1
|
Zhou C, Li J, Duan Y, Fu S, Li H, Zhou Y, Gao H, Zhou X, Liu H, Lei L, Chen J, Yuan D. Genome sequencing and transcriptome analysis provide an insight into the hypoxia resistance of Channa asiatica. Int J Biol Macromol 2024; 282:137306. [PMID: 39515710 DOI: 10.1016/j.ijbiomac.2024.137306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Channa asiatica is an economically valuable fish species and excellent model for studying hypoxic tolerance. However, the underlying genetic and molecular mechanisms are poorly understood. In this study, we assembled a high-quality C. asiatica genome (23 chromosomes, totaling 722 Mb) using a combination of Illumina short-read, PacBio long-read, and Hi-C sequencing. Repetitive elements accounted for 28.39%of the C. asiatica genome, and 23,949 protein-coding genes were predicted, with 96.63 % of these functionally annotated. Moreover, a comparative genomic analysis of 12 fish genomes showed that gene families associated with oxygen binding and transport were expanded in C. asiatica. In addition, transcriptome analysis revealed that multiple oxidative stress pathways were activated when C. asiatica was exposed to air. In conclusion, this study provided high-quality genome assembly and transcriptome data, both serving as critical resources for researching the genetic basis of hypoxic tolerance in C. asiatica.
Collapse
Affiliation(s)
- Chaowei Zhou
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - Junting Li
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - Yuting Duan
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - Suxing Fu
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - Hejiao Li
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - Yinhua Zhou
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - He Gao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China; Key Laboratory of Aquatic Science of Chongqing, College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xinghua Zhou
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China
| | - Haiping Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China; Key Laboratory of Aquatic Science of Chongqing, College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Luo Lei
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China.
| | - Jie Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China.
| | - Dengyue Yuan
- College of Fisheries, Southwest University, Chongqing 402460, China; Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Key Laboratory of Aquatics Science of Chongqing, Chongqing 400700, China.
| |
Collapse
|
2
|
Luo Y, Mi W, Gao Y, Qin L. Provenance Analysis in the Nima Basin during Paleogene and Its Implications for the Decline of the Tibetan Central Valley. ACS OMEGA 2024; 9:13148-13162. [PMID: 38524406 PMCID: PMC10955701 DOI: 10.1021/acsomega.3c09706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
It is unclear what caused the Bangong Nujiang suture zone in the central Tibetan plateau to rise from less than 2 km in early Cenozoic to more than 4 km at present. The zircon U-Pb ages and trace elements of samples from the Niubao Formation in the Paleogene of the Nima basin were analyzed and tested. Combined with the isostasy theory, the surface uplift height of the Nima Basin during the Cenozoic period was calculated. The zircon U-Pb age results of the Niubao formation are consistent with the ages of the Lhasa terrane on the south side of the basin, the Qiangtang terrane on the north side, and the uplift in central. The zircon Eu/Eu* results show that the crust in central part of Tibetan plateau thickened by ∼20 km in Paleogene, resulting in ∼3 km surface uplift. Sediments created a total of about 1 km of surface uplift throughout the Paleogene, and the deposition rate began to slow down significantly at ∼40 Ma. Therefore, it is inferred that in the early Cenozoic, the uplift of the valley was mainly caused by sedimentation. With the continuous downward subduction of the Indian plate, at about 40 Ma, factors such as crustal shortening dominated the uplift of the central valley, and the uplift caused by deposition only accounted for a very small part. In general, the uplift of the Central Valley in the Paleogene was mainly affected by crustal shortening, but a quarter of the surface uplift was caused by the accumulation of sediments.
Collapse
Affiliation(s)
- Yuhang Luo
- School of Resource and Environmental
Engineering, Inner Mongolia University of
Technology, Inner Mongolia, Hohhot 010051, People’s Republic of China
| | - Wentian Mi
- School of Resource and Environmental
Engineering, Inner Mongolia University of
Technology, Inner Mongolia, Hohhot 010051, People’s Republic of China
| | - Yuan Gao
- School of Resource and Environmental
Engineering, Inner Mongolia University of
Technology, Inner Mongolia, Hohhot 010051, People’s Republic of China
| | - Luqing Qin
- School of Resource and Environmental
Engineering, Inner Mongolia University of
Technology, Inner Mongolia, Hohhot 010051, People’s Republic of China
| |
Collapse
|