1
|
Wang W, Li Y, Xiao X, Li G. Advances of functional graphdiyne in separation and detection. Talanta 2025; 287:127673. [PMID: 39904251 DOI: 10.1016/j.talanta.2025.127673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Separation and detection technologies are essential tools for ensuring quality, safety and efficiency across various industries. Graphdiyne (GDY), a carbon material made up of alkyne bonds conjugated with benzene rings to form a planar all-carbon network, is increasingly utilized in the fields of separation and detection. GDY is becoming an ideal separation medium due to its adjustable pore sizes, unique alkyne-rich framework, and easy to be functionalized. On the other hand, GDY shows great potential in detection with the advantages of efficient photoelectric effect, high carrier mobility, and large surface areas to provide active sites. This review summarizes the progress of functional GDY in separation and detection from 2011 to 2024. Various synthesis methods were introduced on improving the properties of GDY in separation and detection. Efforts have increasingly focused on the development of functional GDY in separation functionalities such as magnetic and membranous separations. Moreover, the application of functional GDY in detection technologies are discussed such as electrochemical, spectroanalysis, and dual-mode approaches. Finally, the promising research directions and prospects of functional GDY are discussed to explore further applications in both separation and detection.
Collapse
Affiliation(s)
- Weibin Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - You Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Li H, Pan C, Peng X, Zhang B, Song S, Xu Z, Qiu X, Liu Y, Wang J, Guo Y. In-situ adsorption-coupled-oxidation enabled mercury vapor capture over sp-hybridized graphdiyne. Nat Commun 2025; 16:2439. [PMID: 40069183 PMCID: PMC11897331 DOI: 10.1038/s41467-025-57197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/13/2025] [Indexed: 03/15/2025] Open
Abstract
Developing efficient and sustainable carbon sorbent for mercury vapor (Hg0) capture is significant to public health and ecosystem protection. Here we show a carbon material, namely graphdiyne with accessible sp-hybridized carbons (HsGDY), that can serve as an effective "trap" to anchor Hg atoms by strong electron-metal-support interaction, leading to the in-situ adsorption-coupled-oxidation of Hg. The adsorption process is benefited from the large hexagonal pore structure of HsGDY. The oxidation process is driven by the surface charge heterogeneity of HsGDY which can itself induce the adsorbed Hg atoms to lose electrons and present a partially oxidized state. Its good adaptability and excellent regeneration performance greatly broaden the applicability of HsGDY in diverse scenarios such as flue gas treatment and mercury-related personal protection. Our work demonstrates a sp-hybridized carbon material for mercury vapor capture which could contribute to sustainability of mercury pollution industries and provide guide for functional carbon material design.
Collapse
Affiliation(s)
- Honghu Li
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Research Center for Environment and Health, School of Information Engineering, Zhongnan University of Economics and Law, Wuhan, PR China
| | - Chuanqi Pan
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Xiyan Peng
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Research Center for Environment and Health, School of Information Engineering, Zhongnan University of Economics and Law, Wuhan, PR China
| | - Biluan Zhang
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Siyi Song
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Ze Xu
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Xiaofeng Qiu
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Yongqi Liu
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Jinlong Wang
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China
- Wuhan Institute of Photochemistry and Technology, Wuhan, PR China
| | - Yanbing Guo
- Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, PR China.
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, PR China.
- Wuhan Institute of Photochemistry and Technology, Wuhan, PR China.
| |
Collapse
|
3
|
Mondal T, Seth J, Islam MS, Dahlous KA, Islam SM. Incorporation of CO2 in efficient oxazolidinone synthesis at mild condition by covalent triazine framework designed with Ag nanoparticles. J SOLID STATE CHEM 2024; 338:124819. [DOI: 10.1016/j.jssc.2024.124819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
|
4
|
Mei L, Sun M, Yang R, Zhang Y, Zhang Y, Zhang Z, Zheng L, Chen Y, Zhang Q, Zhou J, Zhu Y, Leung KMY, Zhang W, Fan J, Huang B, Zeng XC, Shin HS, Tang CY, Gu L, Voiry D, Zeng Z. Metallic 1T/1T' phase TMD nanosheets with enhanced chemisorption sites for ultrahigh-efficiency lead removal. Nat Commun 2024; 15:7770. [PMID: 39349434 PMCID: PMC11442624 DOI: 10.1038/s41467-024-52078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/26/2024] [Indexed: 10/02/2024] Open
Abstract
Two-dimensional (2D) materials, as adsorbents, have garnered great attention in removing heavy metal ions (HMIs) from drinking water due to their extensive exposed adsorption sites. Nevertheless, there remains a paucity of experimental research to remarkably unlock their adsorption capabilities and fully elucidate their adsorption mechanisms. In this work, exceptional lead ion (Pb2+) (a common HMI) removal capacity (up to 758 mg g-1) is achieved using our synthesized metallic 1T/1T' phase 2D transition metal dichalcogenide (TMD, including MoS2, WS2, TaS2, and TiS2) nanosheets, which hold tremendous activated S chemisorption sites. The residual Pb2+ concentration can be reduced from 2 mg L-1 to 2 μg L-1 within 0.5 min, meeting the drinking water standards following World Health Organization guideline (Pb2+ concentrations <10 μg L-1). Atomic-scale characterizations and calculations based on density functional theory unveil that Pb2+ bond to the top positions of transition metal atoms in a single-atom form through the formation of S-Pb bonds. Point-of-use (POU) devices fabricated by our reported metallic phase MoS2 nanosheets exhibit treatment capacity of 55 L-water g-1-adsorbent for feed Pb2+ concentration of 1 mg L-1, which is 1-3 orders of magnitude higher than other 2D materials and commercial activated carbon.
Collapse
Affiliation(s)
- Liang Mei
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ruijie Yang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Yaqin Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Yuefeng Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Zhen Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, 410083, Hunan, PR China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Jun Fan
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China
| | - Hyeon Suk Shin
- Center for 2D Quantum Heterostructures, Institute for Basic Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, 34000, Montpellier, France
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
5
|
Gao Y, Xue Y, Chen S, Zheng Y, Chen S, Zheng X, He F, Huang C, Li Y. Confined Growth of Highly Ordered Metal Atomic Arrays for Seawater Oxidation. Angew Chem Int Ed Engl 2024; 63:e202406043. [PMID: 38866704 DOI: 10.1002/anie.202406043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Metal atom catalysts have been among the most important research objects due to their specific physical and chemical properties. However, precise control of the anchoring of metal atoms is still challenging to achieve. Cobalt and iridium atomic arrays formed sequentially ordered stable arrays in graphdiyne (GDY) triangular cavities depending on their intrinsic chemical properties and interactions. The success of this method was attributed to multifunctional integration of GDY, enabling selective growth from one to several atoms and various atomic densities. The bimetallic atom arrays show several advantages resulting from reducibility of acetylene bonds, space limiting effect, incomplete charge transfer between GDY and metal atoms, and sp-C hybridized triple bond skeleton. This well-designed system exhibits unprecedented oxygen evolution reaction (OER) performance with a mass activity of 2.6 A mgcat. -1 at a low overpotential of 300 mV, which is 216.6 times higher than the state-of-the-art IrO2 catalyst, and long-term stability.
Collapse
Affiliation(s)
- Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P. R. China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Yunhao Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Siyi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Changshui Huang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100190, Beijing, P. R. China
| |
Collapse
|
6
|
He Q, Li X, Chai W, Chen L, Mao X. A novel functionalized graphdiyne oxide membrane for efficient removal and rapid detection of mercury in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133711. [PMID: 38340563 DOI: 10.1016/j.jhazmat.2024.133711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In practice, efficient, rapid and simple removal of Hg(II) from water using nano adsorbents remains an extreme challenge at present. In this work, a novel Hg(II) adsorbent based on functionalized graphdiyne oxide (GDYO-3M) membrane was designed for the purpose of effective and prompt removal of Hg(II) from environmental water for the first time. Through filtration, the proposed GDYO-3M membrane (4 cm diameter size) fulfilled an exceeding 97% removal efficiency in > 10 L water containing 0.1 mg/L Hg(II) within 1 h. Due to the presence of -SH groups, the GDYO-3M membrane demonstrates an excellent selectivity for Hg(II) vs. 14 co-existing metal ions. In the meantime, the GDYO-3M membrane represents a favorable reproducibility (above 95% Hg(II) removal) after 9 successive adsorption-desorption cycles. For the mechanism, it is believed that the active sites in the adsorption process mainly include -SH groups, oxygen-containing functional groups, and alkyne bonds. Further, the GDYO-3M membrane can be utilized as an enrichment approach for sensitive analysis of Hg(II) in water based on energy dispersion X-ray fluorescence spectrometry (ED-XRF), whose detection limit (LOD) reaches 0.2 μg/L within 15 min. This work not only provides a green and efficient method for removing Hg(II), but also renders an approach for rapid, sensitive and portable Hg(II) detection in water.
Collapse
Affiliation(s)
- Qianli He
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xue Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Weiwei Chai
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lin Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
7
|
Qu J, Du Z, Lei Y, Li M, Peng W, Wang M, Liu J, Hu Q, Wang L, Wang Y, Zhang Y. Microwave-assisted one-pot preparation of magnetic cactus-derived hydrochar for efficient removal of lead(Ⅱ) and phenol from water: Performance and mechanism exploration. BIORESOURCE TECHNOLOGY 2023; 388:129789. [PMID: 37741577 DOI: 10.1016/j.biortech.2023.129789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
A novel magnetic hydrochar derived from cactus cladode (MW-MHC) was successfully synthesized through one-pot microwave-assisted process for efficiently removing lead(Pb)(Ⅱ) and phenol. From batch adsorption experiments, MW-MHC possessed the highest uptake amounts for Pb(Ⅱ) and phenol of 139.34 and 175.32 mg/g within 20 and 60 min, respectively. Moreover, the removal of Pb(Ⅱ) and phenol by MW-MHC remained essentially stable under the interference of different co-existing cations, presenting the excellent adaptability of MW-MHC. After three cycles of regeneration experiments, MW-MHC still had preferable adsorption performance and could be easily recycled, indicating its excellent reusability. Significantly, the uptake mechanisms of Pb(Ⅱ) on MW-MHC were regarded as chemical complexation, pore filling, precipitation, and electrostatic attraction. Meanwhile, the phenol uptake might be dominated by π-π interaction and hydrogen bonding. The above consequences revealed that MW-MHC with high removal performance was a promising adsorbent for remediating wastewater containing heavy metals and organics.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Zhaolin Du
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yue Lei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Man Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Peng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mengning Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jie Liu
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Zhao S, Chen Z, Liu H, Qi L, Zheng Z, Luan X, Gao Y, Liu R, Yan J, Bu F, Xue Y, Li Y. Graphdiyne-Based Multiscale Catalysts for Ammonia Synthesis. CHEMSUSCHEM 2023:e202300861. [PMID: 37578808 DOI: 10.1002/cssc.202300861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Graphdiyne, a sp/sp2 -cohybridized two-dimensional all- carbon material, has many unique and fascinating properties of alkyne-rich structures, large π conjugated system, uniform pores, specific unevenly-distributed surface charge, and incomplete charge transfer properties provide promising potential in practical applications including catalysis, energy conversion and storage, intelligent devices, life science, photoelectric, etc. These superior advantages have made graphdiyne one of the hottest research frontiers of chemistry and materials science and produced a series of original and innovative research results in the fundamental and applied research of carbon materials. In recent years, considerable advances have been made toward the development of graphdiyne-based multiscale catalysts for nitrogen fixation and ammonia synthesis at room temperatures and ambient pressures. This review aims to provide a comprehensive update in regard to the synthesis of graphdiyne-based multiscale catalysts and their applications in the synthesis of ammonia. The unique features of graphdiyne are highlighted throughout the review. Finally, it concludes with the discussion of challenges and future perspectives relating to graphdiyne.
Collapse
Affiliation(s)
- Shuya Zhao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Zhaoyang Chen
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Huimin Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yaqi Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Runyu Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Jiayu Yan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Fanle Bu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|