1
|
Berry ASF, Finucane BM, Myers SM, Martin CL, Ledbetter DH, Willard HF, Oetjens MT. X and Y gene dosage effects are primary contributors to human sexual dimorphism: The case of height. Proc Natl Acad Sci U S A 2025; 122:e2503039122. [PMID: 40388606 DOI: 10.1073/pnas.2503039122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/02/2025] [Indexed: 05/21/2025] Open
Abstract
Many human phenotypic traits vary between the sexes, including adult height for which males are, on average, 13 cm taller than females. The biological mechanisms for this sexual dimorphism are not entirely understood. One hypothesis to explain the sexual dimorphism in height relates to differential expression in males and females of SHOX, a height-related gene in the pseudoautosomal region 1 (PAR1) on the X and Y sex chromosomes. SHOX expression is reduced on the inactive X chromosome (Xi), compared to the active X in females. Sex chromosome aneuploidies (SCAs), characterized by an atypical number of X and/or Y chromosomes, serve as informative models for investigating PAR1-related gene dosage effects. Here, we leveraged three large biobanks to study 928,605 individuals, including 1,225 adults with SCAs: 45,X (n = 95), 47,XXY (n = 505), 47,XYY (n = 290), and 47,XXX (n = 335). By modeling height across individuals with various sex chromosome complements, we quantified the contributions of five sex-related genomic contributors to height, including Xi chromosome dosage, Y chromosome dosage, male sex hormones, and effects of Klinefelter and Turner syndromes. We found that a unit increase in Y chromosome dosage confers 3.1cm (95% CI, 1.9 to 4.3) more to height than a unit increase in Xi chromosome dosage, independent of hormonal variables. The larger increase in height conferred by the Y chromosome explained 22.6% of the observed difference in height between 46,XY males and 46,XX females. This finding is consistent with the hypothesis that reduced SHOX expression in females results in a net difference in height between the sexes.
Collapse
Affiliation(s)
- Alexander S F Berry
- Autism & Developmental Medicine Institute, Geisinger College of Health Sciences, Danville, PA 17821
| | - Brenda M Finucane
- Autism & Developmental Medicine Institute, Geisinger College of Health Sciences, Danville, PA 17821
| | - Scott M Myers
- Autism & Developmental Medicine Institute, Geisinger College of Health Sciences, Danville, PA 17821
| | - Christa L Martin
- Autism & Developmental Medicine Institute, Geisinger College of Health Sciences, Danville, PA 17821
| | - David H Ledbetter
- Institute for Pediatric Rare Diseases, College of Medicine, Florida State University, Tallahassee, FL 32306
| | | | - Matthew T Oetjens
- Autism & Developmental Medicine Institute, Geisinger College of Health Sciences, Danville, PA 17821
| |
Collapse
|
2
|
Su D, Peters M, Soltys V, Chan YF. Copy number normalization distinguishes differential signals driven by copy number differences in ATAC-seq and ChIP-seq. BMC Genomics 2025; 26:306. [PMID: 40155863 PMCID: PMC11951689 DOI: 10.1186/s12864-025-11442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
A common objective across ATAC-seq and ChIP-seq analyses is to identify differential signals across contrasted conditions. However, in differential analyses, the impact of copy number variation is often overlooked. Here, we demonstrated copy number differences among samples could drive, if not dominate, differential signals. To address this, we propose a pipeline featuring copy number normalization. By comparing the averaged signal per gene copy, it effectively segregates differential signals driven by copy number from other factors. Further applying it to Down syndrome unveiled distinct dosage-dependent and -independent changes on chromosome 21. Thus, we recommend copy number normalization as a general approach.
Collapse
Affiliation(s)
- Dingwen Su
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany.
| | - Moritz Peters
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Volker Soltys
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany
| | - Yingguang Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, 72076, Germany.
- University of Groningen, Groningen Institute of Evolutionary Life Sciences (GELIFES), Groningen, 9747 AG, The Netherlands.
| |
Collapse
|
3
|
DeCasien AR, Tsai K, Liu S, Thomas A, Raznahan A. Evolutionary divergence between homologous X-Y chromosome genes shapes sex-biased biology. Nat Ecol Evol 2025; 9:448-463. [PMID: 39856216 DOI: 10.1038/s41559-024-02627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 12/10/2024] [Indexed: 01/27/2025]
Abstract
Sex chromosomes are a fundamental aspect of sex-biased biology, but the extent to which homologous X-Y gene pairs ('the gametologs') contribute to sex-biased phenotypes remains hotly debated. Although these genes tend to exhibit large sex differences in expression throughout the body (XX females can express both X members, and XY males can express one X and one Y member), there is conflicting evidence regarding the degree of functional divergence between the X and Y members. Here we develop and apply co-expression fingerprint analysis to characterize functional divergence between the X and Y members of 17 gametolog gene pairs across >40 human tissues. Gametolog pairs exhibit functional divergence between the sexes that is driven by divergence between the X versus Y members (assayed in males), and this within-pair divergence is greatest among pairs with evolutionarily distant X and Y members. These patterns reflect that X versus Y gametologs show coordinated patterns of asymmetric coupling with large sets of autosomal genes, which are enriched for functional pathways and gene sets implicated in sex-biased biology and disease. Our findings suggest that the X versus Y gametologs have diverged in function and prioritize specific gametolog pairs for future targeted experimental studies.
Collapse
Affiliation(s)
- Alex R DeCasien
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH IRP, NIH, Bethesda, MD, USA.
- Computational and Evolutionary Neurogenomics Unit, Laboratory of Neurogenetics, NIA IRP, NIH, Bethesda, MD, USA.
| | - Kathryn Tsai
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH IRP, NIH, Bethesda, MD, USA
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH IRP, NIH, Bethesda, MD, USA
| | - Adam Thomas
- Data Science and Sharing Team, NIMH IRP, NIH, Bethesda, MD, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, NIMH IRP, NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
Davis SM, Liu A, Teerlink CC, Lapato DM, Gorman B, Genovese G, Singh M, Reeve MP, Gentry AE, Donner KM, Sipilä TP, Ghazal A, Pagadala MS, Panizzon MS, Lancaster EE, Chatzinakos C, Ganna A, Bigdeli TB, Daly MJ, Lynch JA, Ross J, Peterson RE, Hauger RL. Prevalence and disease risks for male and female sex chromosome trisomies: a registry-based phenome-wide association study in 1.5 million participants of MVP, FinnGen, and UK Biobank. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.31.25321488. [PMID: 39974076 PMCID: PMC11838634 DOI: 10.1101/2025.01.31.25321488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sex chromosome trisomies (SCT) are the most common whole chromosome aneuploidy in humans. Yet, our understanding of the prevalence and associated health outcomes is largely driven by observational studies of clinically diagnosed cases, resulting in a disproportionate focus on 47,XXY and associated hypogonadism. We analyzed microarray intensity data of sex chromosomes for 1.5 million individuals enrolled in three large cohorts-Million Veteran Program, FinnGen, and UK Biobank-to identify individuals with 47,XXY, 47,XYY, and 47,XXX. We examined disease conditions associated with SCTs by performing phenome-wide association studies (PheWAS) using electronic health records (EHR) data for each cohort, followed by meta-analysis across cohorts. Association results are presented for each SCT and also stratified by presence or absence of a documented clinical diagnosis for 47,XXY. We identified 2,769 individuals with (47,XXY: 1,319; 47,XYY: 1,108; 47,XXX: 342), most of whom had no documented clinical diagnosis (47,XXY: 73.8%; 47,XYY: 98.6%; 47,XXX: 93.6%). The identified phenotypic associations with SCT spanned all PheWAS disease categories except neoplasms. Many associations are shared among three SCT subtypes, particularly for vascular diseases (e.g., chronic venous insufficiency (OR [95% CI] for 47,XXY 4.7 [3.9,5.8]; 47,XYY 5.6 [4.5,7.0]; 4 7,XXX 4.6 [2.7,7.6], venous thromboembolism (47,XXY 4.6 [3.7-5.6]; 47,XYY 4.1 [3.3-5.0]; 47,XXX 8.1 [4.2-15.4]), and glaucoma (47,XXY 2.5 [2.1-2.9]; 47,XYY 2.4 [2.0-2.8]; 47,XXX 2.3 [1.4-3.5]). A third sex chromosome confers an increased risk for systemic comorbidities, even if the SCT is not documented. SCT phenotypes largely overlap, suggesting one or more X/Y homolog genes may underlie pathophysiology and comorbidities across SCTs.
Collapse
Affiliation(s)
- Shanlee M. Davis
- Department of Pediatrics, School of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- eXtraOrdinarY Kids Clinic, Children’s Hospital Colorado, Aurora, CO, USA
| | - Aoxing Liu
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Craig C. Teerlink
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dana M. Lapato
- Department of Human & Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Madhurbain Singh
- Department of Human & Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mary P. Reeve
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Amanda Elswick Gentry
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kati M. Donner
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Timo P. Sipilä
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Awaisa Ghazal
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Meghana S. Pagadala
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
- Biomedical Science Program, University of California San Diego, La Jolla, CA, USA
| | - Matthew S. Panizzon
- Center for Behavior Genetics of Aging, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eva E. Lancaster
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | - Chris Chatzinakos
- Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Andrea Ganna
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Tim B. Bigdeli
- Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY
- VA New York Harbor Healthcare System, Brooklyn, NY
- Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Julie A. Lynch
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Judith Ross
- Nemours Children’s Hospital DE, Wilmington, DE, USA
- Department of Pediatrics, School of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Roseann E. Peterson
- Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, NY
- VA New York Harbor Healthcare System, Brooklyn, NY
| | - Richard L. Hauger
- Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, USA
- Center for Behavior Genetics of Aging, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Lee SE, Baxter LL, Duran MI, Morris SD, Mosley IA, Fuentes KA, Pennings JLA, Guedj F, Bianchi DW. Analysis of genotype effects and inter-individual variability in iPSC-derived trisomy 21 neural progenitor cells. Hum Mol Genet 2025; 34:85-100. [PMID: 39533854 PMCID: PMC12034096 DOI: 10.1093/hmg/ddae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Trisomy of human chromosome 21 (T21) gives rise to Down syndrome (DS), the most frequent live-born autosomal aneuploidy. T21 triggers genome-wide transcriptomic alterations that result in multiple atypical phenotypes with highly variable penetrance and expressivity in individuals with DS. Many of these phenotypes, including atypical neurodevelopment, emerge prenatally. To enable in vitro analyses of the cellular and molecular mechanisms leading to the neurological alterations associated with T21, we created and characterized a panel of genomically diverse T21 and euploid induced pluripotent stem cells (iPSCs). We subsequently differentiated these iPSCs to generate a panel of neural progenitor cells (NPCs). Alongside characterizing genotype effects from T21, we found that T21 NPCs showed inter-individual variability in growth rates, oxidative stress, senescence characteristics, and gene and protein expression. Pathway enrichment analyses of T21 NPCs identified vesicular transport, DNA repair, and cellular response to stress pathways. These results demonstrate T21-associated variability at the cellular level and suggest that cell lines from individuals with DS should not solely be analyzed as a homogenous population. Examining large cohorts of genetically diverse samples may more fully reveal the effects of aneuploidy on transcriptomic and phenotypic characteristics in T21 cell types. A panel of genomically diverse T21 and euploid induced pluripotent stem cells (iPSCs) were created and subsequently differentiated into neural progenitor cells (NPCs). T21 NPCs showed reduced growth, increased oxidative stress, and inter-individual variability in gene and protein expression. This inter-individual variability suggests that studies with large cohorts of genetically diverse T21 samples may more fully reveal the effects of aneuploidy.
Collapse
Affiliation(s)
- Sarah E Lee
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Laura L Baxter
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Monica I Duran
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Samuel D Morris
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Iman A Mosley
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Kevin A Fuentes
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, P.O. Box 1, Bilthoven, BA 3720, the Netherlands
| | - Faycal Guedj
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
| | - Diana W Bianchi
- Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, 35A Convent Drive Bethesda, MD 20892, United States
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, United States
| |
Collapse
|
6
|
Roybal MR, Liu S, Larsen IG, Wass A, Schaffer L, Ajumobi T, Whitman ET, Warling A, Clasen L, Blumenthal J, Rau S, Raznahan A. Age-related differences in psychopathology within sex chromosome trisomies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.22.24317803. [PMID: 39606422 PMCID: PMC11601772 DOI: 10.1101/2024.11.22.24317803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Sex chromosome trisomies (SCTs) are a group of genetic disorders characterized by presence of a supernumerary sex chromosome, resulting in karyotypes other than XX or XY. These include XXX (Trisomy X), XXY (Klinefelter syndrome), and XYY (Jacobs syndrome). Sex chromosome trisomies have been linked to increased risk for psychopathology; however, this relationship warrants additional research. Specifically, little is known regarding potential age-related variation in risk for psychopathology and how this may differ across karyotypes and subdomains of psychopathology, which has relevance for psychoeducation, personalized care, and mechanistic research. Thus, we used the Child Behavior Checklist (CBCL) to estimate age-related variation in psychopathology in a large cross-sectional sample of individuals with SCTs (n = 201) and euploidic controls (n = 304) spanning the age range of 5-18 years. We found that elevations of psychopathology in SCT were significantly associated with age in a manner that varied as a combined function of the karyotype and CBCL scale being considered. Post hoc tests revealed there is a uniquely pronounced age-associated increase in severity of social problems in XYY, alongside a lack of statistical evidence for age-related variation in the severity of psychopathology for other CBCL domains and SCT karyotypes. Our findings are relevant for advancing the personalization of clinical assessment and monitoring in SCTs. They also highlight potential windows of dynamic risk emergence for closer clinical and biological study, as well as opportunities to provide intervention to mitigate future risk.
Collapse
Affiliation(s)
- Melissa R. Roybal
- National Institutes of Health, National Institute of Mental Health, Bethesda, MD, United States
| | - Siyuan Liu
- National Institutes of Health, National Institute of Mental Health, Bethesda, MD, United States
| | - Isabella G. Larsen
- National Institutes of Health, National Institute of Mental Health, Bethesda, MD, United States
| | - Anastasia Wass
- Georgetown University School of Medicine, Georgetown, Washington, D.C., United States
| | - Lukas Schaffer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Tiffany Ajumobi
- School of Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Ethan T. Whitman
- Department of Psychology & Neuroscience, Duke University, Durham, NC, United States
| | | | - Liv Clasen
- National Institutes of Health, National Institute of Mental Health, Bethesda, MD, United States
| | - Jonathan Blumenthal
- National Institutes of Health, National Institute of Mental Health, Bethesda, MD, United States
| | - Srishti Rau
- Children’s National Health System, Center for Autism Spectrum Disorders and Division of Neuropsychology, Washington, D.C., United States
| | - Armin Raznahan
- National Institutes of Health, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Berry ASF, Finucane BM, Myers SM, Walsh LK, Seibert JM, Martin CL, Ledbetter DH, Oetjens MT. A genome-first study of sex chromosome aneuploidies provides evidence of Y chromosome dosage effects on autism risk. Nat Commun 2024; 15:8897. [PMID: 39406744 PMCID: PMC11480344 DOI: 10.1038/s41467-024-53211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
A female protective effect has long been postulated as the primary explanation for the four-fold increase of autism spectrum disorder (ASD) diagnoses in males versus females. However, genetic and epidemiological investigations of this hypothesis have so far failed to explain the large difference in ASD prevalence between the sexes. To address this knowledge gap, we examined sex chromosome aneuploidy in a large ASD case-control cohort to evaluate the relationship between X and Y chromosome dosage and ASD risk. From these data, we modeled three relationships between sex chromosome dosage and ASD risk: the extra Y effect, the extra X effect, and sex chromosome haploinsufficiency. We found that the extra Y effect increased ASD risk significantly more than the extra X effect. Among females, we observed a large association between 45, X and ASD, confirming sex chromosome haploinsufficiency as a strong ASD risk factor. These results provide a framework for understanding the relationship between X and Y chromosome dosage on ASD, which may inform future research investigating genomic contributors to the observed sex difference.
Collapse
Affiliation(s)
| | - Brenda M Finucane
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, US
| | - Scott M Myers
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, US
| | - Lauren K Walsh
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, US
| | - John M Seibert
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, US
| | | | - David H Ledbetter
- Office of Research Affairs, Departments of Pediatrics and Psychiatry, University of Florida College of Medicine, Jacksonville, FL, US
| | - Matthew T Oetjens
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, US.
| |
Collapse
|
8
|
Schaffer L, Rau S, Larsen IG, Clasen L, Warling A, Whitman ET, Nadig A, McDermott C, Xenophontos A, Wilson K, Blumenthal J, Torres E, Raznahan A. X- vs. Y-chromosome influences on human behavior: a deep phenotypic comparison of psychopathology in XXY and XYY syndromes. J Neurodev Disord 2024; 16:56. [PMID: 39363182 PMCID: PMC11451104 DOI: 10.1186/s11689-024-09574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Do different genetic disorders impart different psychiatric risk profiles? This question has major implications for biological and translational aspects of psychiatry, but has been difficult to tackle given limited access to shared batteries of fine-grained clinical data across genetic disorders. METHODS Using a new suite of generalizable analytic approaches, we examine gold-standard diagnostic ratings, scores on 66 dimensional measures of psychopathology, and measures of cognition and functioning in two different sex chromosome aneuploidies (SCAs)-Klinefelter (XXY/KS) and XYY syndrome (n = 102 and 64 vs. n = 74 and 60 matched XY controls, total n = 300). We focus on SCAs for their high collective prevalence, informativeness regarding differential X- vs. Y-chromosome effects, and potential relevance for normative sex differences. RESULTS We show that XXY/KS elevates rates for most psychiatric diagnoses as previously reported for XYY, but disproportionately so for anxiety disorders. Fine-mapping across all 66 traits provides a detailed profile of psychopathology in XXY/KS which is strongly correlated with that of XYY (r = .75 across traits) and robust to ascertainment biases, but reveals: (i) a greater penetrance of XYY than KS/XXY for most traits except mood/anxiety problems, and (ii) a disproportionate impact of XYY vs. XXY/KS on social problems. XXY/KS and XYY showed a similar coupling of psychopathology with adaptive function and caregiver strain, but not IQ. CONCLUSIONS This work provides new tools for deep-phenotypic comparisons of genetic disorders in psychiatry and uses these to detail unique and shared effects of the X- and Y-chromosome on human behavior.
Collapse
Affiliation(s)
- Lukas Schaffer
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Srishti Rau
- Center for Autism Spectrum Disorders and Division of Neuropsychology, Children's National Hospital, Washington, DC, USA
| | - Isabella G Larsen
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Liv Clasen
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Allysa Warling
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Ethan T Whitman
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Ajay Nadig
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Cassidy McDermott
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Anastasia Xenophontos
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Kathleen Wilson
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Jonathan Blumenthal
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Erin Torres
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA
| | - Armin Raznahan
- Section On Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Magnuson Clinical Center, Room 4N242, MSC 1367, Bethesda, MD, 20814, USA.
| |
Collapse
|
9
|
Zhang S, Wang R, Zhang L, Birchler JA, Sun L. Inverse and Proportional Trans Modulation of Gene Expression in Human Aneuploidies. Genes (Basel) 2024; 15:637. [PMID: 38790266 PMCID: PMC11121296 DOI: 10.3390/genes15050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Genomic imbalance in aneuploidy is often detrimental to organisms. To gain insight into the molecular basis of aneuploidies in humans, we analyzed transcriptome data from several autosomal and sex chromosome aneuploidies. The results showed that in human aneuploid cells, genes located on unvaried chromosomes are inversely or proportionally trans-modulated, while a subset of genes on the varied chromosomes are compensated. Less genome-wide modulation is found for sex chromosome aneuploidy compared with autosomal aneuploidy due to X inactivation and the retention of dosage sensitive regulators on both sex chromosomes to limit the effective dosage change. We also found that lncRNA and mRNA can have different responses to aneuploidy. Furthermore, we analyzed the relationship between dosage-sensitive transcription factors and their targets, which illustrated the modulations and indicates genomic imbalance is related to stoichiometric changes in components of gene regulatory complexes.In summary, this study demonstrates the existence of trans-acting effects and compensation mechanisms in human aneuploidies and contributes to our understanding of gene expression regulation in unbalanced genomes and disease states.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ludan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (S.Z.); (R.W.); (L.Z.)
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Blanton LV, San Roman AK, Wood G, Buscetta A, Banks N, Skaletsky H, Godfrey AK, Pham TT, Hughes JF, Brown LG, Kruszka P, Lin AE, Kastner DL, Muenke M, Page DC. Stable and robust Xi and Y transcriptomes drive cell-type-specific autosomal and Xa responses in vivo and in vitro in four human cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585578. [PMID: 38562807 PMCID: PMC10983990 DOI: 10.1101/2024.03.18.585578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Recent in vitro studies of human sex chromosome aneuploidy showed that the Xi ("inactive" X) and Y chromosomes broadly modulate autosomal and Xa ("active" X) gene expression in two cell types. We tested these findings in vivo in two additional cell types. Using linear modeling in CD4+ T cells and monocytes from individuals with one to three X chromosomes and zero to two Y chromosomes, we identified 82 sex-chromosomal and 344 autosomal genes whose expression changed significantly with Xi and/or Y dosage in vivo . Changes in sex-chromosomal expression were remarkably constant in vivo and in vitro across all four cell types examined. In contrast, autosomal responses to Xi and/or Y dosage were largely cell-type-specific, with up to 2.6-fold more variation than sex-chromosomal responses. Targets of the X- and Y-encoded transcription factors ZFX and ZFY accounted for a significant fraction of these autosomal responses both in vivo and in vitro . We conclude that the human Xi and Y transcriptomes are surprisingly robust and stable across the four cell types examined, yet they modulate autosomal and Xa genes - and cell function - in a cell-type-specific fashion. These emerging principles offer a foundation for exploring the wide-ranging regulatory roles of the sex chromosomes across the human body.
Collapse
|
11
|
Hanson C, Blumenthal J, Clasen L, Guma E, Raznahan A. Influences of sex chromosome aneuploidy on height, weight, and body mass index in human childhood and adolescence. Am J Med Genet A 2024; 194:150-159. [PMID: 37768018 DOI: 10.1002/ajmg.a.63398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Sex chromosome aneuploidies (SCAs) are collectively common conditions caused by carriage of a sex chromosome dosage other than XX for females and XY for males. Increases in sex chromosome dosage (SCD) have been shown to have an inverted-U association with height, but we lack combined studies of SCA effects on height and weight, and it is not known if any such effects vary with age. Here, we study norm-derived height and weight z-scores in 177 youth spanning 8 SCA karyotypes (XXX, XXY, XYY, XXXX, XXXY, XXYY, XXXXX, and XXXXY). We replicate a previously described inverted-U association between mounting SCD and height, and further show that there is also a muted version of this effect for weight: both phenotypes are elevated until SCD reaches 4 for females and 5 for males but decrease thereafter. We next use 266 longitudinal measures available from a subset of karyotypes (XXX, XXY, XYY, and XXYY) to show that mean height in these SCAs diverges further from norms with increasing age. As weight does not diverge from norms with increasing age, BMI decreases with increasing age. These findings extend our understanding of growth as an important clinical outcome in SCA, and as a key context for known effects of SCA on diverse organ systems that scale with body size.
Collapse
Affiliation(s)
- Claire Hanson
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Liv Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Levitis E, Liu S, Whitman ET, Warling A, Torres E, Clasen LS, Lalonde FM, Sarlls J, Alexander DC, Raznahan A. The Variegation of Human Brain Vulnerability to Rare Genetic Disorders and Convergence With Behaviorally Defined Disorders. Biol Psychiatry 2024; 95:136-146. [PMID: 37480975 PMCID: PMC10799187 DOI: 10.1016/j.biopsych.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Diverse gene dosage disorders (GDDs) increase risk for psychiatric impairment, but characterization of GDD effects on the human brain has so far been piecemeal, with few simultaneous analyses of multiple brain features across different GDDs. METHODS Here, through multimodal neuroimaging of 3 aneuploidy syndromes (XXY [total n = 191, 92 control participants], XYY [total n = 81, 47 control participants], and trisomy 21 [total n = 69, 41 control participants]), we systematically mapped the effects of supernumerary X, Y, and chromosome 21 dosage across a breadth of 15 different macrostructural, microstructural, and functional imaging-derived phenotypes (IDPs). RESULTS The results revealed considerable diversity in cortical changes across GDDs and IDPs. This variegation of IDP change underlines the limitations of studying GDD effects unimodally. Integration across all IDP change maps revealed highly distinct architectures of cortical change in each GDD along with partial coalescence onto a common spatial axis of cortical vulnerability that is evident in all 3 GDDs. This common axis shows strong alignment with shared cortical changes in behaviorally defined psychiatric disorders and is enriched for specific molecular and cellular signatures. CONCLUSIONS Use of multimodal neuroimaging data in 3 aneuploidies indicates that different GDDs impose unique fingerprints of change in the human brain that differ widely depending on the imaging modality that is being considered. Embedded in this variegation is a spatial axis of shared multimodal change that aligns with shared brain changes across psychiatric disorders and therefore represents a major high-priority target for future translational research in neuroscience.
Collapse
Affiliation(s)
- Elizabeth Levitis
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland; Center for Medical Image Computing, Department of Computer Science, UCL, London, UK.
| | - Siyuan Liu
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland
| | - Ethan T Whitman
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland
| | - Allysa Warling
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland
| | - Erin Torres
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland
| | - Liv S Clasen
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland
| | - François M Lalonde
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland
| | - Joelle Sarlls
- National Institutes of Health MRI Research Facility, National Institute of Mental Health, Bethesda, Maryland
| | - Daniel C Alexander
- Center for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, Maryland.
| |
Collapse
|
13
|
Valenti D, Vacca RA. Brain Mitochondrial Bioenergetics in Genetic Neurodevelopmental Disorders: Focus on Down, Rett and Fragile X Syndromes. Int J Mol Sci 2023; 24:12488. [PMID: 37569863 PMCID: PMC10419900 DOI: 10.3390/ijms241512488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondria, far beyond their prominent role as cellular powerhouses, are complex cellular organelles active as central metabolic hubs that are capable of integrating and controlling several signaling pathways essential for neurological processes, including neurogenesis and neuroplasticity. On the other hand, mitochondria are themselves regulated from a series of signaling proteins to achieve the best efficiency in producing energy, in establishing a network and in performing their own de novo synthesis or clearance. Dysfunctions in signaling processes that control mitochondrial biogenesis, dynamics and bioenergetics are increasingly associated with impairment in brain development and involved in a wide variety of neurodevelopmental disorders. Here, we review recent evidence proving the emerging role of mitochondria as master regulators of brain bioenergetics, highlighting their control skills in brain neurodevelopment and cognition. We analyze, from a mechanistic point of view, mitochondrial bioenergetic dysfunction as causally interrelated to the origins of typical genetic intellectual disability-related neurodevelopmental disorders, such as Down, Rett and Fragile X syndromes. Finally, we discuss whether mitochondria can become therapeutic targets to improve brain development and function from a holistic perspective.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
14
|
Schaffer L, Rau S, Clasen L, Warling A, Whitman ET, Nadig A, McDermott C, Xenophontos A, Wilson K, Blumenthal J, Torres E, Raznahan A. X- vs. Y-Chromosome Influences on Human Behavior: A Deep Phenotypic Comparison of Psychopathology in XXY and XYY Syndromes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.19.23291614. [PMID: 37502878 PMCID: PMC10371113 DOI: 10.1101/2023.06.19.23291614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Do different genetic disorders impart different psychiatric risk profiles? This question has major implications for biological and translational aspects of psychiatry, but has been difficult to tackle given limited access to shared batteries of fine-grained clinical data across genetic disorders. Using a new suite of generalizable analytic approaches, we examine gold-standard diagnostic ratings, scores on 66 dimensional measures of psychopathology, and measures of cognition and functioning in two different sex chromosome aneuploidies (SCAs) - Klinefelter (XXY/KS) and XYY syndrome (n=102 and 64 vs. n=74 and 60 matched XY controls, total n=300). We focus on SCAs for their high collective prevalence, informativeness regarding differential X- vs. Y-chromosome effects, and potential relevance for normative sex differences. We show that XXY/KS elevates rates for most psychiatric diagnoses as previously reported for XYY, but disproportionately so for anxiety disorders. Fine-mapping across all 66 traits provides a detailed profile of psychopathology in XXY/KS which is strongly correlated with that of XYY (r=.75 across traits) and robust to ascertainment biases, but reveals: (i) a greater penetrance of XYY than KS/XXY for most traits except mood/anxiety problems, and (ii) a disproportionate impact of XYY vs. XXY/KS on social problems. XXY/KS and XXY showed a similar coupling of psychopathology with adaptive function and caregiver strain, but not IQ. This work provides new tools for deep-phenotypic comparisons of genetic disorders in psychiatry and uses these to detail unique and shared effects of the X- and Y-chromosome on human behavior.
Collapse
Affiliation(s)
- Lukas Schaffer
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Srishti Rau
- Center for Autism Spectrum Disorders and Division of Neuropsychology, Children’s National Hospital, Washington DC, USA
| | - Liv Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Allysa Warling
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Ethan T. Whitman
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Ajay Nadig
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Cassidy McDermott
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Anastasia Xenophontos
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Kathleen Wilson
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Erin Torres
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| |
Collapse
|
15
|
San Roman AK, Skaletsky H, Godfrey AK, Bokil NV, Teitz L, Singh I, Blanton LV, Bellott DW, Pyntikova T, Lange J, Koutseva N, Hughes JF, Brown L, Phou S, Buscetta A, Kruszka P, Banks N, Dutra A, Pak E, Lasutschinkow PC, Keen C, Davis SM, Lin AE, Tartaglia NR, Samango-Sprouse C, Muenke M, Page DC. The human Y and inactive X chromosomes similarly modulate autosomal gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543763. [PMID: 37333288 PMCID: PMC10274745 DOI: 10.1101/2023.06.05.543763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex-chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors - ZFX and ZFY - encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.
Collapse
Affiliation(s)
| | - Helen Skaletsky
- Whitehead Institute; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute; Cambridge, MA 02142, USA
| | - Alexander K. Godfrey
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Neha V. Bokil
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Levi Teitz
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Isani Singh
- Whitehead Institute; Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Julian Lange
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | | | | | - Laura Brown
- Whitehead Institute; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute; Cambridge, MA 02142, USA
| | - Sidaly Phou
- Whitehead Institute; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute; Cambridge, MA 02142, USA
| | - Ashley Buscetta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda; MD 20892, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda; MD 20892, USA
| | - Nicole Banks
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda; MD 20892, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health; Bethesda, MD 20892 USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD 20892 USA
| | - Evgenia Pak
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health; Bethesda, MD 20892 USA
| | | | | | - Shanlee M. Davis
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela E. Lin
- Medical Genetics, Massachusetts General for Children, Boston, MA 02114, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole R. Tartaglia
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Developmental Pediatrics, eXtraOrdinarY Kids Program, Children’s Hospital Colorado, Aurora, CO 80011, USA
| | - Carole Samango-Sprouse
- Focus Foundation, Davidsonville, MD 21035, USA
- Department of Pediatrics, George Washington University, Washington, DC 20052, USA; Department of Human and Molecular Genetics, Florida International University, Miami, FL 33199, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda; MD 20892, USA
| | - David C. Page
- Whitehead Institute; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Whitehead Institute; Cambridge, MA 02142, USA
| |
Collapse
|