1
|
Zhou L, Tsai HW, Kuo TW, Kao JC, Lo YC, Chang JM, Chiang TH, Dai S, Wang KW, Chen TY. Atomic Layered ZnO Between Cu Nanoparticles and a PVP Polymer Layer Enable Exceptional Selectivity and Stability in Electrocatalytic CO 2 Reduction to C 2H 4. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501642. [PMID: 40285630 DOI: 10.1002/advs.202501642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/04/2025] [Indexed: 04/29/2025]
Abstract
This study employs a chemically controlled strategy to construct a few-atomic-layer ZnO structure integrated with polyvinylpyrrolidone (PVP) and nanoscale metallic copper on active carbon. Hydrogen-bond interactions from PVP's N-vinylpyrrolidone allow ZnO to retain a specific proportion of metal atoms, confining electrons at the Cu/ZnO interface to form CuZn nanoalloy clusters. The nanoalloy's dual role in promoting CO adsorption and C─C coupling synergistically boosts C2H4 production during electrochemical CO2 reduction (ECR). Rapid Cu regeneration further increases adsorbed hydrogen (Hads) from water splitting, achieving a remarkable C2H4 selectivity of ≈50.2% with stable performance over 10 h. The Zn→Cu electron confinement and interfacial synergy at the organic-oxide-metal heterojunction underscore the catalyst's superior efficiency, offering a promising pathway for sustainable CO2-to-C2H4 conversion.
Collapse
Affiliation(s)
- Lihui Zhou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Hung-Wei Tsai
- Institute of Materials Science and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Ting-Wei Kuo
- Institute of Materials Science and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Jui-Cheng Kao
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yu-Chieh Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ji-Min Chang
- Department of Energy Engineering, National United University, Miaoli, 360301, Taiwan
| | - Tzu-Hsuan Chiang
- Department of Energy Engineering, National United University, Miaoli, 360301, Taiwan
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Analytical and Environmental Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
2
|
Zou H, Cheng D, Tang C, Luo W, Xiong H, Dong H, Li F, Song T, Shu S, Dai H, Cui Z, Lu Z, Duan L. Electronic perturbation of Cu nanowire surfaces with functionalized graphdiyne for enhanced CO 2 reduction reaction. Natl Sci Rev 2024; 11:nwae253. [PMID: 39554235 PMCID: PMC11562832 DOI: 10.1093/nsr/nwae253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 11/19/2024] Open
Abstract
Electronic perturbation of the surfaces of Cu catalysts is crucial for optimizing electrochemical CO2 reduction activity, yet still poses great challenges. Herein, nanostructured Cu nanowires (NW) with fine-tuned surface electronic structure are achieved via surface encapsulation with electron-withdrawing (-F) and -donating (-Me) group-functionalized graphdiynes (R-GDY, R = -F and -Me) and the resulting catalysts, denoted as R-GDY/Cu NW, display distinct CO2 reduction performances. In situ electrochemical spectroscopy revealed that the *CO (a key intermediate of the CO2 reduction reaction) binding affinity and consequent *CO coverage positively correlate with the Cu surface oxidation state, leading to favorable C-C coupling on F-GDY/Cu NW over Me-GDY/Cu NW. Electrochemical measurements corroborate the favorable C2H4 production with an optimum C2+ selectivity of 73.15% ± 2.5% observed for F-GDY/Cu NW, while the predominant CH4 production is favored by Me-GDY/Cu NW. Furthermore, by leveraging the *Cu-hydroxyl (OH)/*CO ratio as a descriptor, mechanistic investigation reveals that the protonation of distinct adsorbed *CO facilitated by *Cu-OH is crucial for the selective generation of C2H4 and CH4 on F-GDY/Cu NW and Me-GDY/Cu NW, respectively.
Collapse
Affiliation(s)
- Haiyuan Zou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles 90095, USA
| | - Dongfang Cheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles 90095, USA
| | - Chao Tang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huatian Xiong
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
| | - Hongliang Dong
- Center for High-Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Fan Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tao Song
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyan Shu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Dai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziang Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lele Duan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou 310000, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
3
|
Sikdar N. Electrochemical CO 2 Reduction Reaction: Comprehensive Strategic Approaches to Catalyst Design for Selective Liquid Products Formation. Chemistry 2024; 30:e202402477. [PMID: 39115935 DOI: 10.1002/chem.202402477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
The escalating concern regarding the release of CO2 into the atmosphere poses a significant threat to the contemporary efforts in mitigating climate change. Amidst a multitude of strategies for curtailing CO2 emissions, the electrochemical CO2 reduction presents a promising avenue for transforming CO2 molecules into a diverse array of valuable gaseous and liquid products, such as CO, CH3OH, CH4, HCO2H, C2H4, C2H5OH, CH3CO2H, 1-C3H7OH and others. The mechanistic investigations of gaseous products (e. g. CO, CH4, C2H4, C2H6 and others) broadly covered in the literature. There is a noticeable gap in the literature when it comes to a comprehensive summary exclusively dedicated to coherent roadmap for the designing principles for a selective catalyst all possible liquid products (such as CH3OH, C2H5OH, 1-C3H7OH, 2-C3H7OH, 1-C4H9OH, as well as other C3-C4 products like methylglyoxal and 2,3-furandiol, in addition to HCO2H, AcOH, oxalic acid and others), selectively converted by CO2 reduction. This entails a meticulous analysis to justify these approaches and a thorough exploration of the correlation between materials and their electrocatalytic properties. Furthermore, these insightful discussions illuminate the future prospects for practical applications, a facet not exhaustively examined in prior reviews.
Collapse
Affiliation(s)
- Nivedita Sikdar
- Department of Chemistry, GITAM (Gandhi Institute of Technology and Management) School of Science Hyderabad, Telengana, 502329, India
| |
Collapse
|
4
|
Ma F, Zhang P, Zheng X, Chen L, Li Y, Zhuang Z, Fan Y, Jiang P, Zhao H, Zhang J, Dong Y, Zhu Y, Wang D, Wang Y. Steering the Site Distance of Atomic Cu-Cu Pairs by First-Shell Halogen Coordination Boosts CO 2-to-C 2 Selectivity. Angew Chem Int Ed Engl 2024; 63:e202412785. [PMID: 39105415 DOI: 10.1002/anie.202412785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C-C coupling to unravel their structure-performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu-Cu dual sites with different site distance coordinated by halogen at the first-shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long-range Cu-Cu (Cu-I-Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1 %, and excellent stability. In addition, the linear relationships that the long-range Cu-Cu dual sites are accelerated to C2H4 generation and short-range Cu-Cu (Cu-Cl-Cu) dual sites are beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long-range Cu-Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C-C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site-distance-dependent electrochemical properties to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu-Cu dual sites.
Collapse
Affiliation(s)
- Fengya Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Pengfang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, 252000, Liaocheng, China
| | - Xiaobo Zheng
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, 2522, Wollongong, NSW, Australia
| | - Liang Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, 100083, Beijing, China
| | - Yunrui Li
- Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yameng Fan
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, 2522, Wollongong, NSW, Australia
| | - Peng Jiang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Hui Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Jiawei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122, Wuxi, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yao Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
- International Joint Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122, Wuxi, China
| |
Collapse
|
5
|
Yang J, Jiao J, Liu S, Yin Y, Cheng Y, Wang Y, Zhou M, Zhao W, Tong X, Jing L, Zhang P, Sun X, Zhu Q, Kang X, Han B. Switching Reaction Pathways of CO 2 Electroreduction by Modulating Cations in the Electrochemical Double Layer. Angew Chem Int Ed Engl 2024; 63:e202410145. [PMID: 38979674 DOI: 10.1002/anie.202410145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Tuning the selectivity of CO2 electroreduction reaction (CO2RR) solely by changing electrolyte is a very attractive topic. In this study, we conducted CO2RR in different aqueous electrolytes over bulk metal electrodes. It was discovered that controlled CO2RR could be achieved by modulating cations in the electrochemical double layer. Specifically, ionic liquid cations in the electrolyte significantly inhibits the hydrogen evolution reaction (HER), while yielding high Faraday efficiencies toward CO (FECO) or formate (FEformate) depending on the alkali metal cations. For example, the product could be switched from CO (FECO=97.3 %) to formate (FEformate=93.5 %) by changing the electrolyte from 0.1 M KBr-0.5 M 1-octyl-3-methylimidazolium bromide (OmimBr) to 0.1 M CsBr-0.5 M OmimBr aqueous solutions over pristine Cu foil electrode. In situ spectroscopy and theoretical calculations reveal that the ordered structure generated by the assembly of Omim+ under an applied negative potential alters the hydrogen bonding structure of the interfacial water, thereby inhibiting the HER. The difference in selectivity in the presence of different cations is attributed to the hydrogen bonding effect caused by Omim+, which alters the solvated structure of the alkali metal cations and thus affects the stabilization of intermediates of different pathways.
Collapse
Affiliation(s)
- Jiahao Yang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiapeng Jiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shiqiang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yaoyu Yin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingying Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiyong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Tong
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihong Jing
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
6
|
Ge W, Tao H, Dong L, Fan Y, Niu Y, Zhu Y, Lian C, Liu H, Jiang H, Li C. Lewis-base ligand-reshaped interfacial hydrogen-bond network boosts CO 2 electrolysis. Natl Sci Rev 2024; 11:nwae218. [PMID: 39034947 PMCID: PMC11259048 DOI: 10.1093/nsr/nwae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
Both the catalyst and electrolyte strongly impact the performance of CO2 electrolysis. Despite substantial progress in catalysts, it remains highly challenging to tailor electrolyte compositions and understand their functions at the catalyst interface. Here, we report that the ethylenediaminetetraacetic acid (EDTA) and its analogs, featuring strong Lewis acid-base interaction with metal cations, are selected as electrolyte additives to reshape the catalyst-electrolyte interface for promoting CO2 electrolysis. Mechanistic studies reveal that EDTA molecules are dynamically assembled toward interface regions in response to bias potential due to strong Lewis acid-base interaction of EDTA4--K+. As a result, the original hydrogen-bond network among interfacial H2O is disrupted, and a hydrogen-bond gap layer at the electrified interface is established. The EDTA-reshaped K+ solvation structure promotes the protonation of *CO2 to *COOH and suppressing *H2O dissociation to *H, thereby boosting the co-electrolysis of CO2 and H2O toward carbon-based products. In particular, when 5 mM of EDTA is added into the electrolytes, the Faradaic efficiency of CO on the commercial Ag nanoparticle catalyst is increased from 57.0% to 90.0% at an industry-relevant current density of 500 mA cm-2. More importantly, the Lewis-base ligand-reshaped interface allows a range of catalysts (Ag, Zn, Pd, Bi, Sn, and Cu) to deliver substantially increased selectivity of carbon-based products in both H-type and flow-type electrolysis cells.
Collapse
Affiliation(s)
- Wangxin Ge
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haolan Tao
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Dong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Fan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanpu Niu
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yihua Zhu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongliang Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Chen Y, Zhang Y, Li Z, Liu M, Wu Q, Lo TWB, Hu Z, Lee LYS. Amphipathic Surfactant on Reconstructed Bismuth Enables Industrial-Level Electroreduction of CO 2 to Formate. ACS NANO 2024; 18:19345-19353. [PMID: 38991112 DOI: 10.1021/acsnano.4c06019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Developing efficient electrocatalysts for selective formate production via the electrochemical CO2 reduction reaction (CO2RR) is challenged by high overpotential, a narrow potential window of high Faradaic efficiency (FEformate), and limited current density (Jformate). Herein, we report a hierarchical BiOBr (CT/h-BiOBr) with surface-anchored cetyltrimethylammonium bromide (CTAB) for formate-selective large-scale CO2RR electrocatalysis. CT/h-BiOBr achieves over 90% FEformate across a wide potential range (-0.5 to -1.1 V) and an industrial-level Jformate surpassing 100 mA·cm-2 at -0.7 V. In situ investigations uncover the reconstructed Bi(110) surface as the active phase, with CTAB playing a dual role: its hydrophobic alkyl chains create a CO2-enriching microenvironment, while its polar head groups fine-tune the electronic structure, fostering a highly active phase. This work provides valuable insights into the role of surfactants in electrocatalysis and guides the design of electrocatalysts for the large-scale CO2RR.
Collapse
Affiliation(s)
- Yiqun Chen
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yan Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Li
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mengjie Liu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lawrence Yoon Suk Lee
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
8
|
Liu Z, Chen J, Li B, Jiang DE, Wang L, Yao Q, Xie J. Enzyme-Inspired Ligand Engineering of Gold Nanoclusters for Electrocatalytic Microenvironment Manipulation. J Am Chem Soc 2024; 146:11773-11781. [PMID: 38648616 DOI: 10.1021/jacs.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Natural enzymes intricately regulate substrate accessibility through specific amino acid sequences and folded structures at their active sites. Achieving such precise control over the microenvironment has proven to be challenging in nanocatalysis, especially in the realm of ligand-stabilized metal nanoparticles. Here, we use atomically precise metal nanoclusters (NCs) as model catalysts to demonstrate an effective ligand engineering strategy to control the local concentration of CO2 on the surface of gold (Au) NCs during electrocatalytic CO2 reduction reactions (CO2RR). The precise incorporation of two 2-thiouracil-5-carboxylic acid (TCA) ligands within the pocket-like cavity of [Au25(pMBA)18]- NCs (pMBA = para-mercaptobenzoic acid) leads to a substantial acceleration in the reaction kinetics of CO2RR. This enhancement is attributed to a more favorable microenvironment in proximity to the active site for CO2, facilitated by supramolecular interactions between the nucleophilic Nδ- of the pyrimidine ring of the TCA ligand and the electrophilic Cδ+ of CO2. A comprehensive investigation employing absorption spectroscopy, mass spectrometry, isotopic labeling measurements, electrochemical analyses, and quantum chemical computation highlights the pivotal role of local CO2 enrichment in enhancing the activity and selectivity of TCA-modified Au25 NCs for CO2RR. Notably, a high Faradaic efficiency of 98.6% toward CO has been achieved. The surface engineering approach and catalytic fundamentals elucidated in this study provide a systematic foundation for the molecular-level design of metal-based electrocatalysts.
Collapse
Affiliation(s)
- Zhihe Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| | - Junmei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
9
|
Chen J, Fan L, Zhao Y, Yang H, Wang D, Hu B, Xi S, Wang L. Enhancing Cu-ligand interaction for efficient CO 2 reduction towards multi-carbon products. Chem Commun (Camb) 2024; 60:3178-3181. [PMID: 38411546 DOI: 10.1039/d3cc05972c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Electrochemical CO2 reduction (CO2R) to valuable products provides a promising strategy to enable CO2 utilization sustainably. Here, we report the strategy of using Cu-DAT (3,5-diamino-1,2,4-triazole) as a catalyst precursor for efficient CO2 reduction, demonstrating over 80% selectivity towards multicarbon products at 400 mA cm-2, with intrinsic activity over 19 times higher than that of Cu nanoparticles. The catalyst's active phase is determined to be metallic copper wrapped with the DAT ligand. We attribute this enhanced CO2R performance to the accelerated steps of *CO adsorption and C-C coupling induced by the closely cooperated DAT ligand.
Collapse
Affiliation(s)
- Jingyi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Lei Fan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Yilin Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Haozhou Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Di Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Bihao Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| |
Collapse
|
10
|
Wu H, Wang Z, Tian B, Li Y, Chang Z, Kuang Y, Sun X. Gas-induced controllable synthesis of the Cu(100) crystal facet for the selective electroreduction of CO 2 to multicarbon products. NANOSCALE 2024; 16:3034-3042. [PMID: 38231532 DOI: 10.1039/d3nr05023h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Electrocatalytic CO2 reduction (ECR) to high value-added chemicals is an excellent method to attenuate the impact of greenhouse effect caused by CO2. At the same time, multicarbon products (C2+) get extensive attention in view of their relatively high energy density and market price. At present, Cu is an important metal electrocatalyst to convert CO2 into multicarbon products (e.g. ethylene, ethanol, and n-propanol); however, its poor selectivity impedes its practical application. It is well-known that the Cu(100) crystal facet can enhance the selectivity toward multicarbon products among different Cu crystal facets. Herein, the Cu nanoparticles were firstly prepared using the inductive effect of different gases (CO2, CO, Ar, N2, and air) during the Cu electrodeposition processes, in which the CO2-induced Cu catalyst (Cu-CO2) showed the largest normalized content of the Cu(100) crystal facet and the highest C2+ faradaic efficiency of 69% at a current density of 80 mA cm-2 in ECR. Subsequently, the different CO2 pressures during the Cu electrodepositions were studied to reveal the optimal CO2 pressure in the CO2-induced Cu synthesis for improved Cu(100) content as well as C2+ faradaic efficiency. Finally, density functional theory (DFT) calculations confirmed that CO2 molecules preferred to get adsorbed on the Cu(100) crystal facet, which resulted in not only the presence of dominant Cu(100) during the CO2-induced Cu synthesis but also the good electrocatalytic performance in ECR.
Collapse
Affiliation(s)
- Haoyang Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Zhili Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Benqiang Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Zheng Chang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Yun Kuang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University, Shenzhen 518057, P.R. China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| |
Collapse
|