalled replication forks, proteins that antagonize fork reversal and protect reversed forks from nucleolytic degradation, and the machinery of homologous recombination that helps to reestablish broken forks. We will also discuss risks to genome integrity inherent in each of these mechanisms.
Collapse
Affiliation(s)
- Christine M Kondratick
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - M Todd Washington
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.,Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Maria Spies
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.,Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
5
|
Sugiyama T, Chen Y. Biochemical reconstitution of UV-induced mutational processes. Nucleic Acids Res 2020; 47:6769-6782. [PMID: 31053851 PMCID: PMC6648339 DOI: 10.1093/nar/gkz335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
We reconstituted two biochemical processes that may contribute to UV-induced mutagenesis in vitro and analysed the mutational profiles in the products. One process is translesion synthesis (TLS) by DNA polymerases (Pol) δ, η and ζ, which creates C>T transitions at pyrimidine dimers by incorporating two dAMPs opposite of the dimers. The other process involves spontaneous deamination of cytosine, producing uracil in pyrimidine dimers, followed by monomerization of the dimers by secondary UV irradiation, and DNA synthesis by Pol δ. The mutational spectrum resulting from deamination without translesion synthesis is similar to a mutational signature found in melanomas, suggesting that cytosine deamination encountered by the replicative polymerase has a prominent role in melanoma development. However, CC>TT dinucleotide substitution, which is also commonly observed in melanomas, was produced almost exclusively by TLS. We propose that both TLS-dependent and deamination-dependent mutational processes are likely involved in UV-induced melanoma development.
Collapse
Affiliation(s)
- Tomohiko Sugiyama
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Yizhang Chen
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
6
|
Powers KT, Washington MT. Eukaryotic translesion synthesis: Choosing the right tool for the job. DNA Repair (Amst) 2018; 71:127-134. [PMID: 30174299 DOI: 10.1016/j.dnarep.2018.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Normal DNA replication is blocked by DNA damage in the template strand. Translesion synthesis is a major pathway for overcoming these replication blocks. In this process, multiple non-classical DNA polymerases are thought to form a complex at the stalled replication fork that we refer to as the mutasome. This hypothetical multi-protein complex is structurally organized by the replication accessory factor PCNA and the non-classical polymerase Rev1. One of the non-classical polymerases within this complex then catalyzes replication through the damage. Each non-classical polymerase has one or more cognate lesions, which the enzyme bypasses with high accuracy and efficiency. Thus, the accuracy and efficiency of translesion synthesis depends on which non-classical polymerase is chosen to bypass the damage. In this review article, we discuss how the most appropriate polymerase is chosen. In so doing, we examine the structural motifs that mediate the protein interactions in the mutasome; the multiple architectures that the mutasome can adopt, such as PCNA tool belts and Rev1 bridges; the intrinsically disordered regions that tether the polymerases to PCNA and to one another; and the kinetic selection model in which the most appropriate polymerase is chosen via a competition among the multiple polymerases within the mutasome.
Collapse
Affiliation(s)
- Kyle T Powers
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States
| | - M Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States.
| |
Collapse
|
7
|
Powers KT, Elcock AH, Washington MT. The C-terminal region of translesion synthesis DNA polymerase η is partially unstructured and has high conformational flexibility. Nucleic Acids Res 2018; 46:2107-2120. [PMID: 29385534 PMCID: PMC5829636 DOI: 10.1093/nar/gky031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic DNA polymerase η catalyzes translesion synthesis of thymine dimers and 8-oxoguanines. It is comprised of a polymerase domain and a C-terminal region, both of which are required for its biological function. The C-terminal region mediates interactions with proliferating cell nuclear antigen (PCNA) and other translesion synthesis proteins such as Rev1. This region contains a ubiquitin-binding/zinc-binding (UBZ) motif and a PCNA-interacting protein (PIP) motif. Currently little structural information is available for this region of polymerase η. Using a combination of approaches-including genetic complementation assays, X-ray crystallography, Langevin dynamics simulations, and small-angle X-ray scattering-we show that the C-terminal region is partially unstructured and has high conformational flexibility. This implies that the C-terminal region acts as a flexible tether linking the polymerase domain to PCNA thereby increasing its local concentration. Such tethering would facilitate the sampling of translesion synthesis polymerases to ensure that the most appropriate one is selected to bypass the lesion.
Collapse
Affiliation(s)
- Kyle T Powers
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, USA
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, USA
| | - M Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, USA
| |
Collapse
|
8
|
Zafar MK, Eoff RL. Translesion DNA Synthesis in Cancer: Molecular Mechanisms and Therapeutic Opportunities. Chem Res Toxicol 2017; 30:1942-1955. [PMID: 28841374 DOI: 10.1021/acs.chemrestox.7b00157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The genomic landscape of cancer is one marred by instability, but the mechanisms that underlie these alterations are multifaceted and remain a topic of intense research. Cellular responses to DNA damage and/or replication stress can affect genome stability in tumors and influence the response of patients to therapy. In addition to direct repair, DNA damage tolerance (DDT) is an element of genomic maintenance programs that contributes to the etiology of several types of cancer. DDT mechanisms primarily act to resolve replication stress, and this can influence the effectiveness of genotoxic drugs. Translesion DNA synthesis (TLS) is an important component of DDT that facilitates direct bypass of DNA adducts and other barriers to replication. The central role of TLS in the bypass of drug-induced DNA lesions, the promotion of tumor heterogeneity, and the involvement of these enzymes in the maintenance of the cancer stem cell niche presents an opportunity to leverage inhibition of TLS as a way of improving existing therapies. In the review that follows, we summarize mechanisms of DDT, misregulation of TLS in cancer, and discuss the potential for targeting these pathways as a means of improving cancer therapies.
Collapse
Affiliation(s)
- Maroof K Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
9
|
Powers KT, Washington MT. Analyzing the Catalytic Activities and Interactions of Eukaryotic Translesion Synthesis Polymerases. Methods Enzymol 2017; 592:329-356. [PMID: 28668126 DOI: 10.1016/bs.mie.2017.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Translesion synthesis is the process by which nonclassical DNA polymerases bypass DNA damage during DNA replication. Cells possess a variety of nonclassical polymerases, each one is specific for incorporating nucleotides opposite to one or more closely related DNA lesions, called its cognate lesions. In this chapter, we discuss a variety of approaches for probing the catalytic activities and the protein-protein interactions of nonclassical polymerases. With respect to their catalytic activities, we discuss polymerase assays, steady-state kinetics, and presteady-state kinetics. With respect to their interactions, we discuss qualitative binding assays such as enzyme-linked immunosorbent assays and coimmunoprecipitation; quantitative binding assays such as isothermal titration calorimetry, surface plasmon resonance, and nuclear magnetic resonance spectroscopy; and single-molecule binding assays such as total internal reflection fluorescence microscopy. We focus on how nonclassical polymerases accommodate their cognate lesions during nucleotide incorporation and how the most appropriate nonclassical polymerase is selected for bypassing a given lesion.
Collapse
Affiliation(s)
- Kyle T Powers
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - M Todd Washington
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
10
|
Basu AK, Pande P, Bose A. Translesion Synthesis of 2'-Deoxyguanosine Lesions by Eukaryotic DNA Polymerases. Chem Res Toxicol 2016; 30:61-72. [PMID: 27760288 PMCID: PMC5241707 DOI: 10.1021/acs.chemrestox.6b00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
With the discovery
of translesion synthesis DNA polymerases, great
strides have been made in the last two decades in understanding the
mode of replication of various DNA lesions in prokaryotes and eukaryotes.
A database search indicated that approximately 2000 articles on this
topic have been published in this period. This includes research involving
genetic and structural studies as well as in vitro experiments using purified DNA polymerases and accessory proteins.
It is a daunting task to comprehend this exciting and rapidly emerging
area of research. Even so, as the majority of DNA damage occurs at
2′-deoxyguanosine residues, this perspective attempts to summarize
a subset of this field, focusing on the most relevant eukaryotic DNA
polymerases responsible for their bypass.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Paritosh Pande
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Arindam Bose
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
11
|
Kinetic analysis of bypass of O(6)- methylguanine by the catalytic core of yeast DNA polymerase eta. Arch Biochem Biophys 2016; 596:99-107. [PMID: 26976707 DOI: 10.1016/j.abb.2016.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
Alkylating agents can form O(6)-methylguansine (O(6)-MeG). To study the intrinsic kinetic behaviors of bypassing O(6)-MeG, we used the catalytic core of yeast DNA polymerase η (Pol ηcore, residues 1-513), instead of the full-length Pol η, to study their elementary steps, eliminating the effects of the C-terminal C2H2 motif on dNTP incorporation. The misincorporation frequencies were 10(-4) for G and 0.055-0.446 for O(6)-MeG. O(6)-MeG does not affect the extension efficiency. Pol ηcore showed no fast burst phase for any incorporation opposite G or O(6)-MeG. Primer extension was greatly blocked by O(6)-MeG and about 67% dTTP, 31% dCTP and 2% dATP were incorporated opposite O(6)-MeG. This study provides further understanding of the mutation mechanism of alkylated lesion for yeast DNA polymerase η.
Collapse
|
12
|
Kinetic analysis of bypass of 7,8-dihydro-8-oxo-2'-deoxyguanosine by the catalytic core of yeast DNA polymerase η. Biochimie 2015; 121:161-9. [PMID: 26700143 DOI: 10.1016/j.biochi.2015.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 12/07/2015] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species damage DNA bases to produce 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG), which results in G:C to T:A transversions. To better understand mechanisms of dNTP incorporation opposite 8-oxoG, we performed pre-steady-state kinetic analysis of nucleotide incorporation using the catalytic core of yeast DNA polymerase η (Pol ηcore, residues 1-513) instead of full-length Pol η, eliminating potential effects of the C-terminal C2H2 sequence motif on dNTP incorporation. Kinetic analysis showed that Pol ηcore preferred to incorporate dCTP opposite 8-oxoG. A lack of a pre-steady-state kinetic burst for Pol ηcore suggested that dCTP incorporation is slower than the dissociation of the polymerase from DNA. The extension products beyond the 8-oxoG were determined by LC-MS/MS and showed that 57% of the products corresponded to the correct incorporation (C) and 43% corresponded to dATP misincorporation. More dATP was incorporated opposite 8-oxoG with a mixture of dNTPs than predicted using only a single dNTP. The kinetic analysis of 8-oxoG bypass by yeast DNA Pol ηcore provides further understanding of the mechanism of mutation at this oxidation lesion with yeast DNA polymerase η.
Collapse
|
13
|
Yang J, Wang R, Liu B, Xue Q, Zhong M, Zeng H, Zhang H. Kinetic analysis of bypass of abasic site by the catalytic core of yeast DNA polymerase eta. Mutat Res 2015. [PMID: 26203649 DOI: 10.1016/j.mrfmmm.2015.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abasic sites (Apurinic/apyrimidinic (AP) sites), produced ∼ 50,000 times/cell/day, are very blocking and miscoding. To better understand miscoding mechanisms of abasic site for yeast DNA polymerase η, pre-steady-state nucleotide incorporation and LC-MS/MS sequence analysis of extension product were studied using pol η(core) (catalytic core, residues 1-513), which can completely eliminate the potential effects of the C-terminal C2H2 motif of pol η on dNTP incorporation. The extension beyond the abasic site was very inefficient. Compared with incorporation of dCTP opposite G, the incorporation efficiencies opposite abasic site were greatly reduced according to the order of dGTP > dATP >> dCTP and dTTP. Pol η(core) showed no fast burst phase for any incorporation opposite G or abasic site, suggesting that the catalytic step is not faster than the dissociation of polymerase from DNA. LC-MS/MS sequence analysis of extension products showed that 53% products were dGTP misincorporation, 33% were dATP and 14% were -1 frameshift, indicating that Pol η(core) bypasses abasic site by a combined G-rule, A-rule and -1 frameshift deletions. Compared with full-length pol η, pol η(core) relatively reduced the efficiency of incorporation of dCTP opposite G, increased the efficiencies of dNTP incorporation opposite abasic site and the exclusive incorporation of dGTP opposite abasic site, but inhibited the extension beyond abasic site, and increased the priority in extension of A: abasic site relative to G: abasic site. This study provides further understanding in the mutation mechanism of abasic sites for yeast DNA polymerase η.
Collapse
Affiliation(s)
- Juntang Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Rong Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Binyan Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Qizhen Xue
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Mengyu Zhong
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Hao Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Huidong Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China.
| |
Collapse
|
14
|
Grebneva HA. Mechanisms of targeted frameshift mutations: Insertions arising during error-prone or SOS synthesis of DNA containing cis-syn cyclobutane thymine dimers. Mol Biol 2014. [DOI: 10.1134/s0026893314030066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Maxwell BA, Suo Z. Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases. Biochemistry 2014; 53:2804-14. [PMID: 24716482 PMCID: PMC4018064 DOI: 10.1021/bi5000405] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
The
kinetic mechanisms by which DNA polymerases catalyze DNA replication
and repair have long been areas of active research. Recently discovered
Y-family DNA polymerases catalyze the bypass of damaged DNA bases
that would otherwise block replicative DNA polymerases and stall replication
forks. Unlike DNA polymerases from the five other families, the Y-family
DNA polymerases have flexible, solvent-accessible active sites that
are able to tolerate various types of damaged template bases and allow
for efficient lesion bypass. Their promiscuous active sites, however,
also lead to fidelities that are much lower than those observed for
other DNA polymerases and give rise to interesting mechanistic properties.
Additionally, the Y-family DNA polymerases have several other unique
structural features and undergo a set of conformational changes during
substrate binding and catalysis different from those observed for
replicative DNA polymerases. In recent years, pre-steady-state kinetic
methods have been extensively employed to reveal a wealth of information
about the catalytic properties of these fascinating noncanonical DNA
polymerases. Here, we review many of the recent findings on the kinetic
mechanisms of DNA polymerization with undamaged and damaged DNA substrates
by the Y-family DNA polymerases, and the conformational dynamics employed
by these error-prone enzymes during catalysis.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and ‡Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
16
|
Pryor JM, Dieckman LM, Boehm EM, Washington MT. Eukaryotic Y-Family Polymerases: A Biochemical and Structural Perspective. NUCLEIC ACID POLYMERASES 2014. [DOI: 10.1007/978-3-642-39796-7_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Teese MG, Farnsworth CA, Li Y, Coppin CW, Devonshire AL, Scott C, East P, Russell RJ, Oakeshott JG. Heterologous expression and biochemical characterisation of fourteen esterases from Helicoverpa armigera. PLoS One 2013; 8:e65951. [PMID: 23799064 PMCID: PMC3684599 DOI: 10.1371/journal.pone.0065951] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/29/2013] [Indexed: 11/18/2022] Open
Abstract
Esterases have recurrently been implicated in insecticide resistance in Helicoverpa armigera but little is known about the underlying molecular mechanisms. We used a baculovirus system to express 14 of 30 full-length esterase genes so far identified from midgut cDNA libraries of this species. All 14 produced esterase isozymes after native PAGE and the isozymes for seven of them migrated to two regions of the gel previously associated with both organophosphate and pyrethroid resistance in various strains. Thirteen of the enzymes obtained in sufficient yield for further analysis all showed tight binding to organophosphates and low but measurable organophosphate hydrolase activity. However there was no clear difference in activity between the isozymes from regions associated with resistance and those from elsewhere in the zymogram, or between eight of the isozymes from a phylogenetic clade previously associated with resistance in proteomic and quantitative rtPCR experiments and five others not so associated. By contrast, the enzymes differed markedly in their activities against nine pyrethroid isomers and the enzymes with highest activity for the most insecticidal isomers were from regions of the gel and, in some cases, the phylogeny that had previously been associated with pyrethroid resistance. Phospholipase treatment confirmed predictions from sequence analysis that three of the isozymes were GPI anchored. This unusual feature among carboxylesterases has previously been suggested to underpin an association that some authors have noted between esterases and resistance to the Cry1Ac toxin from Bacillus thuringiensis. However these three isozymes did not migrate to the zymogram region previously associated with Cry1Ac resistance.
Collapse
Affiliation(s)
- Mark G. Teese
- CSIRO Ecosystem Sciences, Canberra, Australia
- School of Chemistry, Australian National University, Canberra, Australia
| | - Claire A. Farnsworth
- CSIRO Ecosystem Sciences, Canberra, Australia
- School of Biological Sciences, Australian National University, Canberra, Australia
| | - Yongqiang Li
- CSIRO Ecosystem Sciences, Canberra, Australia
- Research and Development Centre of Biorational Pesticides, College of Plant Protection, Northwest A&F University, Yangling, People’s Republic of China
| | | | | | - Colin Scott
- CSIRO Ecosystem Sciences, Canberra, Australia
| | - Peter East
- CSIRO Ecosystem Sciences, Canberra, Australia
| | | | | |
Collapse
|
18
|
Dieckman LM, Washington MT. PCNA trimer instability inhibits translesion synthesis by DNA polymerase η and by DNA polymerase δ. DNA Repair (Amst) 2013; 12:367-76. [PMID: 23506842 DOI: 10.1016/j.dnarep.2013.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Translesion synthesis (TLS), the process by which DNA polymerases replicate through DNA lesions, is the source of most DNA damage-induced mutations. Sometimes TLS is carried out by replicative polymerases that have evolved to synthesize DNA on non-damaged templates. Most of the time, however, TLS is carried out by specialized translesion polymerases that have evolved to synthesize DNA on damaged templates. TLS requires the mono-ubiquitylation of the replication accessory factor proliferating cell nuclear antigen (PCNA). PCNA and ubiquitin-modified PCNA (UbPCNA) stimulate TLS by replicative and translesion polymerases. Two mutant forms of PCNA, one with an E113G substitution and one with a G178S substitution, support normal cell growth but inhibit TLS thereby reducing mutagenesis in yeast. A re-examination of the structures of both mutant PCNA proteins revealed substantial disruptions of the subunit interface that forms the PCNA trimer. Both mutant proteins have reduced trimer stability with the G178S substitution causing a more severe defect. The mutant forms of PCNA and UbPCNA do not stimulate TLS of an abasic site by either replicative Pol δ or translesion Pol η. Normal replication by Pol η was also impacted, but normal replication by Pol δ was much less affected. These findings support a model in which reduced trimer stability causes these mutant PCNA proteins to occasionally undergo conformational changes that compromise their ability to stimulate TLS by both replicative and translesion polymerases.
Collapse
Affiliation(s)
- Lynne M Dieckman
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States
| | | |
Collapse
|
19
|
A transposon-derived DNA polymerase from Entamoeba histolytica displays intrinsic strand displacement, processivity and lesion bypass. PLoS One 2012; 7:e49964. [PMID: 23226232 PMCID: PMC3511435 DOI: 10.1371/journal.pone.0049964] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/15/2012] [Indexed: 02/06/2023] Open
Abstract
Entamoeba histolytica encodes four family B2 DNA polymerases that vary in amino acid length from 813 to 1279. These DNA polymerases contain a N-terminal domain with no homology to other proteins and a C-terminal domain with high amino acid identity to archetypical family B2 DNA polymerases. A phylogenetic analysis indicates that these family B2 DNA polymerases are grouped with DNA polymerases from transposable elements dubbed Polintons or Mavericks. In this work, we report the cloning and biochemical characterization of the smallest family B2 DNA polymerase from E. histolytica. To facilitate its characterization we subcloned its 660 amino acids C-terminal region that comprises the complete exonuclease and DNA polymerization domains, dubbed throughout this work as EhDNApolB2. We found that EhDNApolB2 displays remarkable strand displacement, processivity and efficiently bypasses the DNA lesions: 8-oxo guanosine and abasic site. Family B2 DNA polymerases from T. vaginalis, G. lambia and E. histolytica contain a Terminal Region Protein 2 (TPR2) motif twice the length of the TPR2 from φ29 DNA polymerase. Deletion studies demonstrate that as in φ29 DNA polymerase, the TPR2 motif of EhDNApolB2 is solely responsible of strand displacement and processivity. Interestingly the TPR2 of EhDNApolB2 is also responsible for efficient abasic site bypass. These data suggests that the 21 extra amino acids of the TPR2 motif may shape the active site of EhDNApolB2 to efficiently incorporate and extended opposite an abasic site. Herein we demonstrate that an open reading frame derived from Politons-Mavericks in parasitic protozoa encode a functional enzyme and our findings support the notion that the introduction of novel motifs in DNA polymerases can confer specialized properties to a conserved scaffold.
Collapse
|
20
|
Lim S, Song I, Guengerich FP, Choi JY. Effects of N(2)-alkylguanine, O(6)-alkylguanine, and abasic lesions on DNA binding and bypass synthesis by the euryarchaeal B-family DNA polymerase vent (exo(-)). Chem Res Toxicol 2012; 25:1699-707. [PMID: 22793782 DOI: 10.1021/tx300168p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Archaeal and eukaryotic B-family DNA polymerases (pols) mainly replicate chromosomal DNA but stall at lesions, which are often bypassed with Y-family pols. In this study, a B-family pol Vent (exo(-)) from the euryarchaeon Thermococcus litoralis was studied with three types of DNA lesions-N(2)-alkylG, O(6)-alkylG, and an abasic (AP) site-in comparison with a model Y-family pol Dpo4 from Sulfolobus solfataricus, to better understand the effects of various DNA modifications on binding, bypass efficiency, and fidelity of pols. Vent (exo(-)) readily bypassed N(2)-methyl(Me)G and O(6)-MeG, but was strongly blocked at O(6)-benzyl(Bz)G and N(2)-BzG, whereas Dpo4 efficiently bypassed N(2)-MeG and N(2)-BzG and partially bypassed O(6)-MeG and O(6)-BzG. Vent (exo(-)) bypassed an AP site to an extent greater than Dpo4, corresponding with steady-state kinetic data. Vent (exo(-)) showed ~110-, 180-, and 300-fold decreases in catalytic efficiency (k(cat)/K(m)) for nucleotide insertion opposite an AP site, N(2)-MeG, and O(6)-MeG but ~1800- and 5000-fold decreases opposite O(6)-BzG and N(2)-BzG, respectively, as compared to G, whereas Dpo4 showed little or only ~13-fold decreases opposite N(2)-MeG and N(2)-BzG but ~260-370-fold decreases opposite O(6)-MeG, O(6)-BzG, and the AP site. Vent (exo(-)) preferentially misinserted G opposite N(2)-MeG, T opposite O(6)-MeG, and A opposite an AP site and N(2)-BzG, while Dpo4 favored correct C insertion opposite those lesions. Vent (exo(-)) and Dpo4 both bound modified DNAs with affinities similar to unmodified DNA. Our results indicate that Vent (exo(-)) is as or more efficient as Dpo4 in synthesis opposite O(6)-MeG and AP lesions, whereas Dpo4 is much or more efficient opposite (only) N(2)-alkylGs than Vent (exo(-)), irrespective of DNA-binding affinity. Our data also suggest that Vent (exo(-)) accepts nonbulky DNA lesions (e.g., N(2)- or O(6)-MeG and an AP site) as manageable substrates despite causing error-prone synthesis, whereas Dpo4 strongly favors minor-groove N(2)-alkylG lesions over major-groove or noninstructive lesions.
Collapse
Affiliation(s)
- Seonhee Lim
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | |
Collapse
|
21
|
Swanson AL, Wang J, Wang Y. Accurate and efficient bypass of 8,5'-cyclopurine-2'-deoxynucleosides by human and yeast DNA polymerase η. Chem Res Toxicol 2012; 25:1682-91. [PMID: 22768970 DOI: 10.1021/tx3001576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS), which can be produced during normal aerobic metabolism, can induce the formation of tandem DNA lesions, including 8,5'-cyclo-2'-deoxyadenosine (cyclo-dA) and 8,5'-cyclo-2'-deoxyguanosine (cyclo-dG). Previous studies have shown that cyclo-dA and cyclo-dG accumulate in cells and can block mammalian RNA polymerase II and replicative DNA polymerases. Here, we used primer extension and steady-state kinetic assays to examine the efficiency and fidelity for polymerase η to insert nucleotides opposite, and extend primer past, these cyclopurine lesions. We found that Saccharomyces cerevisiae and human polymerase η inserted 2'-deoxynucleotides opposite cyclo-dA, cyclo-dG and their adjacent 5' nucleosides at fidelities and efficiencies that were similar to those of their respective undamaged nucleosides. Moreover, the yeast enzyme exhibited similar processivity in DNA synthesis on templates housing a cyclo-dA or cyclo-dG to those carrying an unmodified dA or dG; the human polymerase, however, dissociated from the primer-template complex after inserting one or two additional nucleotides after the lesion. Pol η's accurate and efficient bypass of cyclo-dA and cyclo-dG indicates that this polymerase is likely responsible for error-free bypass of these lesions, whereas mutagenic bypass of these lesions may involve other translesion synthesis DNA polymerases. Together, our results suggested that pol η may have an additional function in cells, i.e., to alleviate the cellular burden of endogenously induced DNA lesions, including cyclo-dA and cyclo-dG.
Collapse
Affiliation(s)
- Ashley L Swanson
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, USA
| | | | | |
Collapse
|
22
|
Haruta N, Kubota Y, Hishida T. Chronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells. Nucleic Acids Res 2012; 40:8406-15. [PMID: 22743272 PMCID: PMC3458537 DOI: 10.1093/nar/gks580] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine–pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). The results show that rad14Δ cells have a marked increase in CLUV-induced mutations, most of which are C→T transitions in the template strand for transcription. Unexpectedly, many of the CLUV-induced C→T mutations in rad14Δ cells are dependent on translesion synthesis (TLS) DNA polymerase η, encoded by RAD30, despite its previously established role in error-free TLS. Furthermore, we demonstrate that deamination of cytosine-containing CPDs contributes to CLUV-induced mutagenesis. Taken together, these results uncover a novel role for Polη in the induction of C→T transitions through deamination of cytosine-containing CPDs in CLUV-exposed NER deficient cells. More generally, our data suggest that Polη can act as both an error-free and a mutagenic DNA polymerase, depending on whether the NER pathway is available to efficiently repair damaged templates.
Collapse
Affiliation(s)
- Nami Haruta
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
23
|
Pryor JM, Washington MT. Pre-steady state kinetic studies show that an abasic site is a cognate lesion for the yeast Rev1 protein. DNA Repair (Amst) 2011; 10:1138-44. [PMID: 21975119 PMCID: PMC3197757 DOI: 10.1016/j.dnarep.2011.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/16/2011] [Accepted: 08/30/2011] [Indexed: 12/17/2022]
Abstract
Rev1 is a eukaryotic DNA polymerase that rescues replication forks stalled at sites of DNA damage by inserting nucleotides opposite the damaged template bases. Yeast genetic studies suggest that Rev1 plays an important role in rescuing replication forks stalled at one of the most common forms of DNA damage, an abasic site; however, steady state kinetic studies suggest that an abasic site acts as a significant block to nucleotide incorporation by Rev1. Here we examined the pre-steady state kinetics of nucleotide incorporation by yeast Rev1 with damaged and non-damaged DNA substrates. We found that yeast Rev1 is capable of rapid nucleotide incorporation, but only a small fraction of the protein molecules possessed this robust activity. We characterized the nucleotide incorporation by the catalytically robust fraction of yeast Rev1 and found that it efficiently incorporated dCTP opposite a template abasic site under pre-steady state conditions. We conclude from these studies that the abasic site is a cognate lesion for Rev1.
Collapse
Affiliation(s)
- John M. Pryor
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109
| | - M. Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109
| |
Collapse
|
24
|
Monti P, Broxson C, Inga A, Wang RW, Menichini P, Tornaletti S, Gold B, Fronza G. 3-Methyl-3-deazaadenine, a stable isostere of N3-methyl-adenine, is efficiently bypassed by replication in vivo and by transcription in vitro. DNA Repair (Amst) 2011; 10:861-8. [PMID: 21676659 PMCID: PMC3146564 DOI: 10.1016/j.dnarep.2011.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
The goal of the present work was to determine the impact of N3-methyladenine (3-mA), an important lesion generated by many environmental agents and anticancer drugs, on in vivo DNA replication and in vitro RNA transcription. Due to 3-mA chemical instability, the stable isostere 3-methyl-3-deazaadenine (3-m-c(3)A) was site specifically positioned into an oligodeoxynucleotide. The oligomer was, then incorporated into a vector system that is rapidly converted to ssDNA inside yeast cells and requires DNA replication opposite the lesion for plasmid clonal selection. For control purposes, an adenine or a stable apurinic/apyrimidinic (AP)-lesion was placed at the same site. The presence of each lesion in the oligonucleotide was confirmed by MALDI-TOF analysis. Plasmids were then transfected into yeast cells. While the AP-site dramatically reduced plasmid replication in all strains, the 3-m-c(3)A had a slight effect in the rad30 background which significantly increased only in a rev3rad30 background. Considering TLS events opposite 3-m-c(3)A, the lack of Polη was associated with a substantial increase in AT>GC transitions (p=0.0011), while in the absence of Polζ only events derived from an error free bypass were detected. The 3-m-c(3)A also did not affect in vitro transcription, while the AP-site was a strong block to T7 RNA progression when located in the transcribed strand. We conclude that, in these experimental systems, 3-m-c(3)A is efficiently bypassed by replication in vivo and by transcription in vitro.
Collapse
Affiliation(s)
- Paola Monti
- Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), 16132 Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Eoff RL, Choi JY, Guengerich FP. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage. J Nucleic Acids 2010; 2010. [PMID: 20936119 PMCID: PMC2948923 DOI: 10.4061/2010/830473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/12/2010] [Indexed: 01/11/2023] Open
Abstract
DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members.
Collapse
Affiliation(s)
- Robert L Eoff
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232-0146, USA
| | | | | |
Collapse
|
26
|
Brown JA, Zhang L, Sherrer SM, Taylor JS, Burgers PMJ, Suo Z. Pre-Steady-State Kinetic Analysis of Truncated and Full-Length Saccharomyces cerevisiae DNA Polymerase Eta. J Nucleic Acids 2010; 2010:871939. [PMID: 20798853 PMCID: PMC2925389 DOI: 10.4061/2010/871939] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/30/2010] [Indexed: 11/23/2022] Open
Abstract
Understanding polymerase fidelity is an important objective towards ascertaining the overall stability of an organism's genome. Saccharomyces cerevisiae DNA polymerase eta (yPoleta), a Y-family DNA polymerase, is known to efficiently bypass DNA lesions (e.g., pyrimidine dimers) in vivo. Using pre-steady-state kinetic methods, we examined both full-length and a truncated version of yPoleta which contains only the polymerase domain. In the absence of yPoleta's C-terminal residues 514-632, the DNA binding affinity was weakened by 2-fold and the base substitution fidelity dropped by 3-fold. Thus, the C-terminus of yPoleta may interact with DNA and slightly alter the conformation of the polymerase domain during catalysis. In general, yPoleta discriminated between a correct and incorrect nucleotide more during the incorporation step (50-fold on average) than the ground-state binding step (18-fold on average). Blunt-end additions of dATP or pyrene nucleotide 5'-triphosphate revealed the importance of base stacking during the binding of incorrect incoming nucleotides.
Collapse
Affiliation(s)
- Jessica A. Brown
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Likui Zhang
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Shanen M. Sherrer
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | - Peter M. J. Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zucai Suo
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
27
|
Washington MT, Carlson KD, Freudenthal BD, Pryor JM. Variations on a theme: eukaryotic Y-family DNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1113-23. [PMID: 19616647 PMCID: PMC2846237 DOI: 10.1016/j.bbapap.2009.07.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/23/2009] [Accepted: 07/03/2009] [Indexed: 12/22/2022]
Abstract
Most classical DNA polymerases, which function in normal DNA replication and repair, are unable to synthesize DNA opposite damage in the template strand. Thus in order to replicate through sites of DNA damage, cells are equipped with a variety of nonclassical DNA polymerases. These nonclassical polymerases differ from their classical counterparts in at least two important respects. First, nonclassical polymerases are able to efficiently incorporate nucleotides opposite DNA lesions while classical polymerases are generally not. Second, nonclassical polymerases synthesize DNA with a substantially lower fidelity than do classical polymerases. Many nonclassical polymerases are members of the Y-family of DNA polymerases, and this article focuses on the mechanisms of the four eukaryotic members of this family: polymerase eta, polymerase kappa, polymerase iota, and the Rev1 protein. We discuss the mechanisms of these enzymes at the kinetic and structural levels with a particular emphasis on how they accommodate damaged DNA substrates. Work over the last decade has shown that the mechanisms of these nonclassical polymerases are fascinating variations of the mechanism of the classical polymerases. The mechanisms of polymerases eta and kappa represent rather minor variations, while the mechanisms of polymerase iota and the Rev1 protein represent rather major variations. These minor and major variations all accomplish the same goal: they allow the nonclassical polymerases to circumvent the problems posed by the template DNA lesion.
Collapse
Affiliation(s)
- M Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
28
|
Highly error-free role of DNA polymerase eta in the replicative bypass of UV-induced pyrimidine dimers in mouse and human cells. Proc Natl Acad Sci U S A 2009; 106:18219-24. [PMID: 19822754 DOI: 10.1073/pnas.0910121106] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cyclobutane pyrimidine dimers (CPDs) constitute the most frequent UV-induced DNA photoproduct. However, it has remained unclear how human and other mammalian cells mitigate the mutagenic and carcinogenic potential of CPDs emanating from their replicative bypass. Here, we examine in human cells the roles of translesion synthesis (TLS) DNA polymerases (Pols) in the replicative bypass of a cis-syn TT dimer carried on the leading or the lagging strand DNA template in a plasmid system we have designed, and we determine in mouse cells the frequencies and mutational spectra generated from TLS occurring specifically opposite CPDs formed at TT, TC, and CC dipyrimidine sites. From these studies we draw the following conclusions: (i) TLS makes a very prominent contribution to CPD bypass on both the DNA strands during replication; (ii) Pols eta, kappa, and zeta provide alternate pathways for TLS opposite CPDs wherein Pols kappa and zeta promote mutagenic TLS opposite CPDs; and (iii) the absence of mutagenic TLS events opposite a cis-syn TT dimer in human cells and opposite CPDs formed at TT, TC, and CC sites in mouse cells that we observe upon the simultaneous knockdown of Pols kappa and zeta implicates a highly error-free role of Poleta in TLS opposite CPDs in mammalian cells. Such a remarkably high in vivo fidelity of Poleta could not have been anticipated in view of its low intrinsic fidelity. These observations have important bearing on how mammalian cells have adapted to avoid the mutagenic and carcinogenic consequences of exposure to sunlight.
Collapse
|
29
|
Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Structure of the human Rev1-DNA-dNTP ternary complex. J Mol Biol 2009; 390:699-709. [PMID: 19464298 PMCID: PMC2739620 DOI: 10.1016/j.jmb.2009.05.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 11/30/2022]
Abstract
Y-family DNA polymerases have proven to be remarkably diverse in their functions and in strategies for replicating through DNA lesions. The structure of yeast Rev1 ternary complex has revealed the most radical replication strategy, where the polymerase itself dictates the identity of the incoming nucleotide, as well as the identity of the templating base. We show here that many of the key elements of this highly unusual strategy are conserved between yeast and human Rev1, including the eviction of template G from the DNA helix and the pairing of incoming deoxycytidine 5'-triphosphate with a surrogate arginine residue. We also show that the catalytic core of human Rev1 is uniquely augmented by two large inserts, I1 and I2, wherein I1 extends >20 A away from the active site and may serve as a platform for protein-protein interactions specific for Rev1's role in translesion DNA synthesis in human cells, and I2 acts as a "flap" on the hydrophobic pocket accommodating template G. We suggest that these novel structural features are important for providing human Rev1 greater latitude in promoting efficient and error-free translesion DNA synthesis through the diverse array of bulky and potentially carcinogenic N(2)-deoxyguanosine DNA adducts in human cells.
Collapse
Affiliation(s)
- Michael K Swan
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
30
|
Pagès V, Santa Maria SR, Prakash L, Prakash S. Role of DNA damage-induced replication checkpoint in promoting lesion bypass by translesion synthesis in yeast. Genes Dev 2009; 23:1438-49. [PMID: 19528320 DOI: 10.1101/gad.1793409] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unrepaired DNA lesions in the template strand block the replication fork. In yeast, Mec1 protein kinase-mediated replication checkpoint prevents the breakdown of replication forks and maintains viability in DNA-damaged cells going through the S phase. By ensuring that the replisome does not dissociate from the fork stalled at the lesion site, the replication checkpoint presumably coordinates the action of lesion bypass processes with the replisome. However, it has remained unclear as to which of the lesion bypass processes-translesion synthesis (TLS) and/or template switching-depend on the activation of the replication checkpoint. Here we determine if the Mec1 kinase and the subunits of the checkpoint clamp and the clamp loader are required for TLS. We show that proficient TLS can occur in the absence of these checkpoint proteins in nucleotide excision repair (NER)-proficient cells; however, in the absence of NER, checkpoint protein-mediated Rev1 phosphorylation contributes to increasing the proficiency of DNA polymerase zeta-dependent TLS.
Collapse
Affiliation(s)
- Vincent Pagès
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | | | | | | |
Collapse
|
31
|
Acharya N, Johnson RE, Pagès V, Prakash L, Prakash S. Yeast Rev1 protein promotes complex formation of DNA polymerase zeta with Pol32 subunit of DNA polymerase delta. Proc Natl Acad Sci U S A 2009; 106:9631-6. [PMID: 19487673 PMCID: PMC2701015 DOI: 10.1073/pnas.0902175106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Indexed: 12/12/2022] Open
Abstract
Yeast DNA polymerase (Pol) delta, essential for DNA replication, is comprised of 3 subunits, Pol3, Pol31, and Pol32. Of these, the catalytic subunit Pol3 and the second subunit Pol31 are essential, whereas the Pol32 subunit is not essential for DNA replication. Although Pol32 is an integral component of Pol delta, it is also required for translesion synthesis (TLS) by Pol zeta. To begin to decipher the bases of Pol32 involvement in Pol zeta-mediated TLS, here we examine whether Pol32 physically interacts with Pol zeta or its associated proteins and provide evidence for the physical interaction of Pol32 with Rev1. Rev1 plays an indispensable structural role in Pol zeta-mediated TLS and it binds the Rev3 catalytic subunit of Pol zeta. Here, we show that although Pol32 does not directly bind Pol zeta, Pol32 can bind the Rev1-Pol zeta complex through its interaction with Rev1. We find that Pol32 binding has no stimulatory effect on DNA synthesis either by Rev1 in the Rev1-Pol32 complex or by Pol zeta in the Pol zeta-Rev1-Pol32 complex, irrespective of whether proliferating cell nuclear antigen has been loaded onto DNA or not. We discuss evidence for the biological significance of Rev1 binding to Pol32 for Pol zeta function in TLS and suggest a structural role for Rev1 in modulating the binding of Pol zeta with Pol32 in Pol delta stalled at a lesion site.
Collapse
Affiliation(s)
- Narottam Acharya
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1061
| | - Robert E. Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1061
| | - Vincent Pagès
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1061
| | - Louise Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1061
| | - Satya Prakash
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1061
| |
Collapse
|
32
|
Burnouf DY, Wagner JE. Kinetics of deoxy-CTP incorporation opposite a dG-C8-N-2-aminofluorene adduct by a high-fidelity DNA polymerase. J Mol Biol 2009; 386:951-61. [PMID: 19150355 DOI: 10.1016/j.jmb.2008.12.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 12/18/2008] [Accepted: 12/22/2008] [Indexed: 11/28/2022]
Abstract
The model carcinogen N-2-acetylaminofluorene covalently binds to the C8 position of guanine to form two adducts, the N-(2'-deoxyguanosine-8-yl)-aminofluorene (G-AF) and the N-2-(2'-deoxyguanosine-8-yl)-acetylaminofluorene (G-AAF). Although they are chemically closely related, their biological effects are strongly different and they are processed by different damage tolerance pathways. G-AF is bypassed by replicative and high-fidelity polymerases, while specialized polymerases ensure synthesis past of G-AAF. We used the DNA polymerase I fragment of a Bacillus stearothermophilus strain as a model for a high-fidelity polymerase to study the kinetics of incorporation of deoxy-CTP (dCTP) opposite a single G-AF. Pre-steady-state kinetic experiments revealed a drastic reduction in dCTP incorporation performed by the G-AF-modified ternary complex. Two populations of these ternary complexes were identified: (i) a minor productive fraction (20%) that readily incorporates dCTP opposite the G-AF adduct with a rate similar to that measured for the adduct-free ternary complexes and (ii) a major fraction of unproductive complexes (80%) that slowly evolve into productive ones. In the light of structural data, we suggest that this slow rate reflects the translocation of the modified base within the active site, from the pre-insertion site into the insertion site. By making this translocation rate limiting, the G-AF lesion reveals a novel kinetic step occurring after dNTP binding and before chemistry.
Collapse
Affiliation(s)
- Dominique Y Burnouf
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC du Centre National de la Recherche Scientifique, 15 rue René Descartes, 67084 Strasbourg, France.
| | | |
Collapse
|
33
|
Freudenthal BD, Ramaswamy S, Hingorani MM, Washington MT. Structure of a mutant form of proliferating cell nuclear antigen that blocks translesion DNA synthesis. Biochemistry 2008; 47:13354-61. [PMID: 19053247 PMCID: PMC2703463 DOI: 10.1021/bi8017762] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) is a homotrimeric protein that functions as a sliding clamp during DNA replication. Several mutant forms of PCNA that block translesion DNA synthesis have been identified in genetic studies in yeast. One such mutant protein (encoded by the rev6-1 allele) is a glycine to serine substitution at residue 178, located at the subunit interface of PCNA. To improve our understanding of how this substitution interferes with translesion synthesis, we have determined the X-ray crystal structure of the PCNA G178S mutant protein. This substitution has little effect on the structure of the domain in which the substitution occurs. Instead, significant, local structural changes are observed in the adjacent subunit. The most notable difference between mutant and wild-type structures is in a single, extended loop (comprising amino acid residues 105-110), which we call loop J. In the mutant protein structure, loop J adopts a very different conformation in which the atoms of the protein backbone have moved by as much as 6.5 A from their positions in the wild-type structure. To improve our understanding of the functional consequences of this structural change, we have examined the ability of this mutant protein to stimulate nucleotide incorporation by DNA polymerase eta (pol eta). Steady state kinetic studies show that while wild-type PCNA stimulates incorporation by pol eta opposite an abasic site, the mutant PCNA protein actually inhibits incorporation opposite this DNA lesion. These results show that the position of loop J in PCNA plays an essential role in facilitating translesion synthesis.
Collapse
Affiliation(s)
- Bret D Freudenthal
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
34
|
Colis LC, Raychaudhury P, Basu AK. Mutational specificity of gamma-radiation-induced guanine-thymine and thymine-guanine intrastrand cross-links in mammalian cells and translesion synthesis past the guanine-thymine lesion by human DNA polymerase eta. Biochemistry 2008; 47:8070-9. [PMID: 18616294 PMCID: PMC2646719 DOI: 10.1021/bi800529f] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Comparative mutagenesis of γ- or X-ray-induced tandem DNA lesions G[8,5-Me]T and T[5-Me,8]G intrastrand cross-links was investigated in simian (COS-7) and human embryonic (293T) kidney cells. For G[8,5-Me]T in 293T cells, 5.8% of progeny contained targeted base substitutions, whereas 10.0% showed semitargeted single-base substitutions. Of the targeted mutations, the G → T mutation occurred with the highest frequency. The semitargeted mutations were detected up to two bases 5′ and three bases 3′ to the cross-link. The most prevalent semitargeted mutation was a C → T transition immediately 5′ to the G[8,5-Me]T cross-link. Frameshifts (4.6%) (mostly small deletions) and multiple-base substitutions (2.7%) also were detected. For the T[5-Me,8]G cross-link, a similar pattern of mutations was noted, but the mutational frequency was significantly higher than that of G[8,5-Me]T. Both targeted and semitargeted mutations occurred with a frequency of ∼16%, and both included a dominant G → T transversion. As in 293T cells, more than twice as many targeted mutations in COS cells occurred in T[5-Me,8]G (11.4%) as in G[8,5-Me]T (4.7%). Also, the level of semitargeted single-base substitutions 5′ to the lesion was increased and 3′ to the lesion decreased in T[5-Me,8]G relative to G[8,5-Me]T in COS cells. It appeared that the majority of the base substitutions at or near the cross-links resulted from incorporation of dAMP opposite the template base, in agreement with the so-called “A-rule”. To determine if human polymerase η (hpol η) might be involved in the mutagenic bypass, an in vitro bypass study of G[8,5-Me]T in the same sequence was carried out, which showed that hpol η can bypass the cross-link incorporating the correct dNMP opposite each cross-linked base. For G[8,5-Me]T, nucleotide incorporation by hpol η was significantly different from that by yeast pol η in that the latter was more error-prone opposite the cross-linked Gua. The incorporation of the correct nucleotide, dAMP, by hpol η opposite cross-linked T was 3−5-fold more efficient than that of a wrong nucleotide, whereas incorporation of dCMP opposite the cross-linked G was 10-fold more efficient than that with dTMP. Therefore, the nucleotide incorporation pattern by hpol η was not consistent with the observed cellular mutations. Nevertheless, at and near the lesion, hpol η was more error-prone compared to a control template. The in vitro data suggest that translesion synthesis by another Y-family DNA polymerase and/or flawed participation of an accessory protein is a more likely scenario in the mutagenesis of these lesions in mammalian cells. However, hpol η may play a role in correct bypass of the cross-links.
Collapse
Affiliation(s)
- Laureen C Colis
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
35
|
Brown JA, Newmister SA, Fiala KA, Suo Z. Mechanism of double-base lesion bypass catalyzed by a Y-family DNA polymerase. Nucleic Acids Res 2008; 36:3867-78. [PMID: 18499711 PMCID: PMC2475632 DOI: 10.1093/nar/gkn309] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As a widely used anticancer drug, cis-diamminedichloroplatinum(II) (cisplatin) reacts with adjacent purine bases in DNA to form predominantly cis-[Pt(NH3)2{d(GpG)-N7(1),-N7(2)}] intrastrand cross-links. Drug resistance, one of the major limitations of cisplatin therapy, is partially due to the inherent ability of human Y-family DNA polymerases to perform translesion synthesis in the presence of DNA-distorting damage such as cisplatin–DNA adducts. To better understand the mechanistic basis of translesion synthesis contributing to cisplatin resistance, this study investigated the bypass of a single, site-specifically placed cisplatin-d(GpG) adduct by a model Y-family DNA polymerase, Sulfolobus solfataricus DNA polymerase IV (Dpo4). Dpo4 was able to bypass this double-base lesion, although, the incorporation efficiency of dCTP opposite the first and second cross-linked guanine bases was decreased by 72- and 860-fold, respectively. Moreover, the fidelity at the lesion decreased up to two orders of magnitude. The cisplatin-d(GpG) adduct affected six downstream nucleotide incorporations, but interestingly the fidelity was essentially unaltered. Biphasic kinetic analysis supported a universal kinetic mechanism for the bypass of DNA lesions catalyzed by various translesion DNA polymerases. In conclusion, if human Y-family DNA polymerases adhere to this bypass mechanism, then translesion synthesis by these error-prone enzymes is likely accountable for cisplatin resistance observed in cancer patients.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
36
|
Requirement of Nse1, a subunit of the Smc5-Smc6 complex, for Rad52-dependent postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:8409-18. [PMID: 17923688 DOI: 10.1128/mcb.01543-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In Saccharomyces cerevisiae, postreplication repair (PRR) of UV-damaged DNA occurs by a Rad6-Rad18- and an Mms2-Ubc13-Rad5-dependent pathway or by a Rad52-dependent pathway. The Rad5 DNA helicase activity is specialized for promoting replication fork regression and template switching; previously, we suggested a role for the Rad5-dependent PRR pathway when the lesion is located on the leading strand and a role for the Rad52 pathway when the lesion is located on the lagging strand. In this study, we present evidence for the requirement of Nse1, a subunit of the Smc5-Smc6 complex, in Rad52-dependent PRR, and our genetic analyses suggest a role for the Nse1 and Mms21 E3 ligase activities associated with this complex in this repair mode. We discuss the possible ways by which the Smc5-Smc6 complex, including its associated ubiquitin ligase and SUMO ligase activities, might contribute to the Rad52-dependent nonrecombinational and recombinational modes of PRR.
Collapse
|
37
|
Johnson RE, Yu SL, Prakash S, Prakash L. A role for yeast and human translesion synthesis DNA polymerases in promoting replication through 3-methyl adenine. Mol Cell Biol 2007; 27:7198-205. [PMID: 17698580 PMCID: PMC2168906 DOI: 10.1128/mcb.01079-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3-Methyl adenine (3meA), a minor-groove DNA lesion, presents a strong block to synthesis by replicative DNA polymerases (Pols). To elucidate the means by which replication through this DNA lesion is mediated in eukaryotic cells, here we carry out genetic studies in the yeast Saccharomyces cerevisiae treated with the alkylating agent methyl methanesulfonate. From the studies presented here, we infer that replication through the 3meA lesion in yeast cells can be mediated by the action of three Rad6-Rad18-dependent pathways that include translesion synthesis (TLS) by Pol(eta) or -zeta and an Mms2-Ubc13-Rad5-dependent pathway which presumably operates via template switching. We also express human Pols iota and kappa in yeast cells and show that they too can mediate replication through the 3meA lesion in yeast cells, indicating a high degree of evolutionary conservation of the mechanisms that control TLS in yeast and human cells. We discuss these results in the context of previous observations that have been made for the roles of Pols eta, iota, and kappa in promoting replication through the minor-groove N2-dG adducts.
Collapse
Affiliation(s)
- Robert E Johnson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1061, USA
| | | | | | | |
Collapse
|
38
|
Lone S, Townson SA, Uljon SN, Johnson RE, Brahma A, Nair DT, Prakash S, Prakash L, Aggarwal AK. Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass. Mol Cell 2007; 25:601-14. [PMID: 17317631 DOI: 10.1016/j.molcel.2007.01.018] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 10/22/2006] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
Human DNA polymerase kappa (Pol kappa) is a proficient extender of mispaired primer termini on undamaged DNAs and is implicated in the extension step of lesion bypass. We present here the structure of Pol kappa catalytic core in ternary complex with DNA and an incoming nucleotide. The structure reveals encirclement of the DNA by a unique "N-clasp" at the N terminus of Pol kappa, which augments the conventional right-handed grip on the DNA by the palm, fingers, and thumb domains and the PAD and provides additional thermodynamic stability. The structure also reveals an active-site cleft that is constrained by the close apposition of the N-clasp and the fingers domain, and therefore can accommodate only a single Watson-Crick base pair. Together, DNA encirclement and other structural features help explain Pol kappa's ability to extend mismatches and to promote replication through various minor groove DNA lesions, by extending from the nucleotide incorporated opposite the lesion by another polymerase.
Collapse
Affiliation(s)
- Samer Lone
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fiala KA, Hypes CD, Suo Z. Mechanism of abasic lesion bypass catalyzed by a Y-family DNA polymerase. J Biol Chem 2007; 282:8188-98. [PMID: 17210571 DOI: 10.1074/jbc.m610718200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 3 million-base pair genome of Sulfolobus solfataricus likely undergoes depurination/depyrimidination frequently in vivo. These unrepaired abasic lesions are expected to be bypassed by Dpo4, the only Y-family DNA polymerase from S. solfataricus. Interestingly, these error-prone Y-family enzymes have been shown to be physiologically vital in reducing the potentially negative consequences of DNA damage while paradoxically promoting carcinogenesis. Here we used Dpo4 as a model Y-family polymerase to establish the mechanistic basis for DNA lesion bypass. While showing efficient bypass, Dpo4 paused when incorporating nucleotides directly opposite and one position downstream from an abasic lesion because of a drop of several orders of magnitude in catalytic efficiency. Moreover, in disagreement with a previous structural report, Dpo4-catalyzed abasic bypass involves robust competition between the A-rule and the lesion loop-out mechanism and is governed by the local DNA sequence. Analysis of the strong pause sites revealed biphasic kinetics for incorporation indicating that Dpo4 primarily formed a nonproductive complex with DNA that converted slowly to a productive complex. These strong pause sites are mutational hot spots with the embedded lesion even affecting the efficiency of five to six downstream incorporations. Our results suggest that abasic lesion bypass requires tight regulation to maintain genomic stability.
Collapse
Affiliation(s)
- Kevin A Fiala
- Department of Biochemistry, the Ohio State Biochemistry Program, the Comprehensive Cancer Center, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
40
|
Carlson KD, Johnson RE, Prakash L, Prakash S, Washington MT. Human DNA polymerase kappa forms nonproductive complexes with matched primer termini but not with mismatched primer termini. Proc Natl Acad Sci U S A 2006; 103:15776-81. [PMID: 17043239 PMCID: PMC1635079 DOI: 10.1073/pnas.0605785103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Indexed: 11/18/2022] Open
Abstract
Human DNA polymerase kappa (pol kappa) is a member of the Y family of DNA polymerases that function in translesion synthesis. It synthesizes DNA with moderate fidelity and does not efficiently incorporate nucleotides opposite DNA lesions. Pol kappa has the unusual ability to efficiently extend from mismatched primer termini, and it extends readily from nucleotides inserted by other DNA polymerases opposite a variety of DNA lesions. All of this has suggested that pol kappa functions during the extension step of translesion synthesis. Here, we have carried out pre-steady-state kinetic studies of pol kappa using DNA with matched and mismatched primer termini. Interestingly, we find that mismatches present only a modest kinetic barrier to nucleotide incorporation by pol kappa. Moreover, and quite surprisingly, active-site titrations revealed that the concentration of active pol kappa is very low with matched DNA, and from DNA trapping experiments we determined that this was due to the formation of nonproductive protein.DNA complexes. In marked contrast, we found that the concentration of active pol kappa was six-fold greater with mismatched DNA than with matched DNA. Thus, pol kappa forms nonproductive complexes with matched but not with mismatched DNA. From these observations, we conclude that pol kappa has evolved to specifically function on DNA substrates with aberrant primer-terminal base pairs, such as the ones it would encounter during the extension step of translesion synthesis.
Collapse
Affiliation(s)
- Karissa D. Carlson
- *Department of Biochemistry, University of Iowa College of Medicine, 51 Newton Road, Iowa City, IA 52242-1109; and
| | - Robert E. Johnson
- Sealy Center for Molecular Science, University of Texas Medical Branch, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061
| | - Louise Prakash
- Sealy Center for Molecular Science, University of Texas Medical Branch, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061
| | - Satya Prakash
- Sealy Center for Molecular Science, University of Texas Medical Branch, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061
| | - M. Todd Washington
- *Department of Biochemistry, University of Iowa College of Medicine, 51 Newton Road, Iowa City, IA 52242-1109; and
| |
Collapse
|
41
|
Acharya N, Johnson RE, Prakash S, Prakash L. Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol 2006; 26:9555-63. [PMID: 17030609 PMCID: PMC1698531 DOI: 10.1128/mcb.01671-06] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rev1, a Y family DNA polymerase (Pol) functions together with Polzeta, a B family Pol comprised of the Rev3 catalytic subunit and Rev7 accessory subunit, in promoting translesion DNA synthesis (TLS). Extensive genetic studies with Saccharomyces cerevisiae have indicated a requirement of both Polzeta and Rev1 for damage-induced mutagenesis, implicating their involvement in mutagenic TLS. Polzeta is specifically adapted to promote the extension step of lesion bypass, as it proficiently extends primer termini opposite DNA lesions, and it is also a proficient extender of mismatched primer termini on undamaged DNAs. Since TLS through UV-induced lesions and various other DNA lesions does not depend upon the DNA-synthetic activity of Rev1, Rev1 must contribute to Polzeta-dependent TLS in a nonenzymatic way. Here, we provide evidence for the physical association of Rev1 with Polzeta and show that this binding is mediated through the C terminus of Rev1 and the polymerase domain of Rev3. Importantly, a rev1 mutant that lacks the C-terminal 72 residues which inactivate interaction with Rev3 exhibits the same high degree of UV sensitivity and defectiveness in UV-induced mutagenesis as that conferred by the rev1Delta mutation. We propose that Rev1 binding to Polzeta is indispensable for the targeting of Polzeta to the replication fork stalled at a DNA lesion. In addition to this structural role, Rev1 binding enhances the proficiency of Polzeta for the extension of mismatched primer termini on undamaged DNAs and for the extension of primer termini opposite DNA lesions.
Collapse
Affiliation(s)
- Narottam Acharya
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Galveston, TX 77555-1061, USA
| | | | | | | |
Collapse
|
42
|
Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK. An incoming nucleotide imposes an anti to syn conformational change on the templating purine in the human DNA polymerase-iota active site. Structure 2006; 14:749-55. [PMID: 16615915 DOI: 10.1016/j.str.2006.01.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 10/24/2022]
Abstract
Substrate-induced conformational change of the protein is the linchpin of enzymatic reactions. Replicative DNA polymerases, for example, convert from an open to a closed conformation in response to dNTP binding. Human DNA polymerase-iota (hPoliota), a member of the Y family of DNA polymerases, differs strikingly from other polymerases in its much higher proficiency and fidelity for nucleotide incorporation opposite template purines than opposite template pyrimidines. We present here a crystallographic analysis of hPoliota binary complexes, which together with the ternary complexes show that, contrary to replicative DNA polymerases, the DNA, and not the polymerase, undergoes the primary substrate-induced conformational change. The incoming dNTP "pushes" templates A and G from the anti to the syn conformation dictated by a rigid hPoliota active site. Together, the structures posit a mechanism for template selection wherein dNTP binding induces a conformational switch in template purines for productive Hoogsteen base pairing.
Collapse
Affiliation(s)
- Deepak T Nair
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
43
|
Showalter AK, Lamarche BJ, Bakhtina M, Su MI, Tang KH, Tsai MD. Mechanistic comparison of high-fidelity and error-prone DNA polymerases and ligases involved in DNA repair. Chem Rev 2006; 106:340-60. [PMID: 16464009 DOI: 10.1021/cr040487k] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| |
Collapse
|
45
|
Haracska L, Unk I, Prakash L, Prakash S. Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc Natl Acad Sci U S A 2006; 103:6477-82. [PMID: 16611731 PMCID: PMC1458909 DOI: 10.1073/pnas.0510924103] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Rad6-Rad18 ubiquitin-conjugating enzyme complex promotes replication through DNA lesions by means of at least three different pathways: the DNA polymerase (Pol) eta- and zeta-dependent translesion DNA synthesis (TLS) and a Rad5-Mms2-Ubc13-dependent pathway. In DNA-damaged yeast cells proliferating cell nuclear antigen (PCNA) becomes monoubiquitylated at the K164 residue, and genetic studies in yeast have indicated a requirement for this modification in TLS mediated by Poleta and Polzeta. To be able to decipher the role of PCNA monoubiquitylation in the TLS process, we have reconstituted this PCNA modification in vitro from purified yeast proteins. We show that, in addition to the requirement for Rad6-Rad18, the reaction depends on the loading of the PCNA homotrimeric ring onto the DNA by replication factor C and that all three PCNA monomers become efficiently ubiquitylated. The availability of PCNA monoubiquitylated on all of its three monomers has enabled us to examine the effects of this PCNA modification on DNA synthesis by Pols delta, eta, zeta, and Rev1. Contrary to the prevailing ideas that presume a role for PCNA ubiquitylation in the disruption of Poldelta's binding to PCNA or in the enhancement of the binding affinity of the TLS Pols for PCNA, we find that PCNA ubiquitylation does not affect any of these processes. These observations lead us to suggest a role for PCNA monoubiquitylation in disrupting the PCNA binding of a protein(s) that otherwise is inhibitory to the binding of PCNA by TLS Pols.
Collapse
Affiliation(s)
- Lajos Haracska
- *Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, Hungary; and
| | - Ildiko Unk
- *Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, H-6701 Szeged, Hungary; and
| | - Louise Prakash
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555
| | - Satya Prakash
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Nair DT, Johnson RE, Prakash L, Prakash S, Aggarwal AK. Human DNA polymerase iota incorporates dCTP opposite template G via a G.C + Hoogsteen base pair. Structure 2006; 13:1569-77. [PMID: 16216587 DOI: 10.1016/j.str.2005.08.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 08/08/2005] [Accepted: 08/13/2005] [Indexed: 11/30/2022]
Abstract
Human DNA polymerase iota (hPoliota), a member of the Y family of DNA polymerases, differs in remarkable ways from other DNA polymerases, incorporating correct nucleotides opposite template purines with a much higher efficiency and fidelity than opposite template pyrimidines. We present here the crystal structure of hPoliota bound to template G and incoming dCTP, which reveals a G.C + Hoogsteen base pair in a DNA polymerase active site. We show that the hPoliota active site has evolved to favor Hoogsteen base pairing, wherein the template sugar is fixed in a cavity that reduces the C1'-C1' distance across the nascent base pair from approximately 10.5 A in other DNA polymerases to 8.6 A in hPoliota. The rotation of G from anti to syn is then largely in response to this curtailed C1'-C1' distance. A G.C+ Hoogsteen base pair suggests a specific mechanism for hPoliota's ability to bypass N(2)-adducted guanines that obstruct replication.
Collapse
Affiliation(s)
- Deepak T Nair
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, Box 1677, 1425 Madison Avenue, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
47
|
Lee CH, Chandani S, Loechler EL. Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs. J Mol Graph Model 2006; 25:87-102. [PMID: 16386932 DOI: 10.1016/j.jmgm.2005.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/21/2005] [Accepted: 10/21/2005] [Indexed: 01/25/2023]
Abstract
Y-family DNA polymerases (DNAPs) are a superfamily of evolutionarily related proteins that exist in cells to bypass DNA damage caused by both radiation and chemicals. Cells have multiple Y-family DNAPs, presumably to conduct translesion synthesis (TLS) on DNA lesions of varying structure and conformation. The potent, ubiquitous environmental mutagen/carcinogen benzo[a]pyrene (B[a]P) induces all classes of mutations with G-->T base substitutions predominating. We recently showed that a G-->T mutagenesis pathway for the major adduct of B[a]P ([+ta]-B[a]P-N2-dG) in Escherichia coli depends on Y-family member DNAP V. Since no X-ray crystal study for DNAP V has been reported, no structure is available to help in understanding the structural basis for dATP insertion associated with G-->T mutations from [+ta]-B[a]P-N2-dG. Herein, we do homology modeling to construct a model for UmuC, which is the polymerase subunit of DNAP V. The sequences of eight Y-family DNAPs were aligned based on the positioning of conserved amino acids and an analysis of conserved predicted secondary structure, as well as insights gained from published X-ray structures of five Y-family members. Starting coordinates for UmuC were generated from the backbone coordinates for the Y-family polymerase Dpo4 for reasons discussed, and were refined using molecular dynamics with CHARMM 27. A survey of the literature revealed that E. coli DNAP V and human DNAP eta show a similar pattern of dNTP insertion opposite a variety of DNA lesions. Furthermore, E. coli DNAP IV and human DNAP kappa show a similar dNTP insertional pattern with these same DNA lesions, although the insertional pattern for DNAP IV/kappa differs from the pattern for DNAPs V/eta. These comparisons prompted us to construct and refine models for E. coli DNAP IV and human DNAPs eta and kappa as well. The dNTP/template binding pocket of all four DNAPs was inspected, focusing on the array of seven amino acids that contact the base of the incoming dNTP, as well as the template base. DNAPs V and eta show similarities in this array, and DNAPs IV and kappa also show similarities, although the arrays are different for the two pairs of DNAPs. Thus, there is a correlation between structural similarities and insertional similarities for the pairs DNAPs V/eta and DNAPs IV/kappa. Although the significance of this correlation remains to be elucidated, these observations point the way for future experimental studies.
Collapse
Affiliation(s)
- Chiu Hong Lee
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
48
|
Johnson RE, Prakash L, Prakash S. Yeast and human translesion DNA synthesis polymerases: expression, purification, and biochemical characterization. Methods Enzymol 2006; 408:390-407. [PMID: 16793382 DOI: 10.1016/s0076-6879(06)08024-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of translesion DNA synthesis (TLS) as a primary mechanism by which eukaryotic cells tolerate DNA damage has led to a large effort to characterize the biochemical properties of the individual DNA polymerases and their roles in promoting replication past DNA lesions. The low-fidelity Y family DNA polymerases constitute a large proportion of TLS polymerases, and four of the five subfamilies of this class of polymerases are represented in eukaryotes. The eukaryotic B family DNA polymerase Polzeta also functions in TLS. We have had success in expressing and purifying these TLS polymerases from yeast cells, sometimes in milligram quantities. The purified proteins have been used to determine their ability to synthesize DNA on various modified templates and to analyze the kinetic efficiencies with which bypass occurs. Purified proteins have also been used to determine the X-ray crystal structures of several Y-family DNA polymerases. This chapter describes a general outline of methods used in our laboratory for the expression and purification of these TLS DNA polymerases from yeast cells and for assaying some of their biochemical properties.
Collapse
Affiliation(s)
- Robert E Johnson
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, USA
| | | | | |
Collapse
|
49
|
Acharya N, Haracska L, Johnson RE, Unk I, Prakash S, Prakash L. Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain. Mol Cell Biol 2005; 25:9734-40. [PMID: 16227619 PMCID: PMC1265840 DOI: 10.1128/mcb.25.21.9734-9740.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Rev1 protein of Saccharomyces cerevisiae functions in translesion synthesis (TLS) together with DNA polymerase (Pol) zeta, which is comprised of the Rev3 catalytic and the Rev7 accessory subunits. Rev1, a member of the Y family of Pols, differs from other members in its high degree of specificity for incorporating a C opposite template G as well as opposite an abasic site. Although Rev1 is indispensable for Polzeta-dependent TLS, its DNA synthetic activity is not required for many of the Polzeta-dependent lesion bypass events. This observation has suggested a structural role for Rev1 in this process. Here we show that in yeast, Rev1 forms a stable complex with Rev7, and the two proteins copurify. Importantly, the polymerase-associated domain (PAD) of Rev1 mediates its binding to Rev7. These observations reveal a novel role for the PAD region of Rev1 in protein-protein interactions, and they raise the possibility of a similar involvement of the PAD of other Y family Pols in protein-protein interactions. We discuss the possible roles of Rev1 versus the Rev1-Rev7 complex in TLS.
Collapse
Affiliation(s)
- Narottam Acharya
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA
| | | | | | | | | | | |
Collapse
|
50
|
Wolfle WT, Johnson RE, Minko IG, Lloyd RS, Prakash S, Prakash L. Human DNA polymerase iota promotes replication through a ring-closed minor-groove adduct that adopts a syn conformation in DNA. Mol Cell Biol 2005; 25:8748-54. [PMID: 16166652 PMCID: PMC1265759 DOI: 10.1128/mcb.25.19.8748-8754.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acrolein, an alpha,beta-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from oxidation of polyamines. The reaction of acrolein with the N2 group of guanine in DNA leads to the formation of a cyclic adduct, gamma-hydroxy-1,N2-propano-2'-deoxyguanosine (gamma-HOPdG). Previously, we have shown that proficient replication through the gamma-HOPdG adduct can be mediated by the sequential action of human DNA polymerases (Pols) iota and kappa, in which Poliota incorporates either pyrimidine opposite gamma-HOPdG, but Polkappa extends only from the cytosine. Since gamma-HOPdG can adopt either a ring-closed cyclic form or a ring-opened form in DNA, to better understand the mechanisms that Pols iota and kappa employ to promote replication through this lesion, we have examined the ability of these polymerases to replicate through the structural analogs of gamma-HOPdG that are permanently either ring closed or ring opened. Our studies with these model adducts show that whereas the ring-opened form of gamma-HOPdG is not inhibitory to synthesis by human Pols eta, iota, or kappa, only Poliota is able to incorporate nucleotides opposite the ring-closed form, which is known to adopt a syn conformation in DNA. From these studies, we infer that (i) Pols eta, iota, and kappa have the ability to proficiently replicate through minor-groove DNA lesions that do not perturb the Watson-Crick hydrogen bonding of the template base with the incoming nucleotide, and (ii) Poliota can accommodate a minor-groove-adducted template purine which adopts a syn conformation in DNA and forms a Hoogsteen base pair with the incoming nucleotide.
Collapse
Affiliation(s)
- William T Wolfle
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, 6.104 Blocker Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA
| | | | | | | | | | | |
Collapse
|