1
|
Willems V, Baron A, Fernandez-Matoz D, Wolfisberg G, Baret JC, Dufresne E, Alvarez L. Run-and-tumble dynamics of active giant vesicles. SOFT MATTER 2025. [PMID: 40421695 DOI: 10.1039/d5sm00309a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Cell-inspired architectures offer a promising path toward self-regulating and functional artificial microswimmers. Here, we fabricate Janus lipid vesicles with reconfigurable motion enabled by membrane fluidity. Depending on temperature and their membrane composition giant unilamellar vesicles (GUVs) can undergo spontaneous phase separation, forming Janus-like structures at room temperature. We demonstrate that due to their Janus architecture, they self-propel under external electric fields as their colloidal analogues. Interestingly, their fluid membrane coupled to the electric field induces transitions between laterally phase separated and disordered reconfigured states, characterized by 2D domain analysis. These transitions drive distinct run-and-tumble dynamics, with runs linked to phase-separated Janus states of the GUV and tumbles to transient disorder of the lipid domains, leading to an instantaneous halt of their activity due to loss of the Janus asymmetry. We identify a faster reorientation timescale decoupled from thermal effects provoked by the tumble events. This cell-inspired system offers a novel strategy for developing motile artificial cells and programmable microswimmers.
Collapse
Affiliation(s)
- Vivien Willems
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France.
| | - Alexandre Baron
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France.
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Daniel Fernandez-Matoz
- Department of Theoretical Physics, Complutense University of Madrid, Madrid, 28040, Spain
| | - Gianna Wolfisberg
- Laboratory for Soft Living Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Jean-Christophe Baret
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France.
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Eric Dufresne
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Laura Alvarez
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France.
| |
Collapse
|
2
|
Malik VK, Liao CT, Xu C, Daddi-Moussa-Ider A, Pak OS, Young YN, Feng J. Magnetically driven lipid vesicles for directed motion and light-triggered cargo release. NANOSCALE 2025. [PMID: 40396421 DOI: 10.1039/d5nr00942a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Targeted drug delivery and precision medicine offer great promise for enhancing therapeutic efficacy while minimizing systemic toxicity. Among various platforms, lipid-based delivery systems have attracted significant interest due to their intrinsic biocompatibility and their ability to transport hydrophilic, hydrophobic, and amphiphilic compounds. With recent advances in bottom-up synthetic biology and microfluidics, giant unilamellar vesicles (GUVs) have emerged as a versatile candidate for drug delivery. However, achieving controlled and directed motion of GUVs remains a critical challenge. In this study, we conduct a systematic experimental investigation of GUVs encapsulating magnetic particles (magGUVs) subjected to inhomogeneous magnetic fields. We develop a lattice Boltzmann simulation framework to model the propulsion of GUVs driven by an internally encapsulated particle under a constant force, and compare the simulated speeds with experimental measurements. Furthermore, we demonstrate a proof-of-concept integrating directed motion of magGUVs with controlled, localized release of encapsulated contents via light-induced asymmetric oxidation. This work provides a foundation for the design of lipid-based drug delivery vehicles that combine navigational control with on-demand release capabilities, advancing targeted therapeutic strategies in precision medicine.
Collapse
Affiliation(s)
- Vinit Kumar Malik
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA.
| | - Chih-Tang Liao
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA.
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA, 95053 USA
| | - Chenghao Xu
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA.
| | | | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA, 95053 USA
| | - Yuan-Nan Young
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, 07102 USA
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801 USA.
| |
Collapse
|
3
|
Yandrapalli N. Bottom-up development of lipid-based synthetic cells for practical applications. Trends Biotechnol 2025:S0167-7799(25)00094-0. [PMID: 40263003 DOI: 10.1016/j.tibtech.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Synthetic cells (SCs) can be engineered from the bottom up to recapitulate the functional properties of natural cells while performing specialized tasks such as drug delivery, biosensors, bioproduction, vaccine development, and even environmental remediation. Recent advances in synthetic biology, biomaterials, and microfluidics have enabled the development of increasingly sophisticated SCs. Transitioning from proof-of-concept demonstrations to practical applications requires a deep understanding of the design principles, materials, and fabrication techniques involved. This review provides a comprehensive overview of the current state of bottom-up SC technology and highlights the most promising approaches and applications. Challenges in the implementation of SCs and their prospects for future applications are also discussed.
Collapse
Affiliation(s)
- Naresh Yandrapalli
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| |
Collapse
|
4
|
Gompper G, Stone HA, Kurzthaler C, Saintillan D, Peruani F, Fedosov DA, Auth T, Cottin-Bizonne C, Ybert C, Clément E, Darnige T, Lindner A, Goldstein RE, Liebchen B, Binysh J, Souslov A, Isa L, di Leonardo R, Frangipane G, Gu H, Nelson BJ, Brauns F, Marchetti MC, Cichos F, Heuthe VL, Bechinger C, Korman A, Feinerman O, Cavagna A, Giardina I, Jeckel H, Drescher K. The 2025 motile active matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:143501. [PMID: 39837091 PMCID: PMC11836640 DOI: 10.1088/1361-648x/adac98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials. A major challenge for understanding and designing active matter is their inherent non-equilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Furthermore, interactions in ensembles of active agents are often non-additive and non-reciprocal. An important aspect of biological agents is their ability to sense the environment, process this information, and adjust their motion accordingly. It is an important goal for the engineering of micro-robotic systems to achieve similar functionality. Many fundamental properties of motile active matter are by now reasonably well understood and under control. Thus, the ground is now prepared for the study of physical aspects and mechanisms of motion in complex environments, the behavior of systems with new physical features like chirality, the development of novel micromachines and microbots, the emergent collective behavior and swarming of intelligent self-propelled particles, and particular features of microbial systems. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter poses major challenges, which can only be addressed by a truly interdisciplinary effort involving scientists from biology, chemistry, ecology, engineering, mathematics, and physics. The 2025 motile active matter roadmap of Journal of Physics: Condensed Matter reviews the current state of the art of the field and provides guidance for further progress in this fascinating research area.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America
| | - Christina Kurzthaler
- Max Planck Institute for the Physics of Complex Systems, Center for Systems Biology Dresden, Cluster of Excellence, Physics of Life, TU Dresden, Dresden, Germany
| | - David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, United States of America
| | | | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Thorsten Auth
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Cecile Cottin-Bizonne
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Christophe Ybert
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Eric Clément
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Thierry Darnige
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Anke Lindner
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Benno Liebchen
- Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Jack Binysh
- Institute of Physics, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Anton Souslov
- T.C.M. Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | - Hongri Gu
- Department of Physics, University of Konstanz, Konstanz, Germany
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| | - Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - Frank Cichos
- Molecular Nanophotonics, Leipzig University, 04013 Leipzig, Germany
| | | | | | - Amos Korman
- Department of Computer Science, University of Haifa, Haifa, Israel
| | - Ofer Feinerman
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Cavagna
- Istituto Sistemi Complessi (ISC-CNR), Rome, Italy
- Dipartimento di Fisica, Sapienza Università di Roma & INFN, Unità di Roma 1, Rome, Italy
| | - Irene Giardina
- Istituto Sistemi Complessi (ISC-CNR), Rome, Italy
- Dipartimento di Fisica, Sapienza Università di Roma & INFN, Unità di Roma 1, Rome, Italy
| | - Hannah Jeckel
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - Knut Drescher
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Tian Y, Li X, Chen Y, Hu X, Liu Y, Luo H, Jing G. Swimming Modes of Bacteria Escaping from a Soft Confined Space. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39565220 DOI: 10.1021/acs.langmuir.4c03808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Navigating through soft and highly confined environments is crucial for bacteria moving within living organisms' tissues, yet this topic has been less explored. In our study, we experimentally harnessed the unique biconcave geometry of red blood cells (RBCs) to enable real-time visualization of swimming Escherichia coli interacting with soft RBCs. Our findings show that RBCs adhering to a rigid surface can enclose spaces comparable to the size of bacteria, effectively entrapping them. Remarkably, we found that bacteria can escape from this extremely confined space through three newly defined escape modes: Bundling, Unbundling, and Flipping, each mode relying on the specific states of bacterial flagella. A quantitative analysis uncovers significant differences among these modes in terms of scattering angle, escaping speed, and trapping duration. We used two methods to alter the rigidity and adhesion strength of RBCs, and we studied their effects on the detailed bacterial escape process. Our results contribute to the knowledge of bacterial migration in soft, confined spaces, thereby enhancing our understanding of similar processes in biological tissue environments.
Collapse
Affiliation(s)
- Yangguang Tian
- School of Physics, Northwest University, 710127 Xi'An, China
| | - Xinlei Li
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, 710032 Xi'An, China
| | - Yaozhen Chen
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, 710032 Xi'An, China
| | - Xingbin Hu
- Department of Blood Transfusion, Xijing Hospital, Fourth Military Medical University, 710032 Xi'An, China
| | - Yanan Liu
- School of Physics, Northwest University, 710127 Xi'An, China
| | - Hao Luo
- School of Physics, Northwest University, 710127 Xi'An, China
| | - Guangyin Jing
- School of Physics, Northwest University, 710127 Xi'An, China
| |
Collapse
|
6
|
Fessler F, Wittmann M, Simmchen J, Stocco A. Autonomous engulfment of active colloids by giant lipid vesicles. SOFT MATTER 2024. [PMID: 38938147 DOI: 10.1039/d4sm00337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Our ability to design artificial micro/nanomachines able to perform sophisticated tasks crucially depends on our understanding of their interaction with biosystems and their compatibility with the biological environment. Here, we design Janus colloids fuelled only by glucose and light, which can autonomously interact with cell-like compartments and trigger endocytosis. We evidence the crucial role played by the far-field hydrodynamic interaction arising from the puller/pusher swimming mode and adhesion. We show that a large contact time between the active particle and the lipid membrane is required to observe the engulfment of a particle inside a floppy giant lipid vesicle. Active Janus colloids showing relatively small velocities and a puller type swimming mode are able to target giant vesicles, deform their membranes and subsequently get stably engulfed. An instability arising from the unbound membrane segment is responsible for the transition between partial and complete stable engulfment. These experiments shed light on the physical criteria required for autonomous active particle engulfment in giant vesicles, which can serve as general principles in disciplines ranging from drug delivery and microbial infection to nanomedicine.
Collapse
Affiliation(s)
- Florent Fessler
- Institut Charles Sadron, CNRS UPR-22, 23 rue du Loess, Strasbourg, France.
| | - Martin Wittmann
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Juliane Simmchen
- Pure and Applied Chemistry, University of Strathclyde, Cathedral Street, Glasgow, UK
| | - Antonio Stocco
- Institut Charles Sadron, CNRS UPR-22, 23 rue du Loess, Strasbourg, France.
| |
Collapse
|
7
|
Pazzi J, Subramaniam AB. Dynamics of giant vesicle assembly from thin lipid films. J Colloid Interface Sci 2024; 661:1033-1045. [PMID: 38335788 DOI: 10.1016/j.jcis.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
MOTIVATION Giant unilamellar vesicles (GUVs), cell-like synthetic micrometer size structures, assemble when thin lipid films are hydrated in aqueous solutions. Quantitative measurements of static yields and distribution of sizes of GUVs obtained from thin film hydration methods were recently reported. Dynamic data such as the time evolution of yields and distribution of sizes, however, is not known. Dynamic data can provide insights into the assembly pathway of GUVs and guidelines for choosing conditions to obtain populations with desired size distributions. APPROACH We develop the 'stopped-time' technique to characterize the time evolution of the distribution of sizes and molar yields of populations of free-floating GUVs. We additionally capture high resolution time-lapse images of surface-attached GUV buds on the lipid films. We systematically study the dynamics of assembly of GUVs from three widely used thin film hydration methods, PAPYRUS (Paper-Abetted amPhiphile hYdRation in aqUeous Solutions), gentle hydration, and electroformation. FINDINGS We find that the molar yield versus time curves of GUVs demonstrate a characteristic sigmoidal shape, with an initial yield, a transient, and then a steady state plateau for all three methods. The population of GUVs showed a right-skewed distribution of diameters. The variance of the distributions increased with time. The systems reached steady state within 120 min. We rationalize the dynamics using the thermodynamically motivated budding and merging (BNM) model. These results further the understanding of lipid dynamics and provide for the first-time practical parameters to tailor the production of GUVs of specific sizes for applications.
Collapse
Affiliation(s)
- Joseph Pazzi
- Department of Bioengineering, University of California, Merced, CA 95343, United States
| | - Anand Bala Subramaniam
- Department of Bioengineering, University of California, Merced, CA 95343, United States.
| |
Collapse
|
8
|
Overberg FA, Gompper G, Fedosov DA. Motion of microswimmers in cylindrical microchannels. SOFT MATTER 2024; 20:3007-3020. [PMID: 38495021 DOI: 10.1039/d3sm01480k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Biological and artificial microswimmers often have to propel through a variety of environments, ranging from heterogeneous suspending media to strong geometrical confinement. Under confinement, local flow fields generated by microswimmers, and steric and hydrodynamic interactions with their environment determine the locomotion. We propose a squirmer-like model to describe the motion of microswimmers in cylindrical microchannels, where propulsion is generated by a fixed surface slip velocity. The model is studied using an approximate analytical solution for cylindrical swimmer shapes, and by numerical hydrodynamics simulations for spherical and spheroidal shapes. For the numerical simulations, we employ the dissipative particle dynamics method for modelling fluid flow. Both the analytical model and simulations show that the propulsion force increases with increasing confinement. However, the swimming velocity under confinement remains lower than the swimmer speed without confinement for all investigated conditions. In simulations, different swimming modes (i.e. pusher, neutral, puller) are investigated, and found to play a significant role in the generation of propulsion force when a swimmer approaches a dead end of a capillary tube. Propulsion generation in confined systems is local, such that the generated flow field generally vanishes beyond the characteristic size of the swimmer. These results contribute to a better understanding of microswimmer force generation and propulsion under strong confinement, including the motion in porous media and in narrow channels.
Collapse
Affiliation(s)
- Florian A Overberg
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
9
|
Lee SY, Schönhöfer PWA, Glotzer SC. Complex motion of steerable vesicular robots filled with active colloidal rods. Sci Rep 2023; 13:22773. [PMID: 38123626 PMCID: PMC10733302 DOI: 10.1038/s41598-023-49314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
While the collective motion of active particles has been studied extensively, effective strategies to navigate particle swarms without external guidance remain elusive. We introduce a method to control the trajectories of two-dimensional swarms of active rod-like particles by confining the particles to rigid bounding membranes (vesicles) with non-uniform curvature. We show that the propelling agents spontaneously form clusters at the membrane wall and collectively propel the vesicle, turning it into an active superstructure. To further guide the motion of the superstructure, we add discontinuous features to the rigid membrane boundary in the form of a kinked tip, which acts as a steering component to direct the motion of the vesicle. We report that the system's geometrical and material properties, such as the aspect ratio and Péclet number of the active rods as well as the kink angle and flexibility of the membrane, determine the stacking of active particles close to the kinked confinement and induce a diverse set of dynamical behaviors of the superstructure, including linear and circular motion both in the direction of, and opposite to, the kink. From a systematic study of these various behaviors, we design vesicles with switchable and reversible locomotions by tuning the confinement parameters. The observed phenomena suggest a promising mechanism for particle transportation and could be used as a basic element to navigate active matter through complex and tortuous environments.
Collapse
Affiliation(s)
- Sophie Y Lee
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Philipp W A Schönhöfer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Sharon C Glotzer
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
10
|
Xiong Y, Yuan H, Olvera de la Cruz M. Janus magnetoelastic membrane swimmers. SOFT MATTER 2023; 19:6721-6730. [PMID: 37622382 DOI: 10.1039/d3sm00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Soft swimming microrobots have attracted considerable attention due to their potential applications in diverse fields ranging from biomedicines to environmental remediation. The locomotion control is of importance to the research of micromachines and microrobots. Inspired by the motility strategies of living microorganisms, such as flagella, cilia, and euglenoids, we focus on propulsion mechanisms with a design of Janus magnetoelastic crystalline membrane microswimmers actuated by time-varying magnetic fields. Such a Janus swimmer consists of a ferromagnetic cap completed by a magnetoelastic membrane body, where superparamagnetic particles are uniformly distributed on the surface. Under the influence of external magnetic fields, the swimmer undergoes complex shape transitions due to the interplay between the magnetic dipole-dipole interactions, the elasticity of the magnetoelastic membranes, and also the hydrodynamics of surrounding fluids. We show that those shape changes are nonreciprocal, which can generate locomotion such that the propulsion speed can be optimized by tailoring the membrane elastic properties. Besides, we also demonstrate that the Janus swimmer can be magnetically guided in a spiral trajectory. With such adequate control of locomotion in both speed and direction via non-invasive magnetic fields, this study provides another promising candidate design for the future development of microswimmers.
Collapse
Affiliation(s)
- Yao Xiong
- Center for Computation & Theory of Soft Materials, Northwestern University, Evanston, IL, 60208, USA.
| | - Hang Yuan
- Applied Physics Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - Monica Olvera de la Cruz
- Center for Computation & Theory of Soft Materials, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
11
|
Nair KS, Bajaj H. Advances in giant unilamellar vesicle preparation techniques and applications. Adv Colloid Interface Sci 2023; 318:102935. [PMID: 37320960 DOI: 10.1016/j.cis.2023.102935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Giant unilamellar vesicles (GUVs) are versatile and promising cell-sized bio-membrane mimetic platforms. Their applications range from understanding and quantifying membrane biophysical processes to acting as elementary blocks in the bottom-up assembly of synthetic cells. Definite properties and requisite goals in GUVs are dictated by the preparation techniques critical to the success of their applications. Here, we review key advances in giant unilamellar vesicle preparation techniques and discuss their formation mechanisms. Developments in lipid hydration and emulsion techniques for GUV preparation are described. Novel microfluidic-based techniques involving lipid or surfactant-stabilized emulsions are outlined. GUV immobilization strategies are summarized, including gravity-based settling, covalent linking, and immobilization by microfluidic, electric, and magnetic barriers. Moreover, some of the key applications of GUVs as biomimetic and synthetic cell platforms during the last decade have been identified. Membrane interface processes like phase separation, membrane protein reconstitution, and membrane bending have been deciphered using GUVs. In addition, vesicles are also employed as building blocks to construct synthetic cells with defined cell-like functions comprising compartments, metabolic reactors, and abilities to grow and divide. We critically discuss the pros and cons of preparation technologies and the properties they confer to the GUVs and identify potential techniques for dedicated applications.
Collapse
Affiliation(s)
- Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India.
| |
Collapse
|
12
|
Xu H, Nejad MR, Yeomans JM, Wu Y. Geometrical control of interface patterning underlies active matter invasion. Proc Natl Acad Sci U S A 2023; 120:e2219708120. [PMID: 37459530 PMCID: PMC10372614 DOI: 10.1073/pnas.2219708120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Interaction between active materials and the boundaries of geometrical confinement is key to many emergent phenomena in active systems. For living active matter consisting of animal cells or motile bacteria, the confinement boundary is often a deformable interface, and it has been unclear how activity-induced interface dynamics might lead to morphogenesis and pattern formation. Here, we studied the evolution of bacterial active matter confined by a deformable boundary. We found that an ordered morphological pattern emerged at the interface characterized by periodically spaced interfacial protrusions; behind the interfacial protrusions, bacterial swimmers self-organized into multicellular clusters displaying +1/2 nematic defects. Subsequently, a hierarchical sequence of transitions from interfacial protrusions to creeping branches allowed the bacterial active drop to rapidly invade surrounding space with a striking self-similar branch pattern. We found that this interface patterning is geometrically controlled by the local curvature of the interface, a phenomenon we denote as collective curvature sensing. Using a continuum active model, we revealed that the collective curvature sensing arises from enhanced active stresses near high-curvature regions, with the active length scale setting the characteristic distance between the interfacial protrusions. Our findings reveal a protrusion-to-branch transition as a unique mode of active matter invasion and suggest a strategy to engineer pattern formation of active materials.
Collapse
Affiliation(s)
- Haoran Xu
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| | - Mehrana R. Nejad
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, United Kingdom
| | - Julia M. Yeomans
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, United Kingdom
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| |
Collapse
|
13
|
Xiao K, Ma R, Wu CX. Wrapping dynamics and critical conditions for active nonspherical nanoparticle uptake. Phys Rev E 2023; 107:054401. [PMID: 37329073 DOI: 10.1103/physreve.107.054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 06/18/2023]
Abstract
The cellular uptake of self-propelled nonspherical nanoparticles (NPs) or viruses by cell membrane is crucial in many biological processes, but its universal dynamics have yet to be elucidated. In this study, using the Onsager variational principle, we obtain a general wrapping equation for nonspherical self-propelled nanoparticles. Two analytical critical conditions are theoretically found, indicating a continuous full uptake for prolate particles and a snapthrough full uptake for oblate particles. They precisely capture the full uptake critical boundaries in the phase diagrams numerically constructed in terms of active force, aspect ratio, adhesion energy density, and membrane tension. It is found that enhancing activity (active force), reducing effective dynamic viscosity, increasing adhesion energy density, and decreasing membrane tension can significantly improve the wrapping efficiency of the self-propelled nonspherical nanoparticles. These results give a panoramic view of the uptake dynamics of active nonspherical nanoparticles, and may offer instructions for designing an effective active NP-based vehicle for controlled drug delivery.
Collapse
Affiliation(s)
- Ke Xiao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325016, People's Republic of China and Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Rui Ma
- Fujian Provincial Key Lab for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chen-Xu Wu
- Fujian Provincial Key Lab for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|