1
|
Apraku E, Farmer M, Lavallais C, Soriano DA, Notestein J, Tyo K, Dunn J, Tarpeh WA, Wells GF. Toward a circular nitrogen bioeconomy: integrating nitrogen bioconcentration, separations, and high-value products for nitrogen recovery. Curr Opin Biotechnol 2025; 91:103225. [PMID: 39602850 DOI: 10.1016/j.copbio.2024.103225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
Recovering nitrogen (N) from wastewater is a potential avenue to reduce reliance on energy-intensive synthetic nitrogen fixation via Haber-Bosch and subsequent treatment of N-laden wastewaters through nitrification-denitrification. However, many technical and economic factors hinder widespread application of N recovery, particularly low N concentrations in municipal wastewater, paucity of high-efficiency separations technologies compatible with biological treatment, and suitable products and markets for recovered N. In this perspective, we contextualize the challenges of N recovery today, propose integrated biological and physicochemical technologies to improve selective and tunable N recovery, and propose an expanded product portfolio for recovered N products beyond fertilizers. We highlight cyanophycin, an N-rich biopolymer produced by a diverse range of bacteria, as a potential target for N bioconcentration and downstream recovery from municipal wastewater. This perspective emphasizes the equal importance of integrated biological systems, physicochemical separations, and market assessment in advancing nitrogen recovery from wastewater.
Collapse
Affiliation(s)
- Edward Apraku
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, United States
| | - McKenna Farmer
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Chayse Lavallais
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Danna A Soriano
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States
| | - Justin Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Keith Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Jennifer Dunn
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, United States
| | - William A Tarpeh
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, United States; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United States.
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
2
|
Kirti A, Rajaram H. Phosphoproteome modulation by nucleoside diphosphate kinase affects photosynthesis & stress tolerance of Nostoc PCC 7120. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141054. [PMID: 39389524 DOI: 10.1016/j.bbapap.2024.141054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Nucleoside diphosphate kinase (Ndk/NDK/NDPK) is known to possess pleiotropic functions, one of which is that as a protein kinase, and has been shown to be involved in stress tolerance in plants. To assess its role in the cyanobacterium Nostoc PCC 7120, which is hitherto unreported, recombinant strain overexpressing Ndk, Anndk+ was generated. Phosphoproteomic analysis of Anndk+ and its comparison with that of the vector control, AnpAM, revealed differential phosphorylation at S/T/Y sites of proteins belonging to varied functional groups, with over 17 % phosphoproteins involved in photosynthesis. A total of 177 phosphopeptides and 117 phosphoproteins were identified, including newly identified phosphopeptides in any cyanobacteria. Compared to AnpAM, the Anndk+ cells exhibited (i) lower photosynthetic efficiency and electron transport rate at low PAR (photosynthetically active radiation), (ii) no change in photochemical quenching across PAR, (iii) but distinct non-photochemical quenching [zero Y(NPQ) and high Y(NO) in Anndk+ and high Y(NPQ) and low (NO) in AnpAM], and (iv) increased tolerance to γ-radiation, oxidative, salt and DCMU stresses. The observed modulation of phosphoproteome linked to physiological changes upon overexpression of Ndk in Nostoc could be a combination of direct protein kinase activity of Ndk and/or indirectly through other protein kinases and phosphatases whose phosphorylation status is mediated by Ndk. This is the first report on a direct correlation between Ndk levels, phosphorylation status of proteins and stress tolerance in any cyanobacteria.
Collapse
Affiliation(s)
- Anurag Kirti
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
3
|
Schniete JK, Brüser T, Horn MA, Tschowri N. Specialized biopolymers: versatile tools for microbial resilience. Curr Opin Microbiol 2024; 77:102405. [PMID: 38070462 DOI: 10.1016/j.mib.2023.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024]
Abstract
Bacteria produce a wide range of specialized biopolymers that can be classified into polysaccharides, polyamides, and polyesters and are considered to fulfill storage functions. In this review, we highlight recent developments in the field linking metabolism of biopolymers to stress and signaling physiology of the producers and demonstrating that biopolymers contribute to bacterial stress resistance and shape structure and composition of microenvironments. While specialized biopolymers are currently the focus of much attention in biotechnology as innovative and biodegradable materials, our understanding about the regulation and functions of these valuable compounds for the producers, microbial communities, and our environment is still very limited. Addressing open questions about signals, mechanisms, and functions in the area of biopolymers harbors potential for exciting discoveries with high relevance for biotechnology and fundamental research.
Collapse
Affiliation(s)
- Jana K Schniete
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany.
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| |
Collapse
|
4
|
Farmer M, Rajasabhai R, Tarpeh W, Tyo K, Wells G. Meta-omic profiling reveals ubiquity of genes encoding for the nitrogen-rich biopolymer cyanophycin in activated sludge microbiomes. Front Microbiol 2023; 14:1287491. [PMID: 38033562 PMCID: PMC10687191 DOI: 10.3389/fmicb.2023.1287491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Recovering nitrogen (N) from municipal wastewater is a promising approach to prevent nutrient pollution, reduce energy use, and transition toward a circular N bioeconomy, but remains a technologically challenging endeavor. Existing N recovery techniques are optimized for high-strength, low-volume wastewater. Therefore, developing methods to concentrate dilute N from mainstream wastewater will bridge the gap between existing technologies and practical implementation. The N-rich biopolymer cyanophycin is a promising candidate for N bioconcentration due to its pH-tunable solubility characteristics and potential for high levels of accumulation. However, the cyanophycin synthesis pathway is poorly explored in engineered microbiomes. In this study, we analyzed over 3,700 publicly available metagenome assembled genomes (MAGs) and found that the cyanophycin synthesis gene cphA was ubiquitous across common activated sludge bacteria. We found that cphA was present in common phosphorus accumulating organisms (PAO) Ca. 'Accumulibacter' and Tetrasphaera, suggesting potential for simultaneous N and P bioconcentration in the same organisms. Using metatranscriptomic data, we confirmed the expression of cphA in lab-scale bioreactors enriched with PAO. Our findings suggest that cyanophycin synthesis is a ubiquitous metabolic activity in activated sludge microbiomes. The possibility of combined N and P bioconcentration could lower barriers to entry for N recovery, since P concentration by PAO is already a widespread biotechnology in municipal wastewater treatment. We anticipate this work to be a starting point for future evaluations of combined N and P bioaccumulation, with the ultimate goal of advancing widespread adoption of N recovery from municipal wastewater.
Collapse
Affiliation(s)
- McKenna Farmer
- Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Rashmi Rajasabhai
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - William Tarpeh
- Chemical Engineering, Stanford University, Stanford, CA, United States
| | - Keith Tyo
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - George Wells
- Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
5
|
Sharon I, Hilvert D, Schmeing TM. Cyanophycin and its biosynthesis: not hot but very cool. Nat Prod Rep 2023; 40:1479-1497. [PMID: 37231979 DOI: 10.1039/d2np00092j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Covering: 1878 to early 2023Cyanophycin is a biopolymer consisting of a poly-aspartate backbone with arginines linked to each Asp sidechain through isopeptide bonds. Cyanophycin is made by cyanophycin synthetase 1 or 2 through ATP-dependent polymerization of Asp and Arg, or β-Asp-Arg, respectively. It is degraded into dipeptides by exo-cyanophycinases, and these dipeptides are hydrolyzed into free amino acids by general or dedicated isodipeptidase enzymes. When synthesized, chains of cyanophycin coalesce into large, inert, membrane-less granules. Although discovered in cyanobacteria, cyanophycin is made by species throughout the bacterial kingdom, and cyanophycin metabolism provides advantages for toxic bloom forming algae and some human pathogens. Some bacteria have developed dedicated schemes for cyanophycin accumulation and use, which include fine temporal and spatial regulation. Cyanophycin has also been heterologously produced in a variety of host organisms to a remarkable level, over 50% of the host's dry mass, and has potential for a variety of green industrial applications. In this review, we summarize the progression of cyanophycin research, with an emphasis on recent structural studies of enzymes in the cyanophycin biosynthetic pathway. These include several unexpected revelations that show cyanophycin synthetase to be a very cool, multi-functional macromolecular machine.
Collapse
Affiliation(s)
- Itai Sharon
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada, H3G 0B1.
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada, H3G 0B1.
| |
Collapse
|
6
|
Sharon I, Schmeing TM. Bioinformatics of cyanophycin metabolism genes and characterization of promiscuous isoaspartyl dipeptidases that catalyze the final step of cyanophycin degradation. Sci Rep 2023; 13:8314. [PMID: 37221236 PMCID: PMC10206079 DOI: 10.1038/s41598-023-34587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
Cyanophycin is a bacterial biopolymer used for storage of fixed nitrogen. It is composed of a backbone of L-aspartate residues with L-arginines attached to each of their side chains. Cyanophycin is produced by cyanophycin synthetase 1 (CphA1) using Arg, Asp and ATP, and is degraded in two steps. First, cyanophycinase breaks down the backbone peptide bonds, releasing β-Asp-Arg dipeptides. Then, these dipeptides are broken down into free Asp and Arg by enzymes with isoaspartyl dipeptidase activity. Two bacterial enzymes are known to possess promiscuous isoaspartyl dipeptidase activity: isoaspartyl dipeptidase (IadA) and isoaspartyl aminopeptidase (IaaA). We performed a bioinformatic analysis to investigate whether genes for cyanophycin metabolism enzymes cluster together or are spread around the microbial genomes. Many genomes showed incomplete contingents of known cyanophycin metabolizing genes, with different patterns in various bacterial clades. Cyanophycin synthetase and cyanophycinase are usually clustered together when recognizable genes for each are found within a genome. Cyanophycinase and isoaspartyl dipeptidase genes typically cluster within genomes lacking cphA1. About one-third of genomes with genes for CphA1, cyanophycinase and IaaA show these genes clustered together, while the proportion is around one-sixth for CphA1, cyanophycinase and IadA. We used X-ray crystallography and biochemical studies to characterize an IadA and an IaaA from two such clusters, in Leucothrix mucor and Roseivivax halodurans, respectively. The enzymes retained their promiscuous nature, showing that being associated with cyanophycin-related genes did not make them specific for β-Asp-Arg dipeptides derived from cyanophycin degradation.
Collapse
Affiliation(s)
- Itai Sharon
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - T Martin Schmeing
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada.
| |
Collapse
|