1
|
Ford JJ, Santos-Aberturas J, Hems ES, Sallmen JW, Bögeholz LAK, Polturak G, Osbourn A, Wright JA, Rodnina MV, Vereecke D, Francis IM, Truman AW. Identification of the lydiamycin biosynthetic gene cluster in a plant pathogen guides structural revision and identification of molecular target. Proc Natl Acad Sci U S A 2025; 122:e2424388122. [PMID: 40388608 DOI: 10.1073/pnas.2424388122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/07/2025] [Indexed: 05/21/2025] Open
Abstract
The natural products actinonin and matlystatin feature an N-hydroxy-2-pentyl-succinamyl (HPS) chemophore that facilitates metal chelation and confers their metalloproteinase inhibitory activity. Actinonin is the most potent natural inhibitor of peptide deformylase (PDF) and exerts antimicrobial and herbicidal bioactivity by disrupting protein synthesis. Here, we used a genomics-led approach to identify candidate biosynthetic gene clusters (BGCs) hypothesized to produce HPS-containing natural products. We show that one of these BGCs is on the pathogenicity megaplasmid of the plant pathogen Rhodococcus fascians and produces lydiamycin A, a macrocyclic pentapeptide. The presence of genes predicted to make an HPS-like chemophore informed the structural recharacterization of lydiamycin via NMR and crystallography to show that it features a rare 2-pentyl-succinyl chemophore. We demonstrate that lydiamycin A inhibits bacterial PDF in vitro and show that a cluster-situated PDF gene confers resistance to lydiamycin A, representing an uncommon self-immunity mechanism associated with the production of a PDF inhibitor. In planta competition assays showed that lydiamycin enhances the fitness of R. fascians during plant colonization. This study highlights how a BGC can inform the structure, biochemical target, and ecological function of a natural product.
Collapse
Affiliation(s)
- Jonathan J Ford
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Javier Santos-Aberturas
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Centre for Microbial Interactions, Norwich NR4 7UG, United Kingdom
| | - Edward S Hems
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Centre for Microbial Interactions, Norwich NR4 7UG, United Kingdom
| | - Joseph W Sallmen
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Lena A K Bögeholz
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Guy Polturak
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Joseph A Wright
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Danny Vereecke
- School of Nursing, Howest University of Applied Sciences, Bruges 8200, Belgium
| | - Isolde M Francis
- Department of Biology, California State University, Bakersfield, CA 93311
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Centre for Microbial Interactions, Norwich NR4 7UG, United Kingdom
| |
Collapse
|
2
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
3
|
Viegas J. Profile of Catherine Drennan. Proc Natl Acad Sci U S A 2024; 121:e2420751121. [PMID: 39514313 PMCID: PMC11573533 DOI: 10.1073/pnas.2420751121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
|
4
|
Darbyshire AL, Wolthers KR. Characterization of a Structurally Distinct ATP-Dependent Reactivating Factor of Adenosylcobalamin-Dependent Lysine 5,6-Aminomutase. Biochemistry 2024; 63:913-925. [PMID: 38471967 DOI: 10.1021/acs.biochem.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Several anaerobic bacterial species, including the Gram-negative oral bacterium Fusobacterium nucleatum, ferment lysine to produce butyrate, acetate, and ammonia. The second step of the metabolic pathway─isomerization of β-l-lysine to erythro-3,5-diaminohexanoate─is catalyzed by the adenosylcobalamin (AdoCbl) and pyridoxal 5'-phosphate (PLP)-dependent enzyme, lysine 5,6-aminomutase (5,6-LAM). Similar to other AdoCbl-dependent enzymes, 5,6-LAM undergoes mechanism-based inactivation due to loss of the AdoCbl 5'-deoxyadenosyl moiety and oxidation of the cob(II)alamin intermediate to hydroxocob(III)alamin. Herein, we identified kamB and kamC, two genes responsible for ATP-dependent reactivation of 5,6-LAM. KamB and KamC, which are encoded upstream of the genes corresponding to α and β subunits of 5,6-LAM (kamD and kamE), co-purified following coexpression of the genes in Escherichia coli. KamBC exhibited a basal level of ATP-hydrolyzing activity that was increased 35% in a reaction mixture that facilitated 5,6-LAM turnover with β-l-lysine or d,l-lysine. Ultraviolet-visible (UV-vis) spectroscopic studies performed under anaerobic conditions revealed that KamBC in the presence of ATP/Mg2+ increased the steady-state concentration of the cob(II)alamin intermediate in the presence of excess β-l-lysine. Using a coupled UV-visible spectroscopic assay, we show that KamBC is able to reactivate 5,6-LAM through exchange of the damaged hydroxocob(III)alamin for AdoCbl. KamBC is also specific for 5,6-LAM as it had no effect on the rate of substrate-induced inactivation of the homologue, ornithine 4,5-aminomutase. Based on sequence homology, KamBC is structurally distinct from previously characterized B12 chaperones and reactivases, and correspondingly adds to the list of proteins that have evolved to maintain the cellular activity of B12 enzymes.
Collapse
Affiliation(s)
- Amanda L Darbyshire
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| |
Collapse
|
5
|
Vaccaro FA, Faber DA, Andree GA, Born DA, Kang G, Fonseca DR, Jost M, Drennan CL. Structural insight into G-protein chaperone-mediated maturation of a bacterial adenosylcobalamin-dependent mutase. J Biol Chem 2023; 299:105109. [PMID: 37517695 PMCID: PMC10481361 DOI: 10.1016/j.jbc.2023.105109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
G-protein metallochaperones are essential for the proper maturation of numerous metalloenzymes. The G-protein chaperone MMAA in humans (MeaB in bacteria) uses GTP hydrolysis to facilitate the delivery of adenosylcobalamin (AdoCbl) to AdoCbl-dependent methylmalonyl-CoA mutase, an essential metabolic enzyme. This G-protein chaperone also facilitates the removal of damaged cobalamin (Cbl) for repair. Although most chaperones are standalone proteins, isobutyryl-CoA mutase fused (IcmF) has a G-protein domain covalently attached to its target mutase. We previously showed that dimeric MeaB undergoes a 180° rotation to reach a state capable of GTP hydrolysis (an active G-protein state), in which so-called switch III residues of one protomer contact the G-nucleotide of the other protomer. However, it was unclear whether other G-protein chaperones also adopted this conformation. Here, we show that the G-protein domain in a fused system forms a similar active conformation, requiring IcmF oligomerization. IcmF oligomerizes both upon Cbl damage and in the presence of the nonhydrolyzable GTP analog, guanosine-5'-[(β,γ)-methyleno]triphosphate, forming supramolecular complexes observable by mass photometry and EM. Cryo-EM structural analysis reveals that the second protomer of the G-protein intermolecular dimer props open the mutase active site using residues of switch III as a wedge, allowing for AdoCbl insertion or damaged Cbl removal. With the series of structural snapshots now available, we now describe here the molecular basis of G-protein-assisted AdoCbl-dependent mutase maturation, explaining how GTP binding prepares a mutase for cofactor delivery and how GTP hydrolysis allows the mutase to capture the cofactor.
Collapse
Affiliation(s)
- Francesca A Vaccaro
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daphne A Faber
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gisele A Andree
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David A Born
- Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gyunghoon Kang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dallas R Fonseca
- Amgen Scholar Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Marco Jost
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
6
|
Mascarenhas R, Ruetz M, Gouda H, Heitman N, Yaw M, Banerjee R. Architecture of the human G-protein-methylmalonyl-CoA mutase nanoassembly for B 12 delivery and repair. Nat Commun 2023; 14:4332. [PMID: 37468522 PMCID: PMC10356863 DOI: 10.1038/s41467-023-40077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
G-proteins function as molecular switches to power cofactor translocation and confer fidelity in metal trafficking. The G-protein, MMAA, together with MMAB, an adenosyltransferase, orchestrate cofactor delivery and repair of B12-dependent human methylmalonyl-CoA mutase (MMUT). The mechanism by which the complex assembles and moves a >1300 Da cargo, or fails in disease, are poorly understood. Herein, we report the crystal structure of the human MMUT-MMAA nano-assembly, which reveals a dramatic 180° rotation of the B12 domain, exposing it to solvent. The complex, stabilized by MMAA wedging between two MMUT domains, leads to ordering of the switch I and III loops, revealing the molecular basis of mutase-dependent GTPase activation. The structure explains the biochemical penalties incurred by methylmalonic aciduria-causing mutations that reside at the MMAA-MMUT interfaces we identify here.
Collapse
Affiliation(s)
- Romila Mascarenhas
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Markus Ruetz
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Harsha Gouda
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Natalie Heitman
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madeline Yaw
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Mascarenhas R, Ruetz M, Gouda H, Heitman N, Yaw M, Banerjee R. Architecture of the human G-protein-methylmalonyl-CoA mutase nanoassembly for B 12 delivery and repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533963. [PMID: 36993209 PMCID: PMC10055420 DOI: 10.1101/2023.03.23.533963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
G-proteins function as molecular switches to power cofactor translocation and confer fidelity in metal trafficking. MMAA, a G-protein motor, together with MMAB, an adenosyltransferase, orchestrate cofactor delivery and repair of B 12 -dependent human methylmalonyl-CoA mutase (MMUT). The mechanism by which the motor assembles and moves a >1300 Da cargo, or fails in disease, are poorly understood. Herein, we report the crystal structure of the human MMUT-MMAA nanomotor assembly, which reveals a dramatic 180° rotation of the B 12 domain, exposing it to solvent. The nanomotor complex, stabilized by MMAA wedging between two MMUT domains, leads to ordering of the switch I and III loops, revealing the molecular basis of mutase-dependent GTPase activation. The structure explains the biochemical penalties incurred by methylmalonic aciduria-causing mutations that reside at the newly identified MMAA-MMUT interfaces.
Collapse
|