1
|
Fernandez-Gonzalez V, Clerc MG, González-Cortés G, Hidalgo PI, Vergara J. Abrikosov clusters in chiral liquid crystal droplets. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:120502. [PMID: 39541731 DOI: 10.1088/1361-6633/ad92a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
Self-organizing triangular lattices of topological vortices have been observed in type-II superconductors, Bose-Einstein condensates, and chiral magnets under external forcing. Liquid crystals exhibit vortex self-organization in dissipative media. In this study, we experimentally investigate the formation of vortex clusters, analogous to Abrikosov lattices, in temperature-driven chiral liquid crystal droplets. Based on a Ginzburg-Landau-like equation, we derive the interaction laws underlying the formation of these Abrikosov clusters of chiral domains. The origin of these is elucidated due to the competition between the repulsive interaction and the spatial effect of the confinement within the droplet. Our results advance the theoretical understanding of localized vortex self-organization in liquid crystals and open up possibilities for controlling the clustering of these topological defects.
Collapse
Affiliation(s)
- V Fernandez-Gonzalez
- Departamento de Física and Millennium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
| | - M G Clerc
- Departamento de Física and Millennium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
| | - G González-Cortés
- Departamento de Física and Millennium Institute for Research in Optics, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
| | - P I Hidalgo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - J Vergara
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| |
Collapse
|
2
|
Yoshioka J, Nobori H, Fukao K, Araoka F. Propagation of periodic director and flow patterns in a cholesteric liquid crystal under electroconvection. Sci Rep 2024; 14:23201. [PMID: 39369116 PMCID: PMC11457521 DOI: 10.1038/s41598-024-74551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
The electroconvection of liquid crystals is a typical example of a dissipative structure generated by complicated interactions between three factors: convective flow, structural deformation, and the migration of charge carriers. In this study, we found that the periodic structural deformation of a cholesteric liquid crystal propagates in space, like a wave, under an alternating-current electric field. The existence of convection and charge carriers was confirmed by flow-field measurements and dielectric relaxation spectroscopy. Given that the wave phenomenon results from electroconvection, we suggest a possible model for describing the mechanism of wave generation. The validity of the model was examined using the Onsager variational principle. Consequently, it was suggested that wave generation can be described by four effects: the electrostatic potential, mixing entropy, anisotropic friction due to charge migration, and viscous dissipation of the liquid crystal.
Collapse
Affiliation(s)
- Jun Yoshioka
- Department of Physical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Hiroki Nobori
- Department of Physical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Koji Fukao
- Department of Physical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Fumito Araoka
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
3
|
Liu H, Wang Z, Xin H, Liu J, Wang Q, Pang B, Zhang K. Polysaccharide Nanocrystals-Based Chiral Nematic Structures: From Self-Assembly Mechanisms, Regulation, to Applications. ACS NANO 2024; 18:22675-22708. [PMID: 39137301 PMCID: PMC11363144 DOI: 10.1021/acsnano.4c03130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Chiral architectures, one of the key structural features of natural systems ranging from the nanoscale to macroscale, are an infinite source of inspiration for functional materials. Researchers have been, and still are, strongly pursuing the goal of constructing such structures with renewable and sustainable building blocks via simple and efficient strategies. With the merits of high sustainability, renewability, and the ability to self-assemble into chiral nematic structures in aqueous suspensions that can be preserved in the solid state, polysaccharide nanocrystals (PNs) including cellulose nanocrystals (CNCs) and chitin nanocrystals (ChNCs) offer opportunities to reach the target. We herein provide a comprehensive review that focuses on the development of CNCs and ChNCs for the use in advanced functional materials. First, the introduction of CNCs and ChNCs, and cellulose- and chitin-formed chiral nematic organizations in the natural world, are given. Then, the self-assembly process of such PNs and the factors influencing this process are comprehensively discussed. After that, we showcased the emerging applications of the self-assembled chiral nematic structures of CNCs and ChNCs. Finally, this review concludes with perspectives on the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Huan Liu
- Biofuels
Institute, School of the Environment and Safety Engineering, School
of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- National
Forestry and Grassland Administration Key Laboratory of Plant Fiber
Functional Materials, Fuzhou 350108, China
| | - Zhihao Wang
- Biofuels
Institute, School of the Environment and Safety Engineering, School
of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Haowei Xin
- Biofuels
Institute, School of the Environment and Safety Engineering, School
of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels
Institute, School of the Environment and Safety Engineering, School
of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels
Institute, School of the Environment and Safety Engineering, School
of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Bo Pang
- Department
of Food Science and Technology, National
University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Kai Zhang
- Sustainable
Materials and Chemistry, Department of Wood Technology and Wood-Based
Composites, University of Göttingen, Göttingen 37077, Germany
| |
Collapse
|
4
|
Yoshioka J, Ito Y, Fukao K. Morphogenesis of a chiral liquid crystalline droplet with topological reconnection and Lehmann rotation. Sci Rep 2024; 14:7597. [PMID: 38556534 PMCID: PMC11365937 DOI: 10.1038/s41598-024-58054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Morphogenesis is a hierarchical phenomenon that produces various macroscopic structures in living organisms, with high reproducibility. This study demonstrates that such structural formation can also be observed in a chiral liquid crystalline droplet under a temperature gradient. Through specific control of the temperature change process, we were able to switch the final structure obtained as a result of the formation via the appearance and reconnection of loop defects in the transient state during structure formation. Simultaneously, the existence of the gradient resulted in a characteristic rotational phenomenon called Lehmann rotation, which was prominently induced in the transient state. By demonstrating three-dimensional measurements of the flow field, we revealed the existence of Marangoni convection in the state. Consequently, it is indicated that the convection results in high-speed Lehmann rotation and large structural deformation with topological changes, thereby playing a significant role in the structure formation.
Collapse
Affiliation(s)
- Jun Yoshioka
- Department of Physical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Yuki Ito
- Department of Physical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Koji Fukao
- Department of Physical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
5
|
Jin T, Yuan Y, Bagnani M, Wu C, Liu B, Mezzenga R. Structural Colors from Amyloid-Based Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308437. [PMID: 37804231 DOI: 10.1002/adma.202308437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/01/2023] [Indexed: 10/09/2023]
Abstract
The helical periodicity and layered structure in cholesteric liquid crystals (CLCs) may be tuned to generate structural color according to the Bragg's law of diffraction. A wide range of natural-based materials such as condensed DNA, collagen, chitin, cellulose, and chiral biopolymers exhibit cholesteric phases with left-handed helixes and ensued structural colors. Here, the possibility of using amyloid CLCs is reported to prepare films with iridescent color reflection and opposite handedness. Right-handed CLCs assembled by left-handed amyloid fibrils are dried into layered structures with variable pitch controlled by the addition of glucose. Circularly polarized light with the same handedness of amyloid CLCs helix is reflected in the Bragg regime. Varying the drying speed leads to the switching between films with a rainbow-like color gradient and large area uniform color. It is confirmed that the origin of the colors derives from the layered structures of the amyloid CLCs, given the negligeable birefringence of the films, calculated from optical rotatory dispersion. These findings provide a facile approach to constructing biosourced cholesteric materials and introduce an original class of proteinaceous materials for the generation of structural colors from right-handed circularly polarized light.
Collapse
Affiliation(s)
- Tonghui Jin
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Ye Yuan
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Chao Wu
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100091, P. R. China
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
- Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, Zürich, 8093, Switzerland
| |
Collapse
|
6
|
Palacio-Betancur V, Armas-Pérez JC, Hernández-Ortiz JP, de Pablo JJ. Curvature and confinement effects on chiral liquid crystal morphologies. SOFT MATTER 2023; 19:6066-6073. [PMID: 37318304 DOI: 10.1039/d3sm00437f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chiral liquid crystals (ChLCs) exhibit an inherent twist that originates at the molecular scale and can extend over multiple length scales when unconstrained. Under confinement, the twist is thwarted, leading to formation of defects in the molecular order that offer distinct optical responses and opportunities for colloidal driven assembly. Past studies have explored spheroidal confinement down to the nanoscopic regime, where curved boundaries produce surface defects to accommodate topological constraints and restrict the propagation of cuboidal defect networks. Similarly, strict confinement in channels and shells has been shown to give rise to escaped configurations and skyrmions. However, little is known about the role of extrinsic curvature in the development of cholesteric textures and Blue Phases (BP). In this paper, we examine the palette of morphologies that arises when ChLCs are confined in toroidal and cylindrical cavities. The equilibrium morphologies are obtained following an annealing strategy of a Landau-de Gennes free energy functional. Three dimensionless groups are identified to build phase diagrams: the natural twist, the ratio of elastic energies, and the circumscription of a BP cell. Curvature is shown to introduce helical features that are first observed as a Double Twist, and progress to Chiral Ribbons and, ultimately, Helical BP and BP. Chiral ribbons are examined as useful candidates for driven assembly given their tunability and robustness.
Collapse
Affiliation(s)
| | - Julio C Armas-Pérez
- División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Loma del Bosque 103, León (Gto.) 37150, Mexico
| | - Juan P Hernández-Ortiz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia-Sede Medellín, Medellín, Colombia.
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| |
Collapse
|