1
|
Li H, Kong X, Yang D, Fang Y, Yang H, Zhang W, Wei J, Li X. Differential regulation of reproduction and molting by juvenile hormone in aphids. JOURNAL OF INSECT PHYSIOLOGY 2025; 162:104791. [PMID: 40043901 DOI: 10.1016/j.jinsphys.2025.104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Insects rely on juvenile hormones to regulate various physiological processes, including reproduction and molting; currently eight forms of this hormone are known. In most insects, only JH Ⅲ is synthesized. Meanwhile, aphids produce JH Ⅲ and JH Ⅲ skipped bisepoxide (JHSB3). However, it remains unclear whether these compounds play distinct roles in functional regulation. In this study, we demonstrated that the tested concentrations of JH Ⅲ effectively increased the number of aphid offspring, whereas high concentrations of JHSB3 affected the molting process. Drip experiments showed that 10 mg/L JH Ⅲ increased the number of offspring from 39.38 ± 8.03 to 56.50 ± 13.17, whereas 10 mg/L JHSB3 resulted in a 60.00 %± 5.77 % failure rate in molting before adulthood. Transcriptomic analysis also revealed that in the JH Ⅲ treatment group, 9 genes and 7 pathways associated with reproduction were expressed, but not genes or pathways associated with molting. In addition, 16 genes and 9 pathways associated with molting as well as 5 genes and 4 pathways associated with reproduction were identified in the JHSB3 treatment group. JH Ⅲ promotes reproduction in aphids by enhancing Vg expression, whereas JHSB3 affects molting by inhibiting the synthesis of molting hormone-related enzymes. The results indicate that JH Ⅲ and JHSB3 exhibit diverse functions in Aphis craccivora. The findings have significant implications for further studies on the physiological functions of different JHs.
Collapse
Affiliation(s)
- Haolin Li
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China
| | - Xue Kong
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100000, People's Republic of China
| | - Dongyu Yang
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China
| | - Yan Fang
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China
| | - Han Yang
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China
| | - Wenjie Zhang
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China
| | - Jiguang Wei
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China
| | - Xuesheng Li
- College of Agriculture, Guangxi University, Guangxi Key Laboratory of Agric-Environment and Agric-products Safety, Nanning, Guangxi 530004, People's Republic of China.
| |
Collapse
|
2
|
Sedlak D, Tuma R, Kolla JN, Mokhamatam RB, Bahrova L, Lisova M, Bittova L, Jindra M. Unique and Common Agonists Activate the Insect Juvenile Hormone Receptor and the Human AHR. J Mol Biol 2025; 437:168883. [PMID: 39608634 DOI: 10.1016/j.jmb.2024.168883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Transcription factors of the bHLH-PAS family play vital roles in animal development, physiology, and disease. Two members of the family require binding of low-molecular weight ligands for their activity: the vertebrate aryl hydrocarbon receptor (AHR) and the insect juvenile hormone receptor (JHR). In the fly Drosophila melanogaster, the paralogous proteins GCE and MET constitute the ligand-binding component of JHR complexes. Whilst GCE/MET and AHR are phylogenetically heterologous, their mode of action is similar. JHR is targeted by several synthetic agonists that serve as insecticides disrupting the insect endocrine system. AHR is an important regulator of human endocrine homeostasis, and it responds to environmental pollutants and endocrine disruptors. Whether AHR signaling is affected by compounds that can activate JHR has not been reported. To address this question, we screened a chemical library of 50,000 compounds to identify 93 novel JHR agonists in a reporter system based on Drosophila cells. Of these compounds, 26% modulated AHR signaling in an analogous reporter assay in a human cell line, indicating a significant overlap in the agonist repertoires of the two receptors. To explore the structural features of agonist-dependent activation of JHR and AHR, we compared the ligand-binding cavities and their interactions with selective and common ligands of AHR and GCE. Molecular dynamics modeling revealed ligand-specific as well as conserved side chains within the respective cavities. Significance of predicted interactions was supported through site-directed mutagenesis. The results have indicated that synthetic insect juvenile hormone agonists might interfere with AHR signaling in human cells.
Collapse
Affiliation(s)
- David Sedlak
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague 14220, Czech Republic.
| | - Roman Tuma
- Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic
| | | | | | - Liliia Bahrova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Michaela Lisova
- CZ-OPENSCREEN, Institute of Molecular Genetics, Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Lenka Bittova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic; Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
3
|
Jindra M, Tumova S, Bittova L, Tuma R, Sedlak D. Agonist-dependent action of the juvenile hormone receptor. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101234. [PMID: 39025365 DOI: 10.1016/j.cois.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Juvenile hormone (JH) signaling is realized at the gene regulatory level by receptors of the bHLH-PAS transcription factor family. The sesquiterpenoid hormones and their synthetic mimics are agonist ligands of a unique JH receptor (JHR) protein, methoprene-tolerant (MET). Upon binding an agonist to its PAS-B cavity, MET dissociates from a cytoplasmic chaperone complex including HSP83 and concomitantly switches to a bHLH-PAS partner taiman, forming a nuclear, transcriptionally active JHR heterodimer. This course of events resembles the vertebrate aryl hydrocarbon receptor (AHR), activated by a plethora of endogenous and synthetic compounds. Like in AHR, the pliable PAS-B cavity of MET adjusts to diverse ligands and binds them through similar mechanisms. Despite recent progress, we only begin to discern agonist-induced conformational shifts within the PAS-B domain, with the ultimate goal of understanding how these localized changes stimulate the assembly of the active JHR complex and, thus, fully grasp the mechanism of JHR signaling.
Collapse
Affiliation(s)
- Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic.
| | - Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Lenka Bittova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Roman Tuma
- Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic
| | - David Sedlak
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| |
Collapse
|
4
|
Leyria J. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol Cell Endocrinol 2024; 587:112211. [PMID: 38494046 DOI: 10.1016/j.mce.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The endocrine system plays a pivotal role in shaping the mechanisms that ensure successful reproduction. With over a million known insect species, understanding the endocrine control of reproduction has become increasingly complex. Some of the key players include the classic insect lipid hormones juvenile hormone (JH) and ecdysteroids, and neuropeptides such as insulin-like peptides (ILPs). Individual endocrine factors not only modulate their own target tissue but also play crucial roles in crosstalk among themselves, ensuring successful vitellogenesis and oogenesis. Recent advances in omics, gene silencing, and genome editing approaches have accelerated research, offering both fundamental insights and practical applications for studying in-depth endocrine signaling pathways. This review provides an updated and integrated view of endocrine factors modulating vitellogenesis and oogenesis in insect females.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
5
|
Jeon JH, Jeong SA, Park DS, Park HH, Shin SW, Oh HW. Disruptive Effects of Two Curcuminoids (Demethoxycurcumin and Bisdemethoxycurcumin) on the Larval Development of Drosophila melanogaster. INSECTS 2023; 14:959. [PMID: 38132632 PMCID: PMC10744261 DOI: 10.3390/insects14120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Juvenile hormones (JHs) play a central role in insect development, reproduction, and various physiological functions. Curcuminoids generally exhibit a wide range of biological activities, such as antioxidant, anti-inflammatory, antibacterial, and insecticidal, and they exhibit insect growth inhibitory effects. However, research on insecticidal properties of curcuminoids has been limited. Moreover, to the best of our knowledge, studies on JHs of insects and curcuminoids are lacking. Therefore, this study aimed to identify the substances that act as JH disruptors (JHDs) from edible plants. Demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC), two curcuminoids from the turmeric plant Curcuma longa L. inhibited the formation of a methoprene-tolerant (Met)-Taiman (Tai) heterodimer complex in Drosophila melanogaster, as shown through in vitro yeast two-hybrid assays. An artificial diet containing 1% (w/v) DMC or BDMC significantly reduced the number of D. melanogaster larvae in a concentration-dependent manner; larval development was disrupted, preventing the progression of larvae to pupal stages, resulting in an absence of adults. Building on the results obtained in this study on curcuminoids, researchers can use our study as a reference to develop eco-friendly pesticides.
Collapse
Affiliation(s)
- Jun-Hyoung Jeon
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; (J.-H.J.); (S.-A.J.); (D.-S.P.)
| | - Seon-Ah Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; (J.-H.J.); (S.-A.J.); (D.-S.P.)
| | - Doo-Sang Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; (J.-H.J.); (S.-A.J.); (D.-S.P.)
| | - Hong-Hyun Park
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Sang-Woon Shin
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyun-Woo Oh
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Tumova S, Dolezel D, Jindra M. Conserved and Unique Roles of bHLH-PAS Transcription Factors in Insects - From Clock to Hormone Reception. J Mol Biol 2023; 436:168332. [PMID: 39491146 DOI: 10.1016/j.jmb.2023.168332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
A dozen bHLH-PAS transcription factors have evolved since the dawn of the animal kingdom; nine of them have mutual orthologs between arthropods and vertebrates. These proteins are master regulators in a range of developmental processes from organogenesis, nervous system formation and functioning, to cell fate decisions defining identity of limbs or photoreceptors for color vision. Among the functionally best conserved are bHLH-PAS proteins acting in the animal circadian clock. On the other side of the spectrum are fundamental physiological mechanisms such as those underlying xenobiotic detoxification, oxygen homeostasis, and metabolic adaptation to hypoxia, infection or tumor progression. Predictably, malfunctioning of bHLH-PAS regulators leads to pathologies. Performance of the individual bHLH-PAS proteins is modulated at multiple levels including dimerization and other protein-protein interactions, proteasomal degradation, and by binding low-molecular weight ligands. Despite the vast evolutionary gap dividing arthropods and vertebrates, and the differences in their anatomy, many functions of orthologous bHLH-PAS proteins are remarkably similar, including at the molecular level. Our phylogenetic analysis shows that one bHLH-PAS protein type has been lost during vertebrate evolution. This protein has a unique function as a receptor of the sesquiterpenoid juvenile hormones of insects and crustaceans. Although some other bHLH-PAS proteins are regulated by binding small molecules, the juvenile hormone receptor presents an unprecedented case, since all other non-peptide animal hormones activate members of the nuclear receptor family. The purpose of this review is to compare and highlight parallels and differences in functioning of bHLH-PAS proteins between insects and vertebrates.
Collapse
Affiliation(s)
- Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
7
|
da Costa RA, da Costa ADSS, da Rocha JAP, Lima MRDC, da Rocha ECM, Nascimento FCDA, Gomes AJB, do Rego JDAR, Brasil DDSB. Exploring Natural Alkaloids from Brazilian Biodiversity as Potential Inhibitors of the Aedes aegypti Juvenile Hormone Enzyme: A Computational Approach for Vector Mosquito Control. Molecules 2023; 28:6871. [PMID: 37836714 PMCID: PMC10574778 DOI: 10.3390/molecules28196871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 10/15/2023] Open
Abstract
This study explores the potential inhibitory activity of alkaloids, a class of natural compounds isolated from Brazilian biodiversity, against the mJHBP enzyme of the Aedes aegypti mosquito. This mosquito is a significant vector of diseases such as dengue, zika, and chikungunya. The interactions between the ligands and the enzyme at the molecular level were evaluated using computational techniques such as molecular docking, molecular dynamics (MD), and molecular mechanics with generalized Born surface area (MMGBSA) free energy calculation. The findings suggest that these compounds exhibit a high binding affinity with the enzyme, as confirmed by the binding free energies obtained in the simulation. Furthermore, the specific enzyme residues that contribute the most to the stability of the complex with the compounds were identified: specifically, Tyr33, Trp53, Tyr64, and Tyr129. Notably, Tyr129 residues were previously identified as crucial in the enzyme inhibition process. This observation underscores the significance of the research findings and the potential of the evaluated compounds as natural insecticides against Aedes aegypti mosquitoes. These results could stimulate the development of new vector control agents that are more efficient and environmentally friendly.
Collapse
Affiliation(s)
- Renato Araújo da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil; (M.R.d.C.L.); (A.J.B.G.)
| | - Andréia do Socorro Silva da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| | - João Augusto Pereira da Rocha
- Graduate Program in Chemistry, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.A.P.d.R.); (E.C.M.d.R.)
| | - Marlon Ramires da Costa Lima
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil; (M.R.d.C.L.); (A.J.B.G.)
| | | | - Fabiana Cristina de Araújo Nascimento
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| | - Anderson José Baia Gomes
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil; (M.R.d.C.L.); (A.J.B.G.)
| | - José de Arimatéia Rodrigues do Rego
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| | - Davi do Socorro Barros Brasil
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| |
Collapse
|