1
|
Tarduno JA, Zhou T, Huang W, Jodder J. Earth's magnetic field and its relationship to the origin of life, evolution and planetary habitability. Natl Sci Rev 2025; 12:nwaf082. [PMID: 40206209 PMCID: PMC11980988 DOI: 10.1093/nsr/nwaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 04/11/2025] Open
Abstract
Earth's magnetic field history can provide insight into why life was able to originate and evolve on our planet, and how habitability has been maintained. The magnetism of minute magnetic inclusions in zircons indicates that the geomagnetic field is at least 4.2 billion years old, corresponding with genetic estimates for the age of the last universal common ancestor. The early establishment of the field would have provided shielding from solar and cosmic radiation, fostering environments for life to develop. The field was also likely important for preserving Earth's water, essential for life as we know it. Between 3.9 and ca. 3.4 billion years ago, zircon magnetism suggests latitudinal stasis of different ancestral terrains, and stagnant lid tectonics. These data also indicate that the solid Earth was stable with respect to the spin axis, consistent with the absence of plate tectonic driving forces. Moreover, these data point to the existence of low-latitude continental nuclei with equable climate locales that could have supported early life. Near the end of the Precambrian (0.591 to 0.565 billion years ago), the dynamo nearly collapsed, but growth of the inner core during earliest Cambrian times renewed the magnetic field and shielding, helping to prevent drying of the planet. Before this renewal, the ultra-weak magnetic shielding may have had an unexpected effect on evolution. The extremely weak field could have allowed enhanced hydrogen escape to space, leading to increased oxygenation of the atmosphere and oceans. In this way, Earth's magnetic field may have assisted the radiation of the macroscopic and mobile animals of the Ediacara fauna. Whether the Ediacara fauna are genetically related to modern life is a matter of debate, but if so, magnetospheric control on atmospheric composition may have led to an acceleration in evolution that ultimately resulted in the emergence of intelligent life.
Collapse
Affiliation(s)
- John A Tarduno
- Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14618, USA
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14618, USA
- Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
| | - Tinghong Zhou
- Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14618, USA
| | - Wentao Huang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jaganmoy Jodder
- Centre for Planetary Habitability, Department of Geosciences, University of Oslo, Oslo 0316, Norway
- Evolutionary Studies Institute, University of the Witwatersrand, Wits 2050, South Africa
| |
Collapse
|
2
|
Wang R, Shen B, Lang X, Wen B, Mitchell RN, Ma H, Yin Z, Peng Y, Liu Y, Zhou C. A Great late Ediacaran ice age. Natl Sci Rev 2023; 10:nwad117. [PMID: 37389143 PMCID: PMC10306365 DOI: 10.1093/nsr/nwad117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023] Open
Abstract
The emergence of the Ediacara biota soon after the Gaskiers glaciation ca. 580 million years ago (Ma) implies a possible glacial fuse for the evolution of animals. However, the timing of Ediacaran glaciation remains controversial because of poor age constraints on the ∼30 Ediacaran glacial deposits known worldwide. In addition, paleomagnetic constraints and a lack of convincing Snowball-like cap carbonates indicate that Ediacaran glaciations likely did not occur at low latitudes. Thus, reconciling the global occurrences without global glaciation remains a paradox. Here, we report that the large amplitude, globally synchronous ca. 571-562 Ma Shuram carbon isotope excursion occurs below the Ediacaran Hankalchough glacial deposit in Tarim, confirming a post-Shuram glaciation. Leveraging paleomagnetic evidence for a ∼90° reorientation of all continents due to true polar wander, and a non-Snowball condition that rules out low-latitude glaciations, we use paleogeographic reconstructions to further constrain glacial ages. Our results depict a 'Great Ediacaran Glaciation' occurring diachronously but continuously from ca. 580-560 Ma as different continents migrated through polar-temperate latitudes. The succession of radiation, turnover and extinction of the Ediacara biota strongly reflects glacial-deglacial dynamics.
Collapse
Affiliation(s)
- Ruimin Wang
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education and School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Bing Shen
- Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education and School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Xianguo Lang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, and Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
| | - Bin Wen
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Ross N Mitchell
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoran Ma
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongbo Peng
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Yonggang Liu
- School of Physics, Peking University, Beijing 100871, China
| | - Chuanming Zhou
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|