1
|
Dexter GN, Grigg JC, Zahn M, Wheatley EJ, Lian J, Mohn WW, Eltis LD. Characterization of a two-component kinase that initiates the bacterial catabolism of hydroxyphenylethanones. J Biol Chem 2025:110210. [PMID: 40345584 DOI: 10.1016/j.jbc.2025.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 05/01/2025] [Accepted: 05/04/2025] [Indexed: 05/11/2025] Open
Abstract
The prodigious ability of bacteria to catabolize aromatic compounds has sparked considerable efforts to engineer bacteria to valorize lignin, an under-utilized component of biomass. Despite decades of study, key catabolic pathways and enzymes remain poorly characterized. We recently identified the hydroxyphenylethanone (Hpe) pathway, which enables Rhodococcus rhodochrous GD02 and other bacteria to catabolize 4-hydroxyacetophenone (HAP) and acetovanillone (AV), which are generated in the catalytic fractionation of lignin. Catabolism is initiated by a two-component, ATP-dependent dikinase, HpeHI, homologs of which are involved in the catabolism of other aromatic compounds. In biochemical studies, the kinase activity of HpeHI was highest at low ionic strength and low concentrations of Mn2+. HpeHI had highest apparent specificity for HAP and AV (kcat/KM ≥ 250 mM-1 s-1) and had submicromolar KM values for these substrates, consistent with the enzyme acting as a scavenging system. The enzyme also transformed 4-hydroxybenzaldehyde, vanillin, acetosyringone, and phenol. A 1.8 Å crystal structure of HpeI revealed that it is homologous to the ATP-grasp domain of rifampin phosphotransferase (RPH) while an AlphaFold model of HpeH indicated that it is homologous to the swivel and rifampin-binding domains of RPH. Consistent with HpeHI using a similar mechanism where the swivel domain transits between the spatially distinct substrate-binding sites, substitution of the conserved His residue in HpeH abolished kinase activity. Moreover, the HpeH component alone catalyzed phosphotransfer from 4-phosphoacetophenone to AV. This study reveals a subfamily of small molecule dikinases that comprise two components, some of which are involved in aromatic compound catabolism.
Collapse
Affiliation(s)
- Gara N Dexter
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Michael Zahn
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, Portsmouth, UK
| | - Eloisa J Wheatley
- Centre for Enzyme Innovation, School of the Environment and Life Sciences, University of Portsmouth, Portsmouth, UK
| | - Jennifer Lian
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Wolf ME, Eltis LD. Recent advances in enzymes active on lignin-derived aromatic compounds. Trends Biochem Sci 2025; 50:322-331. [PMID: 39952881 DOI: 10.1016/j.tibs.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Lignin is an attractive alternative to fossil fuels as a feedstock for the sustainable manufacture of chemicals. Emergent strategies for lignin valorization include tandem processes whereby thermochemical fractionation of the biomass yields a mixture of lignin-derived aromatic compounds (LDACs), which are then transformed into target compounds by a microbial cell factory. Identifying LDAC-degrading pathways is critical to optimize carbon yield from diverse depolymerization mixtures. Characterizing enzymes - especially those that catalyze the rate-limiting steps of O-demethylation, hydroxylation, and decarboxylation - informs and enables biocatalyst design. Rational, structure-based engineering of key enzymes, as well as untargeted, evolution-based approaches, further optimize biocatalysis. In this review we outline recent advances in these fields which are critical in developing biocatalysts to efficiently synthesize lignin-based bioproducts.
Collapse
Affiliation(s)
- Megan E Wolf
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute and Bioproducts Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Allemann MN, Kato R, Carper DL, Hochanadel LH, Alexander WG, Giannone RJ, Kamimura N, Masai E, Michener JK. Laboratory evolution in Novosphingobium aromaticivorans enables rapid catabolism of a model lignin-derived aromatic dimer. Appl Environ Microbiol 2025; 91:e0208124. [PMID: 39846750 PMCID: PMC11837543 DOI: 10.1128/aem.02081-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/08/2024] [Indexed: 01/24/2025] Open
Abstract
Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated. Here, we used experimental evolution to identify mutant strains of Novosphingobium aromaticivorans with improved catabolism of a model aromatic dimer containing a β-O-4 linkage, guaiacylglycerol-β-guaiacyl ether (GGE). We identified several parallel causal mutations, including a single nucleotide polymorphism in the promoter of an uncharacterized gene that roughly doubled the growth yield with GGE. We characterized the associated enzyme and demonstrated that it oxidizes an intermediate in GGE catabolism, β-hydroxypropiovanillone, to vanilloyl acetaldehyde. Identification of this enzyme and its key role in GGE catabolism furthers our understanding of catabolic pathways for lignin-derived aromatic compounds.IMPORTANCELignin degradation is a key step for both carbon cycling in nature and biomass conversion to fuels and chemicals. Bacteria can catabolize lignin-derived aromatic compounds, but the complexity of lignin means that full mineralization requires numerous catabolic pathways and often results in slow growth. Using experimental evolution, we identified an uncharacterized enzyme for the catabolism of a lignin-derived aromatic monomer, β-hydroxypropiovanillone. A single nucleotide polymorphism in the promoter of the associated gene significantly increased bacterial growth with either β-hydroxypropiovanillone or a related lignin-derived aromatic dimer. This work expands the repertoire of known aromatic catabolic genes and demonstrates that slow catabolism of lignin-derived aromatic compounds may be due to misregulation under laboratory conditions rather than inherent catabolic challenges.
Collapse
Affiliation(s)
- Marco N. Allemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Ryo Kato
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Dana L. Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Leah H. Hochanadel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Richard J. Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Joshua K. Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
4
|
Liang C, Lin L, Xu T, Kang G, Liu ZH, Li BZ. The Pseudomonas ligninolytic catalytic network reveals the importance of auxiliary enzymes in lignin biocatalysts. Proc Natl Acad Sci U S A 2025; 122:e2417343122. [PMID: 39854233 PMCID: PMC11789138 DOI: 10.1073/pnas.2417343122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/18/2024] [Indexed: 01/26/2025] Open
Abstract
Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized. Moreover, it is a challenge to understand synergistic lignin degradation via a diverse array of enzymes, especially in bacterial systems. In this study, the coexpression network of the periplasmic proteome uncovers potential accessory enzymes for B-type dye-decolorizing peroxidases (DypBs) in Pseudomonas putida A514. The catalytic network of the DypBs-based multienzyme complex is characterized. DypBs couple with quinone reductases and nitroreductase to participate in quinone redox cycling. They work with superoxide dismutase to induce Fenton reaction for lignin oxidation. A synthetic enzyme cocktail (SEC), recruiting 15 enzymes, was consequently designed with four functions. It overcomes the limitation of lignin repolymerization, exhibiting a capacity comparable to that of the native periplasmic secretome. Importantly, we reveal the synergistic mechanism of a SEC-A514 cell system, which incorporates the advantages of in vitro enzyme catalysis and in vivo microbial catabolism. Chemical analysis shows that this system significantly reduces the molecular weight of lignin, substantially extends the degradation spectra for lignin functional groups, and efficiently metabolizes lignin derivatives. As a result, 25% of lignin is utilized, and its average molecular weight is reduced by 27%. Our study advances the knowledge of bacterial lignin-degrading multienzymes and provides a viable lignin degradation strategy.
Collapse
Affiliation(s)
- Congying Liang
- Institute of Marine Science and Technology, Shandong University, Qingdao266237, People's Republic of China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao266237, People's Republic of China
| | - Tao Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, People's Republic of China
| | - Guoqiang Kang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, People's Republic of China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, People's Republic of China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, People's Republic of China
| |
Collapse
|
5
|
Yoshida A, Kurnia I, Higuchi Y, Osaka Y, Yasuta C, Sakamoto C, Tamura M, Takamatsu T, Kamimura N, Masai E, Sonoki T. Direct catalytic oxidation of rice husk lignin with hydroxide nanorod-modified copper foam and muconate production by engineered Pseudomonas sp. NGC7. J Biosci Bioeng 2024; 138:431-438. [PMID: 39191570 DOI: 10.1016/j.jbiosc.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
For the direct alkaline oxidation of rice husk lignin, we developed a copper foam-based heterogeneous catalyst that offers advantages in its recovery after the reaction mixture. The depolymerized products were utilized for muconate production by an engineered Pseudomonas sp. NGC7-based strain. A hydroxide nanorod-modified copper foam was prepared by the surface oxidation of copper foam, followed by alkaline oxidation of rice husk lignin over the catalyst. The catalyst was easily separated from the cellulosic residues in the reaction mixture, and the residues were then recovered by filtration. The resulting lignin stream was composed of a variety of aromatic monomers containing p-hydroxyphenyl, guaiacyl, and syringyl compounds. The catabolic activity of Pseudomonas sp. NGC7 was demonstrated to be more suitable for muconate production from a mixture comprising 4-hydroxybenzoate (a typical p-hydroxyphenyl compound), vanillate (a guaiacyl compound), and syringate (a syringyl compound), owing to its natural ability to grow on syringate. Thus, it was applied to produce muconate from a rice husk lignin stream prepared through hydroxide nanorod-modified copper foam-catalyzed alkaline oxidation by conferring the genes responsible for converting the acetophenone derivatives to their corresponding aromatic acids and protocatechuate decarboxylase to an NGC7-based strain deficient in protocatechuate 3,4-dioxygenase and muconate cycloisomerase. As a result, the engineered NGC7-based muconate-producing strain produced muconate selectively from the rice husk lignin stream at 93.7 mol% yield.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Institute of Regional Innovation (IRI), Hirosaki University, Hirosaki, Aomori 036-8561, Japan; Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Irwan Kurnia
- Institute of Regional Innovation (IRI), Hirosaki University, Hirosaki, Aomori 036-8561, Japan; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
| | - Yudai Higuchi
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Yuta Osaka
- Institute of Regional Innovation (IRI), Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Chieko Yasuta
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Chiho Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Mina Tamura
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Tsubasa Takamatsu
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Tomonori Sonoki
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
6
|
Silva JP, Frederico TD, Ticona ARP, Pinto OHB, Williams TCR, Krüger RH, Noronha EF. Insights on kraft lignin degradation in an anaerobic environment. Enzyme Microb Technol 2024; 179:110468. [PMID: 38850683 DOI: 10.1016/j.enzmictec.2024.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Lignin is an aromatic macromolecule and one of the main constituents of lignocellulosic materials. Kraft lignin is generated as a residual by-product of the lignocellulosic biomass industrial process, and it might be used as a feedstock to generate low molecular weight aromatic compounds. In this study, we seek to understand and explore the potential of ruminal bacteria in the degradation of kraft lignin. We established two consortia, KLY and KL, which demonstrated significant lignin-degrading capabilities. Both consortia reached maximum growth after two days, with KLY showing a higher growth and decolorization rate. Additionally, SEM analysis revealed morphological changes in the residual lignin from both consortia, indicating significant degradation. This was further supported by FTIR spectra, which showed new bands corresponding to the C-H vibrations of guaiacyl and syringyl units, suggesting structural transformations of the lignin. Taxonomic analysis showed enrichment of the microbial community with members of the Dickeya genus. Seven metabolic pathways related to lignin metabolism were predicted for the established consortia. Both consortia were capable of consuming aromatic compounds such as 4-hydroxybenzoic acid, syringaldehyde, acetovanillone, and syringic acid, highlighting their capacity to convert aromatic compounds into commercially valuable molecules presenting antifungal activity and used as food preservatives as 4-hydroxyphenylacetic, 3-phenylacetic, and phenylacetic acids. Therefore, the microbial consortia shown in the present work are models for understanding the process of lignin degradation and consumption in bacterial anaerobic communities and developing biological processes to add value to industrial processes based on lignocellulosic biomass as feedstock.
Collapse
Affiliation(s)
- Jéssica P Silva
- Enzymology Laboratory, Cell Biology Department, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Tayná D Frederico
- Enzymology Laboratory, Cell Biology Department, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Alonso R P Ticona
- Enzyme Biotechnology Research Laboratory, Science Faculty, Universidad Nacional Jorge Basadre Grohmann, Tacna 23003, Peru
| | - Otávio H B Pinto
- Genomic for Climate Change Research Center (GCCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil
| | - Thomas C R Williams
- Plant Biochemistry Laboratory, Department of Botany, University of Brasilia, Brasília 70910-900, Brazil
| | - Ricardo H Krüger
- Enzymology Laboratory, Cell Biology Department, Universidade de Brasília (UnB), Brasília 70910-900, Brazil
| | - Eliane F Noronha
- Enzymology Laboratory, Cell Biology Department, Universidade de Brasília (UnB), Brasília 70910-900, Brazil.
| |
Collapse
|
7
|
Roccor R, Wolf ME, Liu J, Eltis LD. The catabolism of ethylene glycol by Rhodococcus jostii RHA1 and its dependence on mycofactocin. Appl Environ Microbiol 2024; 90:e0041624. [PMID: 38837369 PMCID: PMC11267921 DOI: 10.1128/aem.00416-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Ethylene glycol (EG) is a widely used industrial chemical with manifold applications and also generated in the degradation of plastics such as polyethylene terephthalate. Rhodococcus jostii RHA1 (RHA1), a potential biocatalytic chassis, grows on EG. Transcriptomic analyses revealed four clusters of genes potentially involved in EG catabolism: the mad locus, predicted to encode mycofactocin-dependent alcohol degradation, including the catabolism of EG to glycolate; two GCL clusters, predicted to encode glycolate and glyoxylate catabolism; and the mft genes, predicted to specify mycofactocin biosynthesis. Bioinformatic analyses further revealed that the mad and mft genes are widely distributed in mycolic acid-producing bacteria such as RHA1. Neither ΔmadA nor ΔmftC RHA1 mutant strains grew on EG but grew on acetate. In resting cell assays, the ΔmadA mutant depleted glycolaldehyde but not EG from culture media. These results indicate that madA encodes a mycofactocin-dependent alcohol dehydrogenase that initiates EG catabolism. In contrast to some mycobacterial strains, the mad genes did not appear to enable RHA1 to grow on methanol as sole substrate. Finally, a strain of RHA1 adapted to grow ~3× faster on EG contained an overexpressed gene, aldA2, predicted to encode an aldehyde dehydrogenase. When incubated with EG, this strain accumulated lower concentrations of glycolaldehyde than RHA1. Moreover, ecotopically expressed aldA2 increased RHA1's tolerance for EG further suggesting that glycolaldehyde accumulation limits growth of RHA1 on EG. Overall, this study provides insights into the bacterial catabolism of small alcohols and aldehydes and facilitates the engineering of Rhodococcus for the upgrading of plastic waste streams.IMPORTANCEEthylene glycol (EG), a two-carbon (C2) alcohol, is produced in high volumes for use in a wide variety of applications. There is burgeoning interest in understanding and engineering the bacterial catabolism of EG, in part to establish circular economic routes for its use. This study identifies an EG catabolic pathway in Rhodococcus, a genus of bacteria well suited for biocatalysis. This pathway is responsible for the catabolism of methanol, a C1 feedstock, in related bacteria. Finally, we describe strategies to increase the rate of degradation of EG by increasing the transformation of glycolaldehyde, a toxic metabolic intermediate. This work advances the development of biocatalytic strategies to transform C2 feedstocks.
Collapse
Affiliation(s)
- Raphael Roccor
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan E. Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jie Liu
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Wolf ME, Lalande AT, Newman BL, Bleem AC, Palumbo CT, Beckham GT, Eltis LD. The catabolism of lignin-derived p-methoxylated aromatic compounds by Rhodococcus jostii RHA1. Appl Environ Microbiol 2024; 90:e0215523. [PMID: 38380926 PMCID: PMC10952524 DOI: 10.1128/aem.02155-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Emergent strategies to valorize lignin, an abundant but underutilized aromatic biopolymer, include tandem processes that integrate chemical depolymerization and biological catalysis. To date, aromatic monomers from C-O bond cleavage of lignin have been converted to bioproducts, but the presence of recalcitrant C-C bonds in lignin limits the product yield. A promising chemocatalytic strategy that overcomes this limitation involves phenol methyl protection and autoxidation. Incorporating this into a tandem process requires microbial cell factories able to transform the p-methoxylated products in the resulting methylated lignin stream. In this study, we assessed the ability of Rhodococcus jostii RHA1 to catabolize the major aromatic products in a methylated lignin stream and elucidated the pathways responsible for this catabolism. RHA1 grew on a methylated pine lignin stream, catabolizing the major aromatic monomers: p-methoxybenzoate (p-MBA), veratrate, and veratraldehyde. Bioinformatic analyses suggested that a cytochrome P450, PbdA, and its cognate reductase, PbdB, are involved in p-MBA catabolism. Gene deletion studies established that both pbdA and pbdB are essential for growth on p-MBA and several derivatives. Furthermore, a deletion mutant of a candidate p-hydroxybenzoate (p-HBA) hydroxylase, ΔpobA, did not grow on p-HBA. Veratraldehyde and veratrate catabolism required both vanillin dehydrogenase (Vdh) and vanillate O-demethylase (VanAB), revealing previously unknown roles of these enzymes. Finally, a ΔpcaL strain grew on neither p-MBA nor veratrate, indicating they are catabolized through the β-ketoadipate pathway. This study expands our understanding of the bacterial catabolism of aromatic compounds and facilitates the development of biocatalysts for lignin valorization.IMPORTANCELignin, an abundant aromatic polymer found in plant biomass, is a promising renewable replacement for fossil fuels as a feedstock for the chemical industry. Strategies for upgrading lignin include processes that couple the catalytic fractionation of biomass and biocatalytic transformation of the resulting aromatic compounds with a microbial cell factory. Engineering microbial cell factories for this biocatalysis requires characterization of bacterial pathways involved in catabolizing lignin-derived aromatic compounds. This study identifies new pathways for lignin-derived aromatic degradation in Rhodococcus, a genus of bacteria well suited for biocatalysis. Additionally, we describe previously unknown activities of characterized enzymes on lignin-derived compounds, expanding their utility. This work advances the development of strategies to replace fossil fuel-based feedstocks with sustainable alternatives.
Collapse
Affiliation(s)
- Megan E. Wolf
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Anne T. Lalande
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Brianne L. Newman
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Alissa C. Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Chad T. Palumbo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Lindsay D. Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| |
Collapse
|