1
|
Kopecký D, Duchoslav M, Scholten O, Kneřová J, Szecówka M. Proportion of parental genomes in hybrids Allium cepa × A. roylei determines which one becomes dominant. THE PLANT GENOME 2025; 18:e70016. [PMID: 40156203 PMCID: PMC11953612 DOI: 10.1002/tpg2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/02/2025] [Accepted: 02/24/2025] [Indexed: 04/01/2025]
Abstract
Interspecific hybridization leads to complex interactions between the parental genomes, often in the form of genome dominance, where one genome prevails over the other. This phenomenon has been attributed to differential chromosome behavior during meiotic division and may involve either female or male meiosis, or both. In hybrids of Allium cepa × A. roylei, only female meiosis is involved, favoring the transmission of A. roylei chromosomes; male meiosis leads to the development of gametes with equal proportion of parental genomes. Female meiotic drive shifts the genome composition from 8R (A. roylei) + 8C (A. cepa) chromosomes in F1 to 9.3R + 6.7C in F2. In this study of two successive backcross generations with A. cepa (BC1 [first backcross generation] and BC1F1 [progeny after intercross of the first backcross generation]), we observed a change in genome dominance: the A. roylei genome, initially dominant during the meiosis in the F1 hybrids, became submissive in BC1, resulting in a genome composition skewed toward A. cepa. Among 23 BC1 and 236 BC1F1 plants, we observed a significant deviating trend of gradual reduction in A. roylei chromosome representation. The reduction was higher in the lineages with more unequal starting proportion of the parental genomes. This study highlights the dynamic nature of genomic interactions in hybrids and raises questions about the underlying molecular mechanisms driving these changes in dominance, as well as the potential for manipulating these interactions for agricultural benefit. Further exploration of the chromosomal behavior during meiosis across various hybrids will deepen our understanding of non-Mendelian inheritance patterns and their implications in plant breeding.
Collapse
Affiliation(s)
- David Kopecký
- Centre of Plant Structural and Functional Genomics, Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | | | - Olga Scholten
- Plant BreedingWageningen University & ResearchWageningenThe Netherlands
| | - Jana Kneřová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| | - Marek Szecówka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
| |
Collapse
|
2
|
Wang P, Yang S, Chen M, Liu Y, He Q, Sun H, Wu D, Xiang S, Jing D, Wang S, Guo Q, Dang J, Liang G. Karyotype variation patterns and phenotypic responses of hybrid progenies of triploid loquat ( Eriobotrya japonica) provide new insight into aneuploid germplasm innovation. HORTICULTURE RESEARCH 2025; 12:uhaf023. [PMID: 40212124 PMCID: PMC11981905 DOI: 10.1093/hr/uhaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/12/2025] [Indexed: 04/13/2025]
Abstract
The sexual reproduction of triploids induces chromosomal karyotype variations, which are significant for germplasm resource innovation. Most triploid plants are with low fertility. Therefore, triploid offspring karyotypes' variation pattern and phenotypic response remain poorly understood. Here, we employed three diploids with diverse genetic distances as male parents to cross-pollinate the female fertile triploid loquat Q24 to construct three experimental populations. The chromosome numbers of 93.82% of hybrid plants were 34~46 in three hybrid populations. All 168 aneuploids with 160 karyotypes and a small percentage of euploids were detected among 178 hybrids by the improved molecular karyotype analysis method. Further analysis revealed that when being transmitted to offspring, chromosome 5 of Q24 as disomy had the highest frequency (>50%), while chromosome 12 had the lowest frequency (≤30%). The frequency of Q24's chromosomes being transmitted to offspring as disomy was influenced by the gene function on the chromosomes and the number of interchromosome collinear gene links. Whole-genome resequencing showed that the Q24 alleles exhibited segregation distortions in the offspring aneuploid population. Transgenic experiments demonstrated that the EjRUN1 gene, which was on one segregation distortion region of Q24, promoted the seed viability of triploid Arabidopsis. Furthermore, chromosome number, dosage, and male parent genotype affected the aneuploid phenotype. These findings advance the understanding of genome genetic characteristics of triploid loquat, and provide a reference for germplasm innovation of loquat rapidly through triploid sexual reproduction.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Shangjian Yang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Meiyi Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Yingjia Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Qiao He
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Haiyan Sun
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Di Wu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Suqiong Xiang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Danlong Jing
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Shuming Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Jiangbo Dang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
3
|
Pelé A, Falque M, Lodé-Taburel M, Huteau V, Morice J, Coriton O, Martin OC, Chèvre AM, Rousseau-Gueutin M. Genomic Divergence Shaped the Genetic Regulation of Meiotic Homologous Recombination in Brassica Allopolyploids. Mol Biol Evol 2025; 42:msaf073. [PMID: 40173423 PMCID: PMC11982612 DOI: 10.1093/molbev/msaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025] Open
Abstract
The tight regulation of meiotic recombination between homologs is disrupted in Brassica AAC allotriploids, a genomic configuration that may have facilitated the formation of rapeseed (Brassica napus L.) ∼7,500 years ago. Indeed, the presence of the haploid C genome induces supernumerary crossovers between homologous A chromosomes with dramatically reshaped distribution. However, the genetic mechanisms driving this phenomenon and their divergence between nascent and established lineages remain unclear. To address these concerns, we generated hybrids carrying additional C chromosomes derived either from an established lineage of the allotetraploid B. napus or from its diploid progenitor B. oleracea. We then assessed recombination variation across twelve populations by mapping male meiotic crossovers using single nucleotide polymorphism markers evenly distributed across the sequenced A genome. Our findings reveal that the C09 chromosome of B. oleracea is responsible for the formation of additional crossovers near pericentromeric regions. Interestingly, its counterpart from an established lineage of B. napus shows no significant effect on its own, despite having a similar content of meiotic genes. However, we showed that the B. napus C09 chromosome influences crossover formation through inter-chromosomal epistatic interactions with other specific C chromosomes. These results provide new insights into the genetic regulation of homologous recombination in Brassica and emphasize the role of genomic divergence since the formation of the allopolyploid B. napus.
Collapse
Affiliation(s)
- Alexandre Pelé
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland
| | - Matthieu Falque
- INRAE, CNRS, AgroParisTech, GQE—Le Moulon, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | | | - Virginie Huteau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
| | - Olivier Coriton
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu 35653, France
| | - Olivier C Martin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette 91190, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette 91190, France
| | | | | |
Collapse
|
4
|
Zhou J, Li J, Zhang Y, Yang Y, Lv Y, Pu Q, Deng X, Tao D. Introgression among subgroups is an important driving force for genetic improvement and evolution of the Asian cultivated rice Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2025; 16:1535880. [PMID: 40051880 PMCID: PMC11882543 DOI: 10.3389/fpls.2025.1535880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
Anagenesis accumulates favorable mutations that enable crops to adapt to continually improving artificial production environments, while cladogenesis results in the deposition of beneficial variations across diverse ecotypes. Integrating advantageous genetic variations from diverse evolutionary sources establishes the foundation for the continued genetic improvement of crops. For a long time, rice breeding practices have been guided by the established belief that the Asian cultivated rice consists of two subspecies: Oryza sativa subsp. indica and subsp. japonica. Integrating elite genetic variants from both subspecies has been a major strategy for genetic improvement. This approach has proven successful through the achievements of temperate japonica breeding programs in China, Japan, and Korea over the past decades. The genetic differentiation within the Asian cultivated rice has been successfully harnessed for heterosis breeding, thereby enhancing rice yield productivity. Genomic investigations have revealed more genetic divergences in the Asian cultivated rice, prompting the proposal of six subgroups within it. This indicates that there is greater potential for uncovering additional genetic divergences and diversity in future breeding practices. Genetic introgression and gene flow among subgroups have led to improvements in agronomic traits within the indica, temperate japonica, and tropical japonica subgroups during the modern rice breeding process. The introgression process has widened the genetic diversity within subgroups and reduced the genetic distance between them, resulting in the creation of new genetic blocks and subpopulations. Artificial introgression has accelerated the evolution process in rice breeding history. Advancements in the study of genetic divergence and diversity in rice offer valuable insights to guide breeding practices. The mini subgroups aus, basmatic, and rayada possess untapped genetic potential but have been poorly studied worldwide; more samples should be further investigated. This information will be invaluable for harnessing these advantageous variations through introgression breeding. Further studying the nature of reproductive barriers among subgroups will enhance our understanding of genetic differentiation, allow us to overcome these barriers and facilitate effective genetic exchange, and even enable us to harness heterosis among subgroups.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dayun Tao
- Yunnan Seed Laboratory/Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops
Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| |
Collapse
|
5
|
Bai Y, Zhao K, Wang B, Wu L, Xiong Z. Transgressive expression and dosage effect of A09 chromosome genes and their homoeologous genes influence the flowering time of resynthesized allopolyploid Brassica napus. BMC PLANT BIOLOGY 2025; 25:226. [PMID: 39972272 PMCID: PMC11837392 DOI: 10.1186/s12870-025-06236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND The genomes of allopolyploids newly formed through hybridization and polyploidization exhibit substantial changes including those at genetic and epigenetic levels. These alterations may affect their gene expression patterns, leading to nonadditive gene expression. Currently, only a few reports are available on the impact of nonadditive gene expressions on traits. RESULTS Using six isogenic resynthesized Brassica napus lines across the first 10 generations, we studied the impact of gene expression patterns on flowering time. The expression levels of a group of genes, located on chromosome A09, were significantly positively correlated with flowering time. According to the expression analysis, the expression levels of the homologous pairs of 139 genes on chromosome A09 were lower in allopolyploids than in their diploid parents, which indicated a phenomenon of transgressive expression. Additionally, independent subgenomic analysis of homoeologous gene pairs on chromosome A09 of the allopolyploids demonstrated that the gene expression levels of B. napus subgenome A (BnA) and subgenome C (BnC) were similar. However, in two aneuploids carrying monosomic or trisomic A09 chromosome, the gene expression levels of BnA were lower or higher than those of BnC, and the corresponding flowering times of these two aneuploids were earlier and later, respectively. CONCLUSIONS These findings indicate that changes in gene dosage introduce biases in the expression of homoeologous genes. Moreover, upregulation or downregulation of homoeologous gene expression on a single chromosome partially alters the flowering time of the newly formed allopolyploid B. napus, which is of great significance for horticultural applications and future research on genetic mechanisms.
Collapse
Affiliation(s)
- Yanbo Bai
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Kanglu Zhao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Bo Wang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Wu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
6
|
Ricono A, Ludwig E, Casto AL, Zorich S, Sumner J, Bird K, Edger PP, Mockler TC, Hegeman AD, Gehan MA, Greenham K. Homoeolog expression divergence contributes to time of day changes in transcriptomic and glucosinolate responses to prolonged water limitation in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70011. [PMID: 39993006 PMCID: PMC11849911 DOI: 10.1111/tpj.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/26/2025]
Abstract
Water availability is a major determinant of crop production, and rising temperatures from climate change are leading to more extreme droughts. To combat the effects of climate change on crop yields, we need to develop varieties that are more tolerant to water-limited conditions. We aimed to determine how diverse crop types (winter/spring oilseed, tuberous, and leafy) of the allopolyploid Brassica napus, a species that contains the economically important rapeseed oilseed crop, respond to prolonged water limitation. We exposed plants to an 80% reduction in water and assessed growth and color on a high-throughput phenotyping system over 4 weeks and ended the experiment with tissue collection for a time course transcriptomic study. We found an overall reduction in growth across cultivars but to varying degrees. Diel transcriptome analyses revealed significant accession-specific changes in time-of-day regulation of photosynthesis, carbohydrate metabolism, and sulfur metabolism. Interestingly, there was extensive variation in which homoeologs from the two parental subgenomes responded to water limitation across crop types that could be due to differences in regulatory regions in these allopolyploid lines. Follow-up experiments on select cultivars confirmed that plants maintained photosynthetic health during the prolonged water limitation while slowing growth. In two cultivars examined, we found significant time of day changes in levels of glucosinolates, sulfur- and nitrogen -rich specialized metabolites, consistent with the diel transcriptomic responses. These results suggest that these lines are adjusting their sulfur and nitrogen stores under water-limited conditions through distinct time of day regulation.
Collapse
Affiliation(s)
| | - Ella Ludwig
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
| | - Anna L. Casto
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
| | | | - Joshua Sumner
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
| | - Kevin Bird
- Michigan State UniversityEast LansingMichigan48824USA
| | | | - Todd C. Mockler
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
| | | | - Malia A. Gehan
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
| | | |
Collapse
|
7
|
Quan C, Zhang Q, Zhang X, Chai K, Cheng G, Ma C, Dai C. Interspecific hybridization in Brassica species leads to changes in agronomic traits through the regulation of gene expression by chromatin accessibility and DNA methylation. Gigascience 2025; 14:giaf029. [PMID: 40272880 PMCID: PMC12012897 DOI: 10.1093/gigascience/giaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 04/26/2025] Open
Abstract
Interspecific hybridization is a common method in plant breeding to combine traits from different species, resulting in allopolyploidization and significant genetic and epigenetic changes. However, our understanding of genome-wide chromatin and gene expression dynamics during allopolyploidization remains limited. This study generated two Brassica allotriploid hybrids via interspecific hybridization. We observed that accessible chromatin regions (ACRs) and DNA methylation interact to regulates gene expression after interspecific hybridization, ultimately influencing the agronomic traits of the hybrids. In total, 234,649 ACRs were identified in the parental lines and hybrids; the hybridization process induces changes in the distribution and abundance of their accessible chromatin regions, particularly in gene regions and their proximity. Genes associated with proximal ACRs were more highly expressed than those associated with distal and genic ACRs. More than half of novel ACRs drove transgressive gene expression in the hybrids, and the transgressive upregulated genes showed significant enrichment in metal ion binding, especially magnesium ion, calcium ion, and potassium ion binding. We also identified Bna.bZIP11 in the single-parent activation ACR, which binds to BnaA06.UF3GT to promote anthocyanin accumulation in F1 hybrids. DNA methylation plays a role in repressing gene expression, and unmethylated ACRs are more transcriptionally active. Additionally, the A-subgenome ACRs were associated with genome dosage rather than DNA methylation. The interplay among DNA methylation, transposable elements, and sRNA contributes to the dynamic landscape of ACRs during interspecific hybridization, resulting in distinct gene expression patterns on the genome.
Collapse
Affiliation(s)
- Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoni Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Kexin Chai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guoting Cheng
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
8
|
Zhao A, Yang Z, Wang H, Wang H, Zhong S, Li C, Zhang Y, Hu J, Bao Z, Huang X. Establishment and Characterization of Bisexually Fertile Triploid Dwarf Surf Clam Mulinia lateralis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:24. [PMID: 39725760 DOI: 10.1007/s10126-024-10406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Triploids are widely used to rapidly achieve genetic improvements of organisms due to their fast growth and enhanced environmental adaptability. Artificially induced triploids are generally considered to be infertile owing to the obvious inhibition of gonadal development. Recently, some fertile individuals with reduced advantages have been found in triploid bivalves, which is a notable deviation from the original intention of artificially inducing triploids. This study utilized dwarf surf clams (Mulinia lateralis), a promising model organism of bivalves, to develop a model for exploring the potential mechanism of triploid reproduction. The results showed that the optimal induction condition for triploid M. lateralis, determined by orthogonal experiments, was 0.5 mg/L cytochalasin B (CB) to inhibit PB2 for 20 min, resulting in a triploidy rate of 95.57% and a hatching rate of 60.25%. By tracking the development of M. lateralis, we found that the induced triploids could develop normally to maturity and exhibited significant growth and survival advantages post-metamorphosis. Although the triploidy rate exhibited a slight decline overtime, it remained high, with a ratio of 90.63% at 120 dpf. Histological observation confirmed that the gonadal development pattern of triploid M. laterali was similar to that of diploids, but it also showed characteristics such as developmental retardation, few mature gametes, and gamete gigantism. The dynamic expression of genes related to gonadal development provided further molecular evidence for this phenomenon. Additionally, 82.6% of triploid M. laterali exhibited normal spawning behavior, produced fewer but larger viable gametes, and could generate offspring with full developmental potential. Flow cytometry analysis revealed that sperm of triploid M. laterali was aneuploid, with a DNA content of about 1.5 times that of diploid sperm, and the ploidy levels of mating offspring were 2N (DD, diploid female × diploid male), 2.5N (DT, diploid female × triploid male), 2.5N (TD, triploid female × diploid male), and 3N (TT, triploid female × triploid male), respectively. Overall, the artificially induced triploid M. laterali has been confirmed to be bisexually fertile, which will provide a unique model for exploring the underlying mechanisms of advantageous trait formation and fertility regulation in triploids, and offer a valuable platform for the study of ploidy control and polyploidization in bivalves. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. Yes, i have checked and it is OK.
Collapse
Affiliation(s)
- Ang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Haoran Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Academy of Future Ocean, Ocean University of China, Qingdao, 266100, China
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Shuai Zhong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chenhui Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yuehuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
9
|
Wang YJ, Guo C, Zhao L, Mao L, Hu XZ, Yang YZ, Qian KC, Ma PF, Guo ZH, Li DZ. Haplotype-resolved nonaploid genome provides insights into in vitro flowering in bamboos. HORTICULTURE RESEARCH 2024; 11:uhae250. [PMID: 39664687 PMCID: PMC11630085 DOI: 10.1093/hr/uhae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/26/2024] [Indexed: 12/13/2024]
Abstract
Woody bamboos (Bambusoideae) are renowned for its polyploidy and rare flowering. Bambusa odashimae is one of the bamboo species with the highest chromosome count (104) in the subfamily and has the highest heterozygosity of all sequenced bamboo genomes so far. Compared with other bamboo species, it can efficiently utilize exogenous hormones to regulate in vitro flowering, providing valuable insights into the hormonal regulation of bamboo flowering. Here, we generated the haplotype-resolved genome assembly of B. odashimae, despite the complexity and high chromosome number, supplemented by thirty-three transcriptomes from eleven developmental periods using a tissue culture system. The assembled genome can be divided into Haplotype I, Haplotype II, and Haplotype III, each containing A, B, and C subgenomes. Haplotype I may be derived from Dendrocalamus whereas Haplotypes II and III are closely related to Bambusa, indicating that B. odashimae has an origin involving both intergeneric and interspecific hybridizations. The high heterozygosity renders the possibility to detect abundant allele-specific expression (ASE), with ASE genes enriched in cytokinin-related pathways, likely associated with efficient cytokinin-promoted flowering. Notably, we found that the CONSTANS (CO) genes were potentially key regulators of in vitro flowering in B. odashimae. Overall, based on the in vitro system combined with a high-quality reference genome, our study provides critical insights into the origin of this nonaploid bamboo and links hybridization and in vitro flowering in bamboos.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
| | - Cen Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Lei Zhao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
| | - Ling Mao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
- Kunming College of Life Science, University of Chinese Academy of Sciences,132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
| | - Xiang-Zhou Hu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
- Kunming College of Life Science, University of Chinese Academy of Sciences,132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
| | - Yi-Zhou Yang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
- Kunming College of Life Science, University of Chinese Academy of Sciences,132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
| | - Ke-Cheng Qian
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences,132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Panlong District, Kunming, Yunnan 650201, China
| |
Collapse
|
10
|
Cao Y, Xu J, Wang M, Gao J, Zhao Z, Li K, Yang L, Zhao K, Sun M, Dong J, Chao G, Zhang H, Niu Y, Yan C, Gong X, Wu L, Xiong Z. Unambiguous chromosome identification reveals the factors impacting irregular chromosome behaviors in allotriploid AAC Brassica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:245. [PMID: 39365356 DOI: 10.1007/s00122-024-04734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/31/2024] [Indexed: 10/05/2024]
Abstract
KEY MESSAGE The major irregular chromosome pairing and mis-segregation were detected during meiosis through unambiguous chromosome identification and found that allotriploid Brassica can undergo meiosis successfully and produce mostly viable aneuploid gametes. Triploids have played a crucial role in the evolution of species by forming polyploids and facilitating interploidy gene transfer. It is widely accepted that triploids cannot undergo meiosis normally and predominantly produce nonfunctional aneuploid gametes, which restricts their role in species evolution. In this study, we demonstrated that natural and synthetic allotriploid Brassica (AAC), produced by crossing natural and synthetic Brassica napus (AACC) with Brassica rapa (AA), exhibits basically normal chromosome pairing and segregation during meiosis. Homologous A chromosomes paired faithfully and generally segregated equally. Monosomic C chromosomes were largely retained as univalents and randomly entered daughter cells. The primary irregular meiotic behaviors included associations of homoeologs and 45S rDNA loci at diakinesis, as well as homoeologous chromosome replacement and premature sister chromatid separation at anaphase I. Preexisting homoeologous arrangements altered meiotic behaviors in both chromosome irregular pairing and mis-segregation by increasing the formation of A-genomic univalents and A-C bivalents, as well as premature sister chromatid separation and homologous chromosome nondisjunction. Meiotic behaviors depended significantly on the genetic background and heterozygous homoeologous rearrangement. AAC triploids mainly generated aneuploid gametes, most of which were viable. These results demonstrate that allotriploid Brassica containing an intact karyotype can proceed through meiosis successfully, broadening our current understanding of the inheritance and role in species evolution of allotriploid.
Collapse
Affiliation(s)
- Yao Cao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Shanxi Normal University, Taiyuan, 030031, Shanxi, China
| | - Junxiong Xu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Minhang Wang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Jing Gao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Zhen Zhao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Kexin Li
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Lu Yang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Kanglu Zhao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Meiping Sun
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Jing Dong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Getu Chao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Hong Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Yaqingqing Niu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Chunxia Yan
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Xiufeng Gong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China
| | - Lei Wu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
- College of Life Science, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
| |
Collapse
|
11
|
Boideau F, Huteau V, Maillet L, Brunet A, Coriton O, Deniot G, Trotoux G, Taburel-Lodé M, Eber F, Gilet M, Baron C, Boutte J, Richard G, Aury JM, Belser C, Labadie K, Morice J, Falentin C, Martin O, Falque M, Chèvre AM, Rousseau-Gueutin M. Alternating between even and odd ploidy levels switches on and off the recombination control, even near the centromeres. THE PLANT CELL 2024; 36:4472-4490. [PMID: 39121028 PMCID: PMC11449113 DOI: 10.1093/plcell/koae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/12/2024] [Indexed: 08/11/2024]
Abstract
Meiotic recombination is a key biological process in plant evolution and breeding, as it generates genetic diversity in each generation through the formation of crossovers (COs). However, due to their importance in genome stability, COs are highly regulated in frequency and distribution. We previously demonstrated that this strict regulation of COs can be modified, both in terms of CO frequency and distribution, in allotriploid Brassica hybrids (2n = 3x = 29; AAC) resulting from a cross between Brassica napus (2n = 4x = 38; AACC) and Brassica rapa (2n = 2x = 20; AA). Using the recently updated B. napus genome now including pericentromeres, we demonstrated that COs occur in these cold regions in allotriploids, as close as 375 kb from the centromere. Reverse transcription quantitative PCR (RT-qPCR) of various meiotic genes indicated that Class I COs are likely involved in the increased recombination frequency observed in allotriploids. We also demonstrated that this modified recombination landscape can be maintained via successive generations of allotriploidy (odd ploidy level). This deregulated meiotic behavior reverts to strict regulation in allotetraploid (even ploidy level) progeny in the second generation. Overall, we provide an easy way to manipulate tight recombination control in a polyploid crop.
Collapse
Affiliation(s)
- Franz Boideau
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Virginie Huteau
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Loeiz Maillet
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Anael Brunet
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Olivier Coriton
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Gwenaëlle Deniot
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Gwenn Trotoux
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | | | - Frédérique Eber
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Marie Gilet
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Cécile Baron
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Julien Boutte
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, 91057 Evry, France
| | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Cyril Falentin
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | - Olivier Martin
- Institute of Plant Sciences Paris-Saclay, Université de Paris-Saclay, Paris-Cité and Evry, CNRS, INRAE, 91192 Gif-sur-Yvette, France
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE—Le Moulon, 91190 Gif-sur-Yvette, France
| | - Matthieu Falque
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE—Le Moulon, 91190 Gif-sur-Yvette, France
| | - Anne-Marie Chèvre
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650 Le Rheu, France
| | | |
Collapse
|
12
|
Wang P, Ma M, Chen H, Sun H, Wu D, He Q, Jing D, Guo Q, Dang J, Liang G. Global analysis of gene expression in response to double trisomy loquat (Eriobotrya japonica). Genomics 2024; 116:110913. [PMID: 39151554 DOI: 10.1016/j.ygeno.2024.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Aneuploidy generally has severe phenotypic consequences. However, the molecular basis for this has been focused on single chromosomal dosage changes. It is not clear how the karyotype of complex aneuploidies affects gene expression. Here, we identified six different double-trisomy loquat strains from Q24 progenies of triploid loquat. The differences and similarities of the transcriptional responses of different double trisomy loquat strains were studied systematically via RNA-seq. The global modulation of gene expression indicated that both cis and trans-effects coordinately regulated gene expression in aneuploid loquat to some extent, and this coordinated regulation was determined by different gene functional groups. Aneuploidy can induce specific transcriptional responses on loquat chromosomes. The differentially expressed genes exhibited regional gene expression dysregulation domains along chromosomes. Furthermore, Aneuploidy could also promote the expression of genes with moderate and high in loquats. Our results provide new insights into the genome-wide transcriptional effects of karyotypes with complex aneuploidies.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education); College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences of Southwest University; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Miao Ma
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education); College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences of Southwest University; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Haichun Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education); College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences of Southwest University; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Haiyan Sun
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education); College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences of Southwest University; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Di Wu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education); College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences of Southwest University; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Qiao He
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education); College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences of Southwest University; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Danlong Jing
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education); College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences of Southwest University; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education); College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences of Southwest University; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China.
| | - Jiangbo Dang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education); College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences of Southwest University; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China.
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education); College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences of Southwest University; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
13
|
Sun W, Li M, Wang J. Characteristics of duplicated gene expression and DNA methylation regulation in different tissues of allopolyploid Brassica napus. BMC PLANT BIOLOGY 2024; 24:518. [PMID: 38851683 PMCID: PMC11162574 DOI: 10.1186/s12870-024-05245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Plant polyploidization increases the complexity of epigenomes and transcriptional regulation, resulting in genome evolution and enhanced adaptability. However, few studies have been conducted on the relationship between gene expression and epigenetic modification in different plant tissues after allopolyploidization. In this study, we studied gene expression and DNA methylation modification patterns in four tissues (stems, leaves, flowers and siliques) of Brassica napusand its diploid progenitors. On this basis, the alternative splicing patterns and cis-trans regulation patterns of four tissues in B. napus and its diploid progenitors were also analyzed. It can be seen that the number of alternative splicing occurs in the B. napus is higher than that in the diploid progenitors, and the IR type increases the most during allopolyploidy. In addition, we studied the fate changes of duplicated genes after allopolyploidization in B. napus. We found that the fate of most duplicated genes is conserved, but the number of neofunctionalization and specialization is also large. The genetic fate of B. napus was classified according to five replication types (WGD, PD, DSD, TD, TRD). This study also analyzed generational transmission analysis of expression and DNA methylation patterns. Our study provides a reference for the fate differentiation of duplicated genes during allopolyploidization.
Collapse
Affiliation(s)
- Weiqi Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
14
|
Kauai F, Bafort Q, Mortier F, Van Montagu M, Bonte D, Van de Peer Y. Interspecific transfer of genetic information through polyploid bridges. Proc Natl Acad Sci U S A 2024; 121:e2400018121. [PMID: 38748576 PMCID: PMC11126971 DOI: 10.1073/pnas.2400018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/15/2024] [Indexed: 05/27/2024] Open
Abstract
Hybridization blurs species boundaries and leads to intertwined lineages resulting in reticulate evolution. Polyploidy, the outcome of whole genome duplication (WGD), has more recently been implicated in promoting and facilitating hybridization between polyploid species, potentially leading to adaptive introgression. However, because polyploid lineages are usually ephemeral states in the evolutionary history of life it is unclear whether WGD-potentiated hybridization has any appreciable effect on their diploid counterparts. Here, we develop a model of cytotype dynamics within mixed-ploidy populations to demonstrate that polyploidy can in fact serve as a bridge for gene flow between diploid lineages, where introgression is fully or partially hampered by the species barrier. Polyploid bridges emerge in the presence of triploid organisms, which despite critically low levels of fitness, can still allow the transfer of alleles between diploid states of independently evolving mixed-ploidy species. Notably, while marked genetic divergence prevents polyploid-mediated interspecific gene flow, we show that increased recombination rates can offset these evolutionary constraints, allowing a more efficient sorting of alleles at higher-ploidy levels before introgression into diploid gene pools. Additionally, we derive an analytical approximation for the rate of gene flow at the tetraploid level necessary to supersede introgression between diploids with nonzero introgression rates, which is especially relevant for plant species complexes, where interspecific gene flow is ubiquitous. Altogether, our results illustrate the potential impact of polyploid bridges on the (re)distribution of genetic material across ecological communities during evolution, representing a potential force behind reticulation.
Collapse
Affiliation(s)
- Felipe Kauai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Gent9000, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
| | - Frederik Mortier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Gent9000, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
| | - Dries Bonte
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Gent9000, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent9052, Belgium
- Center for Plant Systems Biology, Bioinformatics and Evolutionary Genomics, VIB, Gent9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
15
|
Usai G, Fambrini M, Pugliesi C, Simoni S. Exploring the patterns of evolution: Core thoughts and focus on the saltational model. Biosystems 2024; 238:105181. [PMID: 38479653 DOI: 10.1016/j.biosystems.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The Modern Synthesis, a pillar in biological thought, united Darwin's species origin concepts with Mendel's laws of character heredity, providing a comprehensive understanding of evolution within species. Highlighting phenotypic variation and natural selection, it elucidated the environment's role as a selective force, shaping populations over time. This framework integrated additional mechanisms, including genetic drift, random mutations, and gene flow, predicting their cumulative effects on microevolution and the emergence of new species. Beyond the Modern Synthesis, the Extended Evolutionary Synthesis expands perspectives by recognizing the role of developmental plasticity, non-genetic inheritance, and epigenetics. We suggest that these aspects coexist in the plant evolutionary process; in this context, we focus on the saltational model, emphasizing how saltation events, such as dichotomous saltation, chromosomal mutations, epigenetic phenomena, and polyploidy, contribute to rapid evolutionary changes. The saltational model proposes that certain evolutionary changes, such as the rise of new species, may result suddenly from single macromutations rather than from gradual changes in DNA sequences and allele frequencies within a species over time. These events, observed in domesticated and wild higher plants, provide well-defined mechanistic bases, revealing their profound impact on plant diversity and rapid evolutionary events. Notably, next-generation sequencing exposes the likely crucial role of allopolyploidy and autopolyploidy (saltational events) in generating new plant species, each characterized by distinct chromosomal complements. In conclusion, through this review, we offer a thorough exploration of the ongoing dissertation on the saltational model, elucidating its implications for our understanding of plant evolutionary processes and paving the way for continued research in this intriguing field.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
16
|
Olofsson JK, Tyler T, Dunning LT, Hjertson M, Rühling Å, Hansen AJ. Morphological and genetic evidence suggest gene flow among native and naturalized mint species. AMERICAN JOURNAL OF BOTANY 2024; 111:e16280. [PMID: 38334273 DOI: 10.1002/ajb2.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024]
Abstract
PREMISE Cultivation and naturalization of plants beyond their natural range can bring previously geographically isolated taxa together, increasing the opportunity for hybridization, the outcomes of which are not predictable. Here, we explored the phenotypic and genomic effects of interspecific gene flow following the widespread cultivation of Mentha spicata (spearmint), M. longifolia, and M. suaveolens. METHODS We morphologically evaluated 155 herbarium specimens of three Mentha species and sequenced the genomes of a subset of 93 specimens. We analyzed the whole genomes in a population and the phylogenetic framework and associated genomic classifications in conjunction with the morphological assessments. RESULTS The allopolyploid M. spicata, which likely evolved in cultivation, had altered trichome characters, that is possibly a product of human selection for a more palatable plant or a byproduct of selection for essential oils. There were signs of genetic admixture between mints, including allopolyploids, indicating that the reproductive barriers between Mentha species with differences in ploidy are likely incomplete. Still, despite gene flow between species, we found that genetic variants associated with the cultivated trichome morphology continue to segregate. CONCLUSIONS Although hybridization, allopolyploidization, and human selection during cultivation can increase species richness (e.g., by forming hybrid taxa), we showed that unless reproductive barriers are strong, these processes can also result in mixing of genes between species and the potential loss of natural biodiversity.
Collapse
Affiliation(s)
- Jill K Olofsson
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark
| | - Torbjörn Tyler
- Department of Biology, The Biological Museum, Lund University, Box 117, SE-221 00, Lund, Sweden
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, Western Bank, UK
| | - Mats Hjertson
- Museum of Evolution, Botany, Uppsala University, Norbyvägen 16, SE-752 36, Uppsala, Sweden
| | - Åke Rühling
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, Western Bank, UK
- Biological Museum, Gyllings väg 9, SE-572 36 Oskarshamn, Sverige
| | - Anders J Hansen
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, Copenhagen K, 1353, Denmark
| |
Collapse
|
17
|
Li Y, Yan X, Cheng M, Wu Z, Zhang Q, Duan S, Zhou Y, Li H, Yang S, Cheng Y, Li W, Xu L, Li X, He R, Zhou Y, Yang C, Iqbal MZ, He J, Rong T, Tang Q. Genome dosage alteration caused by chromosome pyramiding and shuffling effects on karyotypic heterogeneity, reproductive diversity, and phenotypic variation in Zea-Tripsacum allopolyploids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:28. [PMID: 38252297 DOI: 10.1007/s00122-023-04540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
KEY MESSAGE We developed an array of Zea-Tripsacum tri-hybrid allopolyploids with multiple ploidies. We unveiled that changes in genome dosage due to the chromosomes pyramiding and shuffling of three species effects karyotypic heterogeneity, reproductive diversity, and phenotypic variation in Zea-Tripsacum allopolyploids. Polyploidy, or whole genome duplication, has played a major role in evolution and speciation. The genomic consequences of polyploidy have been extensively studied in many plants; however, the extent of chromosomal variation, genome dosage, phenotypic diversity, and heterosis in allopolyploids derived from multiple species remains largely unknown. To address this question, we synthesized an allohexaploid involving Zea mays, Tripsacum dactyloides, and Z. perennis by chromosomal pyramiding. Subsequently, an allooctoploid and an allopentaploid were obtained by hybridization of the allohexaploid with Z. perennis. Moreover, we constructed three populations with different ploidy by chromosomal shuffling (allopentaploid × Z. perennis, allohexaploid × Z. perennis, and allooctoploid × Z. perennis). We have observed 3 types of sexual reproductive modes and 2 types of asexual reproduction modes in the tri-species hybrids, including 2n gamete fusion (2n + n), haploid gamete fusion (n + n), polyspermy fertilization (n + n + n) or 2n gamete fusion (n + 2n), haploid gametophyte apomixis, and asexual reproduction. The tri-hybrids library presents extremely rich karyotype heterogeneity. Chromosomal compensation appears to exist between maize and Z. perennis. A rise in the ploidy of the trihybrids was linked to a higher frequency of chromosomal translocation. Variation in the degree of phenotypic diversity observed in different segregating populations suggested that genome dosage effects phenotypic manifestation. These findings not only broaden our understanding of the mechanisms of polyploid formation and reproductive diversity but also provide a novel insight into genome pyramiding and shuffling driven genome dosage effects and phenotypic diversity.
Collapse
Affiliation(s)
- Yingzheng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Yan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Sericulture Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, China
| | - Mingjun Cheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Zizhou Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Sericulture Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, 637000, China
| | - Qiyuan Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Saifei Duan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaxiong Li
- Neijiang Municipal Bureau of Agriculture and Rural Affairs, Neijiang, 641000, China
| | - Shipeng Yang
- Zigong Academy of Agricultural Sciences, Zigong, 643000, China
| | - Yulin Cheng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wansong Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lulu Xu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaofeng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ruyu He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunyan Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Guizhou Prataculture Institute, Guiyang, Guizhou, China
| | - Muhammad Zafar Iqbal
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianmei He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
18
|
Zhao K, Dong J, Xu J, Bai Y, Yin Y, Long C, Wu L, Lin T, Fan L, Wang Y, Edger PP, Xiong Z. Downregulation of the expression of subgenomic chromosome A7 genes promotes plant height in resynthesized allopolyploid Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:11. [PMID: 38110525 DOI: 10.1007/s00122-023-04510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/18/2023] [Indexed: 12/20/2023]
Abstract
KEY MESSAGE Homoeolog expression bias and the gene dosage effect induce downregulation of genes on chromosome A7, causing a significant increase in the plant height of resynthesized allopolyploid Brassica napus. Gene expression levels in allopolyploid plants are not equivalent to the simple average of the expression levels in the parents and are associated with several non-additive expression phenomena, including homoeolog expression bias. However, hardly any information is available on the effect of homoeolog expression bias on traits. Here, we studied the effects of gene expression-related characteristics on agronomic traits using six isogenic resynthesized Brassica napus lines across the first ten generations. We found a group of genes located on chromosome A7 whose expression levels were significantly negatively correlated with plant height. They were expressed at significantly lower levels than their homoeologous genes, owing to allopolyploidy rather than inheritance from parents. Homoeolog expression bias resulted in resynthesized allopolyploids with a plant height similar to their female Brassica oleracea parent, but significantly higher than that of the male Brassica rapa parent. Notably, aneuploid lines carrying monosomic and trisomic chromosome A7 had the highest and lowest plant heights, respectively, due to changes in the expression bias of homoeologous genes because of alterations in the gene dosage. These findings suggest that the downregulation of the expression of homoeologous genes on a single chromosome can result in the partial improvement of traits to a significant extent in the nascent allopolyploid B. napus.
Collapse
Affiliation(s)
- Kanglu Zhao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Jing Dong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Junxiong Xu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yanbo Bai
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yuhe Yin
- Institute of Ulanqab Agricultural and Forestry Sciences, Ulanqab, 012000, Inner Mongolia, China
| | - Chunshen Long
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Wu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Tuanrong Lin
- Institute of Ulanqab Agricultural and Forestry Sciences, Ulanqab, 012000, Inner Mongolia, China
| | - Longqiu Fan
- Institute of Ulanqab Agricultural and Forestry Sciences, Ulanqab, 012000, Inner Mongolia, China
| | - Yufeng Wang
- Institute of Ulanqab Agricultural and Forestry Sciences, Ulanqab, 012000, Inner Mongolia, China
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48824, USA.
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
19
|
Liu Q, Ye L, Li M, Wang Z, Xiong G, Ye Y, Tu T, Schwarzacher T, Heslop-Harrison JSP. Genome-wide expansion and reorganization during grass evolution: from 30 Mb chromosomes in rice and Brachypodium to 550 Mb in Avena. BMC PLANT BIOLOGY 2023; 23:627. [PMID: 38062402 PMCID: PMC10704644 DOI: 10.1186/s12870-023-04644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The BOP (Bambusoideae, Oryzoideae, and Pooideae) clade of the Poaceae has a common ancestor, with similarities to the genomes of rice, Oryza sativa (2n = 24; genome size 389 Mb) and Brachypodium, Brachypodium distachyon (2n = 10; 271 Mb). We exploit chromosome-scale genome assemblies to show the nature of genomic expansion, structural variation, and chromosomal rearrangements from rice and Brachypodium, to diploids in the tribe Aveneae (e.g., Avena longiglumis, 2n = 2x = 14; 3,961 Mb assembled to 3,850 Mb in chromosomes). RESULTS Most of the Avena chromosome arms show relatively uniform expansion over the 10-fold to 15-fold genome-size increase. Apart from non-coding sequence diversification and accumulation around the centromeres, blocks of genes are not interspersed with blocks of repeats, even in subterminal regions. As in the tribe Triticeae, blocks of conserved synteny are seen between the analyzed species with chromosome fusion, fission, and nesting (insertion) events showing deep evolutionary conservation of chromosome structure during genomic expansion. Unexpectedly, the terminal gene-rich chromosomal segments (representing about 50 Mb) show translocations between chromosomes during speciation, with homogenization of genome-specific repetitive elements within the tribe Aveneae. Newly-formed intergenomic translocations of similar extent are found in the hexaploid A. sativa. CONCLUSIONS The study provides insight into evolutionary mechanisms and speciation in the BOP clade, which is valuable for measurement of biodiversity, development of a clade-wide pangenome, and exploitation of genomic diversity through breeding programs in Poaceae.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Lyuhan Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzhi Li
- Bio&Data Biotechnologies Co. Ltd, Guangzhou, 510663, China
| | - Ziwei Wang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Gui Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yushi Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Trude Schwarzacher
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, LE1 7RH, UK
| | - John Seymour Pat Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
20
|
Zhao K, Bai Y, Zhang Q, Zhao Z, Cao Y, Yang L, Wang N, Xu J, Wang B, Wu L, Gong X, Lin T, Wang Y, Wang W, Cai X, Yin Y, Xiong Z. Karyotyping of aneuploid and polyploid plants from low coverage whole-genome resequencing. BMC PLANT BIOLOGY 2023; 23:630. [PMID: 38062348 PMCID: PMC10704825 DOI: 10.1186/s12870-023-04650-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Karyotype, as a basic characteristic of species, provides valuable information for fundamental theoretical research and germplasm resource innovation. However, traditional karyotyping techniques, including fluorescence in situ hybridization (FISH), are challenging and low in efficiency, especially when karyotyping aneuploid and polyploid plants. The use of low coverage whole-genome resequencing (lcWGR) data for karyotyping was explored, but existing methods are complicated and require control samples. RESULTS In this study, a new protocol for molecular karyotype analysis was provided, which proved to be a simpler, faster, and more accurate method, requiring no control. Notably, our method not only provided the copy number of each chromosome of an individual but also an accurate evaluation of the genomic contribution from its parents. Moreover, we verified the method through FISH and published resequencing data. CONCLUSIONS This method is of great significance for species evolution analysis, chromosome engineering, crop improvement, and breeding.
Collapse
Affiliation(s)
- Kanglu Zhao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yanbo Bai
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Qingyu Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Zhen Zhao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yao Cao
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lu Yang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ni Wang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Junxiong Xu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Bo Wang
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Wu
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xiufeng Gong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Tuanrong Lin
- Institute of Ulanqab Agricultural and Forestry Sciences, Inner Mongolia, Ulanqab, 012000, China
| | - Yufeng Wang
- Institute of Ulanqab Agricultural and Forestry Sciences, Inner Mongolia, Ulanqab, 012000, China
| | - Wei Wang
- Institute of Ulanqab Agricultural and Forestry Sciences, Inner Mongolia, Ulanqab, 012000, China
| | - Xingkui Cai
- Key Laboratory of Horticultural Plant Biology, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhe Yin
- Institute of Ulanqab Agricultural and Forestry Sciences, Inner Mongolia, Ulanqab, 012000, China
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
21
|
Bird KA, Pires JC, VanBuren R, Xiong Z, Edger PP. Dosage-sensitivity shapes how genes transcriptionally respond to allopolyploidy and homoeologous exchange in resynthesized Brassica napus. Genetics 2023; 225:iyad114. [PMID: 37338008 PMCID: PMC10471226 DOI: 10.1093/genetics/iyad114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
The gene balance hypothesis proposes that selection acts on the dosage (i.e. copy number) of genes within dosage-sensitive portions of networks, pathways, and protein complexes to maintain balanced stoichiometry of interacting proteins, because perturbations to stoichiometric balance can result in reduced fitness. This selection has been called dosage balance selection. Dosage balance selection is also hypothesized to constrain expression responses to dosage changes, making dosage-sensitive genes (those encoding members of interacting proteins) experience more similar expression changes. In allopolyploids, where whole-genome duplication involves hybridization of diverged lineages, organisms often experience homoeologous exchanges that recombine, duplicate, and delete homoeologous regions of the genome and alter the expression of homoeologous gene pairs. Although the gene balance hypothesis makes predictions about the expression response to homoeologous exchanges, they have not been empirically tested. We used genomic and transcriptomic data from 6 resynthesized, isogenic Brassica napus lines over 10 generations to identify homoeologous exchanges, analyzed expression responses, and tested for patterns of genomic imbalance. Groups of dosage-sensitive genes had less variable expression responses to homoeologous exchanges than dosage-insensitive genes, a sign that their relative dosage is constrained. This difference was absent for homoeologous pairs whose expression was biased toward the B. napus A subgenome. Finally, the expression response to homoeologous exchanges was more variable than the response to whole-genome duplication, suggesting homoeologous exchanges create genomic imbalance. These findings expand our knowledge of the impact of dosage balance selection on genome evolution and potentially connect patterns in polyploid genomes over time, from homoeolog expression bias to duplicate gene retention.
Collapse
Affiliation(s)
- Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Zhiyong Xiong
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia 010070, China
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|