1
|
Roy M, Horovitz A. Distinguishing between concerted, sequential and barrierless conformational changes: Folding versus allostery. Curr Opin Struct Biol 2023; 83:102721. [PMID: 37922762 DOI: 10.1016/j.sbi.2023.102721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Characterization of transition and intermediate states of reactions provides insights into their mechanisms and is often achieved through analysis of linear free energy relationships. Such an approach has been used extensively in protein folding studies but less so for analyzing allosteric transitions. Here, we point out analogies in ways to characterize pathways and intermediates in folding and allosteric transitions. Achieving an understanding of the mechanisms by which proteins undergo allosteric switching is important in many cases for obtaining insights into how they function.
Collapse
Affiliation(s)
- Mousam Roy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
2
|
Abstract
Allosteric transition, defined as conformational changes induced by ligand binding, is one of the fundamental properties of proteins. Allostery has been observed and characterized in many proteins, and has been recently utilized to control protein function via regulation of protein activity. Here, we review the physical and evolutionary origin of protein allostery, as well as its importance to protein regulation, drug discovery, and biological processes in living systems. We describe recently developed approaches to identify allosteric pathways, connected sets of pairwise interactions that are responsible for propagation of conformational change from the ligand-binding site to a distal functional site. We then present experimental and computational protein engineering approaches for control of protein function by modulation of allosteric sites. As an example of application of these approaches, we describe a synergistic computational and experimental approach to rescue the cystic-fibrosis-associated protein cystic fibrosis transmembrane conductance regulator, which upon deletion of a single residue misfolds and causes disease. This example demonstrates the power of allosteric manipulation in proteins to both elucidate mechanisms of molecular function and to develop therapeutic strategies that rescue those functions. Allosteric control of proteins provides a tool to shine a light on the complex cascades of cellular processes and facilitate unprecedented interrogation of biological systems.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Abstract
Chaperonins are nanomachines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. They consist of two back-to-back stacked oligomeric rings with a cavity at each end where protein substrate folding can take place. Here, we focus on the GroEL/GroES chaperonin system from Escherichia coli and, to a lesser extent, on the more poorly characterized eukaryotic chaperonin CCT/TRiC. We describe their various functional (allosteric) states and how they are affected by substrates and allosteric effectors that include ATP, ADP, nonfolded protein substrates, potassium ions, and GroES (in the case of GroEL). We also discuss the pathways of intra- and inter-ring allosteric communication by which they interconvert and the coupling between allosteric transitions and protein folding reactions.
Collapse
Affiliation(s)
- Ranit Gruber
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
4
|
Koshevoy AA, Stepanov EO, Porozov YB. Method of prediction and optimization of conformational motion of proteins based on mass transportation principle. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell 2012; 149:113-23. [PMID: 22445172 PMCID: PMC3326522 DOI: 10.1016/j.cell.2012.02.047] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/24/2011] [Accepted: 02/06/2012] [Indexed: 11/24/2022]
Abstract
The chaperonin GroEL assists the folding of nascent or stress-denatured polypeptides by actions of binding and encapsulation. ATP binding initiates a series of conformational changes triggering the association of the cochaperonin GroES, followed by further large movements that eject the substrate polypeptide from hydrophobic binding sites into a GroES-capped, hydrophilic folding chamber. We used cryo-electron microscopy, statistical analysis, and flexible fitting to resolve a set of distinct GroEL-ATP conformations that can be ordered into a trajectory of domain rotation and elevation. The initial conformations are likely to be the ones that capture polypeptide substrate. Then the binding domains extend radially to separate from each other but maintain their binding surfaces facing the cavity, potentially exerting mechanical force upon kinetically trapped, misfolded substrates. The extended conformation also provides a potential docking site for GroES, to trigger the final, 100° domain rotation constituting the “power stroke” that ejects substrate into the folding chamber.
Collapse
Affiliation(s)
- Daniel K Clare
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Edelstein SJ, Changeux JP. Relationships between structural dynamics and functional kinetics in oligomeric membrane receptors. Biophys J 2010; 98:2045-52. [PMID: 20483311 PMCID: PMC2872211 DOI: 10.1016/j.bpj.2010.01.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/16/2010] [Accepted: 01/20/2010] [Indexed: 12/01/2022] Open
Abstract
Recent efforts to broaden understanding of the molecular mechanisms of membrane receptors in signal transduction make use of rate-equilibrium free-energy relationships (REFERs), previously applied to chemical reactions, enzyme kinetics, and protein folding. For oligomeric membrane receptors, we distinguish between a), the Leffler parameter αL, to characterize the global transition state for the interconversion between conformations; and b), the Fersht parameter, ϕF, to assign the degree of progression of individual residue positions at the transition state. For both αL and ϕF, insights are achieved by using harmonic energy profiles to reflect the dynamic nature of proteins, as illustrated with single-channel results reported for normal and mutant nicotinic receptors. We also describe new applications of αL based on published results. For large-conductance calcium-activated potassium channels, data are satisfactorily fit with an αL value of 0.65, in accord with REFERs. In contrast, results reported for the flip conformational state of glycine and nicotinic receptors are in disaccord with REFERs, since they yield αL values outside the usual limits of 0–1. Concerning published ϕF values underlying the conformational wave hypothesis for nicotinic receptors, we note that interpretations may be complicated by variations in the width of harmonic energy profiles.
Collapse
Affiliation(s)
- Stuart J Edelstein
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, UK.
| | | |
Collapse
|
7
|
Yang Z, Májek P, Bahar I. Allosteric transitions of supramolecular systems explored by network models: application to chaperonin GroEL. PLoS Comput Biol 2009; 5:e1000360. [PMID: 19381265 PMCID: PMC2664929 DOI: 10.1371/journal.pcbi.1000360] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 03/13/2009] [Indexed: 11/19/2022] Open
Abstract
Identification of pathways involved in the structural transitions of biomolecular systems is often complicated by the transient nature of the conformations visited across energy barriers and the multiplicity of paths accessible in the multidimensional energy landscape. This task becomes even more challenging in exploring molecular systems on the order of megadaltons. Coarse-grained models that lend themselves to analytical solutions appear to be the only possible means of approaching such cases. Motivated by the utility of elastic network models for describing the collective dynamics of biomolecular systems and by the growing theoretical and experimental evidence in support of the intrinsic accessibility of functional substates, we introduce a new method, adaptive anisotropic network model (aANM), for exploring functional transitions. Application to bacterial chaperonin GroEL and comparisons with experimental data, results from action minimization algorithm, and previous simulations support the utility of aANM as a computationally efficient, yet physically plausible, tool for unraveling potential transition pathways sampled by large complexes/assemblies. An important outcome is the assessment of the critical inter-residue interactions formed/broken near the transition state(s), most of which involve conserved residues.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Computational Biology, School of Medicine, University of
Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Physics and Astronomy, School of Arts & Sciences,
University of Pittsburgh, Pittsburgh, Pennsylvania, United States of
America
| | - Peter Májek
- Department of Computer Science, Cornell University, Ithaca, New York,
United States of America
| | - Ivet Bahar
- Department of Computational Biology, School of Medicine, University of
Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
8
|
Zheng W, Brooks BR, Thirumalai D. Allosteric transitions in the chaperonin GroEL are captured by a dominant normal mode that is most robust to sequence variations. Biophys J 2007; 93:2289-99. [PMID: 17557788 PMCID: PMC1965427 DOI: 10.1529/biophysj.107.105270] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Escherichia coli chaperonin GroEL, which helps proteins to fold, consists of two heptameric rings stacked back-to-back. During the reaction cycle GroEL undergoes a series of allosteric transitions triggered by ligand (substrate protein, ATP, and the cochaperonin GroES) binding. Based on an elastic network model of the bullet-shaped double-ring chaperonin GroEL-(ADP)(7)-GroES structure (R''T state), we perform a normal mode analysis to explore the energetically favorable collective motions encoded in the R''T structure. By comparing each normal mode with the observed conformational changes in the R''T --> TR'' transition, a single dominant normal mode provides a simple description of this highly intricate allosteric transition. A detailed analysis of this relatively high-frequency mode describes the structural and dynamic changes that underlie the positive intra-ring and negative inter-ring cooperativity. The dynamics embedded in the dominant mode entails highly concerted structural motions with approximate preservation of sevenfold symmetry within each ring and negatively correlated ones between the two rings. The dominant normal mode (in comparison with the other modes) is robust to parametric perturbations caused by sequence variations, which validates its functional importance. Response of the dominant mode to local changes that mimic mutations using the structural perturbation method technique leads to a wiring diagram that identifies a network of key residues that regulate the allosteric transitions. Many of these residues are located in intersubunit interfaces, and may therefore play a critical role in transmitting allosteric signals between subunits.
Collapse
Affiliation(s)
- Wenjun Zheng
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
9
|
Hyeon C, Lorimer GH, Thirumalai D. Dynamics of allosteric transitions in GroEL. Proc Natl Acad Sci U S A 2006; 103:18939-44. [PMID: 17135353 PMCID: PMC1748156 DOI: 10.1073/pnas.0608759103] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Indexed: 11/18/2022] Open
Abstract
The chaperonin GroEL-GroES, a machine that helps proteins to fold, cycles through a number of allosteric states, the T state, with high affinity for substrate proteins, the ATP-bound R state, and the R" (GroEL-ADP-GroES) complex. Here, we use a self-organized polymer model for the GroEL allosteric states and a general structure-based technique to simulate the dynamics of allosteric transitions in two subunits of GroEL and the heptamer. The T --> R transition, in which the apical domains undergo counterclockwise motion, is mediated by a multiple salt-bridge switch mechanism, in which a series of salt-bridges break and form. The initial event in the R -->R" transition, during which GroEL rotates clockwise, involves a spectacular outside-in movement of helices K and L that results in K80-D359 salt-bridge formation. In both the transitions there is considerable heterogeneity in the transition pathways. The transition state ensembles (TSEs) connecting the T, R, and R" states are broad with the TSE for the T --> R transition being more plastic than the R --> R" TSE.
Collapse
Affiliation(s)
- Changbong Hyeon
- Biophysics Program Institute for Physical Science and Technology and
| | - George H. Lorimer
- Biophysics Program Institute for Physical Science and Technology and
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - D. Thirumalai
- Biophysics Program Institute for Physical Science and Technology and
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| |
Collapse
|
10
|
Chennubhotla C, Bahar I. Markov propagation of allosteric effects in biomolecular systems: application to GroEL-GroES. Mol Syst Biol 2006; 2:36. [PMID: 16820777 PMCID: PMC1681507 DOI: 10.1038/msb4100075] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 05/11/2006] [Indexed: 01/16/2023] Open
Abstract
We introduce a novel approach for elucidating the potential pathways of allosteric communication in biomolecular systems. The methodology, based on Markov propagation of 'information' across the structure, permits us to partition the network of interactions into soft clusters distinguished by their coherent stochastics. Probabilistic participation of residues in these clusters defines the communication patterns inherent to the network architecture. Application to bacterial chaperonin complex GroEL-GroES, an allostery-driven structure, identifies residues engaged in intra- and inter-subunit communication, including those acting as hubs and messengers. A number of residues are distinguished by their high potentials to transmit allosteric signals, including Pro33 and Thr90 at the nucleotide-binding site and Glu461 and Arg197 mediating inter- and intra-ring communication, respectively. We propose two most likely pathways of signal transmission, between nucleotide- and GroES-binding sites across the cis and trans rings, which involve several conserved residues. A striking observation is the opposite direction of information flow within cis and trans rings, consistent with negative inter-ring cooperativity. Comparison with collective modes deduced from normal mode analysis reveals the propensity of global hinge regions to act as messengers in the transmission of allosteric signals.
Collapse
Affiliation(s)
- Chakra Chennubhotla
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Schätzle M, Kiefhaber T. Shape of the Free Energy Barriers for Protein Folding Probed by Multiple Perturbation Analysis. J Mol Biol 2006; 357:655-64. [PMID: 16442561 DOI: 10.1016/j.jmb.2005.12.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 12/23/2005] [Accepted: 12/28/2005] [Indexed: 01/08/2023]
Abstract
The characterization of the free energy barriers has been a major goal in studies on the mechanism of protein folding. Testing the effect of mutations or denaturants on protein folding reactions revealed that transition state movement is rare, suggesting that folding barriers are robust and narrow maxima on the free energy landscape. Here we demonstrate that the application of multiple perturbations allows the observation of small transition state movements that escape detection in single perturbation experiments. We used tendamistat as a model protein to test the broadness of the free energy barriers. Tendamistat folds over two consecutive transition states and through a high-energy intermediate. Measuring the combined effect of temperature and denaturant on the position of the transition state in the wild-type protein and in several mutants revealed that the early transition state shows significant transition state movement. Its accessible surface area state becomes more native-like with destabilization of the native state by temperature. To the same extent, the entropy of the early transition state becomes more native-like with increasing denaturant concentration, in accordance with Hammond behavior. The position of the late transition state, in contrast, is much less sensitive to the applied perturbations. These results suggest that the barriers in protein folding become increasingly narrow as the folding polypeptide chain approaches the native state.
Collapse
Affiliation(s)
- Manuela Schätzle
- Department of Biophysical Chemistry, Biozentrum der Universität Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
12
|
Horovitz A, Willison KR. Allosteric regulation of chaperonins. Curr Opin Struct Biol 2005; 15:646-51. [PMID: 16249079 DOI: 10.1016/j.sbi.2005.10.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 07/28/2005] [Accepted: 10/14/2005] [Indexed: 12/31/2022]
Abstract
Chaperonins are molecular machines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space by complex allosteric regulation. Recently, progress has been made in describing the various functional (allosteric) states of these machines, the pathways by which they interconvert, and the coupling between allosteric transitions and protein folding reactions. However, various mechanistic issues remain to be resolved.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
13
|
Inobe T, Kuwajima K. Phi value analysis of an allosteric transition of GroEL based on a single-pathway model. J Mol Biol 2004; 339:199-205. [PMID: 15123431 DOI: 10.1016/j.jmb.2004.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 03/08/2004] [Accepted: 03/08/2004] [Indexed: 11/29/2022]
Abstract
There are currently two contradictory models for the kinetics of the ATP-induced GroEL allosteric transition occurring around 20 microM ATP. One model, proposed by Horovitz et al. demonstrates the existence of two parallel pathways for the allosteric transition and an abrupt ATP-dependent switch from one pathway to the other. The other model, which was proposed by the present authors, shows no need to assume the parallel pathways, and a combination of the transition-state theory and the Monod-Wyman-Changeux model of allostery can explain the kinetics as well as the equilibrium of the transition. The discrepancy appears to be due to whether we regard the transition as reversible or irreversible. Thus, here we have investigated the reversibility of the allosteric transition between 0 microM and 70 microM ATP by the use of a stopped-flow double-jump technique, which has allowed us to monitor the kinetics of the reverse reaction from the relaxed state at a high ATP concentration to the tense state at a low ATP concentration. The tryptophan fluorescence of a tryptophan-inserted variant of GroEL was used to follow the kinetics. As a result, the allosteric transition was shown to be a reversible process, supporting the validity of our model. We also show that the structural environment around the ATP-binding site of GroEL in the transition state is very similar to that in the relaxed state (Phi=0.9) by using a Phi value analysis in the kinetic Monod-Wyman-Changeux model, which is analogous to the mutational Phi value analysis in protein folding.
Collapse
Affiliation(s)
- Tomonao Inobe
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
14
|
Amir A, Horovitz A. Kinetic analysis of ATP-dependent inter-ring communication in GroEL. J Mol Biol 2004; 338:979-88. [PMID: 15111061 DOI: 10.1016/j.jmb.2004.02.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/23/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
Different concentrations of ATP were mixed rapidly with single-ring or double-ring forms of GroEL containing the Phe44-->Trp mutation and the time-resolved changes in fluorescence emission, upon excitation at 295 nm, were followed. Two kinetic phases that were previously found for double-ring GroEL are also observed in the case of the single-ring version: (i) a fast phase with a relatively large amplitude that is associated with the T-->R allosteric transition; (ii) and a slow phase with a smaller amplitude that is associated with ATP hydrolysis. In the case of weak intra-ring positive cooperativity, the rate constant corresponding to the T-->R allosteric switch of single-ring GroEL displays a bi-sigmoidal dependence on ATP concentration that may reflect parallel pathways of the allosteric transition. The slow phase is absent when double-ring or single-ring forms of GroEL are mixed with ADP or ATP without K(+), and it has a rate constant that is independent of ATP concentration. A third fast phase that is still unassigned is observed for both single-ring and double-ring GroEL when a large amount of data is collected. Finally, a fourth phase is observed in the case of double-ring GroEL that is found to be absent in the case of single-ring GroEL. This phase is here assigned to inter-ring communication by (i) determining its dependence on ATP concentration and (ii) based on its absence from single-ring GroEL and the Arg13-->Gly, Ala126-->Val GroEL mutant, which is defective in inter-ring negative cooperativity. The value of the rate constant corresponding to this phase is found to increase with increasing intra-ring positive cooperativity, with respect to ATP. This is the first report of the rate of ATP-mediated inter-ring communication in GroEL, in the presence of ATP alone, which is crucial for the cycling of this molecular machine between different functional states.
Collapse
Affiliation(s)
- Amnon Amir
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
15
|
Poso D, Clarke AR, Burston SG. A kinetic analysis of the nucleotide-induced allosteric transitions in a single-ring mutant of GroEL. J Mol Biol 2004; 338:969-77. [PMID: 15111060 DOI: 10.1016/j.jmb.2004.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 03/08/2004] [Accepted: 03/09/2004] [Indexed: 11/16/2022]
Abstract
The function of GroE requires a complex system of allosteric communication driven by protein-nucleotide interactions. These rearrangements couple the binding and hydrolysis of ATP to an overall reaction cycle in which substrate proteins are bound, encapsulated and released. Positive cooperativity with respect to ATP binding occurs within one heptameric ring of GroEL, while negative cooperativity between the two rings generates an inherent asymmetry between the two rings. A previously engineered mutant of GroEL in which the ring-ring contacts are broken gives rise to a single-ring version of the wild-type chaperonin (SR1). We have studied the kinetics of the nucleotide-induced conformational changes in a single-tryptophan variant of SR1 (Y485W-SR1) and compared the resulting data with those we reported previously for the double-ring, single-tryptophan variant of wild-type GroEL (Y485W-GroEL). Remarkably, the parting of the rings does not have a major effect on the conformational changes occurring within the heptameric ring and a kinetic model is presented to describe the sequence of structural rearrangements that occur upon ATP binding to the SR1 molecule. The observation that both the ATP-induced and ADP-induced conformational rearrangements occur more rapidly in the SR1 than they do in wild-type GroEL, indicates that intra-ring conformational changes in the double-ring structure must overcome conformational constraints provided by the presence of the second ring. Lastly, the data presented here imply a role for inter-ring allostery in controlling the dissociation-association behaviour of the GroES co-protein in the overall reaction cycle.
Collapse
Affiliation(s)
- Daniel Poso
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
16
|
Grosman C. Free-energy landscapes of ion-channel gating are malleable: changes in the number of bound ligands are accompanied by changes in the location of the transition state in acetylcholine-receptor channels. Biochemistry 2004; 42:14977-87. [PMID: 14674774 PMCID: PMC1463891 DOI: 10.1021/bi0354334] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholine-receptor channels (AChRs) are allosteric membrane proteins that mediate synaptic transmission by alternatively opening and closing ("gating") a cation-selective transmembrane pore. Although ligand binding is not required for the channel to open, the binding of agonists (for example, acetylcholine) increases the closed right harpoon over left harpoon open equilibrium constant because the ion-impermeable --> ion-permeable transition of the ion pathway is accompanied by a low-affinity --> high-affinity change at the agonist-binding sites. The fact that the gating conformational change of muscle AChRs can be kinetically modeled as a two-state reaction has paved the way to the experimental characterization of the corresponding transition state, which represents a snapshot of the continuous sequence of molecular events separating the closed and open states. Previous studies of fully (di) liganded AChRs, combining single-channel kinetic measurements, site-directed mutagenesis, and data analysis in the framework of the linear free-energy relationships of physical organic chemistry, have suggested a transition-state structure that is consistent with channel opening being an asynchronous conformational change that starts at the extracellular agonist-binding sites and propagates toward the intracellular end of the pore. In this paper, I characterize the gating transition state of unliganded AChRs, and report a remarkable difference: unlike that of diliganded gating, the unliganded transition state is not a hybrid of the closed- and open-state structures but, rather, is almost indistinguishable from the open state itself. This displacement of the transition state along the reaction coordinate obscures the mechanism underlying the unliganded closed right harpoon over left harpoon open reaction but brings to light the malleable nature of free-energy landscapes of ion-channel gating.
Collapse
Affiliation(s)
- Claudio Grosman
- Department of Molecular and Integrative Physiology and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
17
|
Krantz BA, Dothager RS, Sosnick TR. Discerning the Structure and Energy of Multiple Transition States in Protein Folding using ψ-Analysis. J Mol Biol 2004; 337:463-75. [PMID: 15003460 DOI: 10.1016/j.jmb.2004.01.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 01/05/2004] [Accepted: 01/06/2004] [Indexed: 11/24/2022]
Abstract
We quantify the degree to which folding occurs along a complex landscape with structurally distinct pathways using psi-analysis in combination with a protein engineering method that identifies native, non-covalent polypeptide interactions and their relative populations at the rate-limiting step. By probing the proximity of two specific partners, this method is extremely well-suited for comparison to theoretical simulations. Using ubiquitin as a model system, we detect individual pathways with site-resolved resolution, demonstrating that the protein folds through a native-like transition state ensemble with a common nucleus that contains heterogeneous features on its periphery. The consensus transition state topology has part of the major helix docked against four properly aligned beta-strands. However, structural heterogeneity exists in the transition state ensemble, wherein peripheral regions are differentially populated according to their relative stability. Pathway diversity reflects the variable order of formation of these peripheral elements, which radiate outward from the common nucleus. These results, which show only moderate agreement with traditional mutational phi-analysis, provide an extraordinarily detailed and quantitative description of protein folding.
Collapse
Affiliation(s)
- Bryan A Krantz
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58th St., Chicago, IL 60637, USA
| | | | | |
Collapse
|
18
|
Sánchez IE, Kiefhaber T. Origin of unusual phi-values in protein folding: evidence against specific nucleation sites. J Mol Biol 2004; 334:1077-85. [PMID: 14643667 DOI: 10.1016/j.jmb.2003.10.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
phi(f)-value analysis is one of the most common methods to characterize the structure of protein folding transition states. It compares the effects of mutations on the folding kinetics with the respective effects on equilibrium stability. The interpretation of the results usually focuses on a few unusual phi(f)-values, which are either particularly high or which are larger than 1 or smaller than 0. These mutations are believed to affect the most important regions for the folding process. A major uncertainty in experimental phi(f)-values is introduced by the commonly used analysis of only a single mutant at various positions in a protein (two-point analysis). To test the reliability of two-point phi(f)-values we used reference data from three positions in two different proteins at which multiple mutations have been introduced. The results show that two-point phi(f)-values are highly inaccurate if the difference in stability between two variants is less than 7 kJ/mol, corresponding to a 20-fold difference in equilibrium constant. Comparison with reported phi(f)-values for 11 proteins shows that most unusual phi(f)-values are observed in mutants which show changes in protein stability that are too small to allow a reliable analysis. The results argue against specific nucleation sites in protein folding and give a picture of transition states as distorted native states for the major part of a protein or for large substructures.
Collapse
Affiliation(s)
- Ignacio E Sánchez
- Department of Biophysical Chemistry, Biozentrum der Universität Basel, Klingelberstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
19
|
Inobe T, Kikushima K, Makio T, Arai M, Kuwajima K. The allosteric transition of GroEL induced by metal fluoride-ADP complexes. J Mol Biol 2003; 329:121-34. [PMID: 12742022 DOI: 10.1016/s0022-2836(03)00409-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To understand the mechanism of a functionally important ATP-induced allosteric transition of GroEL, we have studied the effect of a series of metal fluoride-ADP complexes and vanadate-ADP on GroEL by kinetic fluorescence measurement of pyrene-labeled GroEL and by small-angle X-ray scattering measurement of wild-type GroEL. The metal fluorides and vanadate, complexed with ADP, are known to mimic the gamma-phosphate group of ATP, but they differ in geometry and size; it is expected that these compounds will be useful for investigating the strikingly high specificity of GroEL for ATP that enables the induction of the allosteric transition. The kinetic fluorescence measurement revealed that aluminium, beryllium, and gallium ions, when complexed with the fluoride ion and ADP, induced a biphasic fluorescence change of pyrenyl GroEL, while scandium and vanadate ions did not induce any kinetically observed change in fluorescence. The burst phase and the first phase of the fluorescence kinetics were reversible, while the second phase and subsequent changes were irreversible. The dependence of the burst-phase and the first-phase fluorescence changes on the ADP concentration indicated that the burst phase represents non-cooperative nucleotide binding to GroEL, and that the first phase represents the allosteric transition of GroEL. Both the amplitude and the rate constant of the first phase of the fluorescence kinetics were well understood in terms of a kinetic allosteric model, which is a combination of transition state theory and the Monod-Wyman-Changeux allosteric model. From the kinetic allosteric model analysis, the relative free energy of the transition state in the metal fluoride-ADP-induced allosteric transition of GroEL was found to be larger than the corresponding free energy of the ATP-induced allosteric transition by more than 5.5kcal/mol. However, the X-ray scattering measurements indicated that the allosteric state induced by these metal fluoride-ADP complexes is structurally equivalent to the allosteric state induced by ATP. These results suggested that both the size and coordination geometry of gamma-phosphate (and its analogs) are related to the allosteric transition of GroEL. It was therefore concluded that the tetrahedral geometry of gamma-phosphate (or its analogs) and the inter-atomic distance ( approximately 1.6A) between phosphorus (vanadium, or metal atom) and oxygen (or fluorine) are both important for inducing the allosteric transition of GroEL, leading to the high selectivity of GroEL for ATP about ligand adenine nucleotides, which function as the preferred allosteric ligand.
Collapse
Affiliation(s)
- Tomonao Inobe
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | |
Collapse
|