1
|
Marx T, Bokarev SI. A frequency-domain approach to molecular photoionization via driven Schrödinger equation. J Chem Phys 2025; 162:184109. [PMID: 40353435 DOI: 10.1063/5.0261100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025] Open
Abstract
This work extends the formalism introduced in a previous publication [T. Marx and S. I. Bokarev, Phys. Rev. A 106, 032806 (2022)] and provides a comprehensive framework for predicting molecular photoelectron spectra. This method employs a frequency-domain approach, formulated as a driven inhomogeneous Schrödinger equation under first-order perturbation theory with outgoing boundary conditions. It is shown to be analytically equivalent to Fermi's golden rule approach while offering a distinct physical interpretation tied directly to the measured photocurrent. The formalism incorporates detailed light-matter interactions, yielding unique solutions. The implementation strategy is discussed in depth, emphasizing computational efficiency and flexibility. The results are validated through comparisons with experimental data and other theoretical methods for atomic and small molecular systems and analytically solvable models.
Collapse
Affiliation(s)
- Tobias Marx
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Sergey I Bokarev
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
- Chemistry Department, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
2
|
Xie Y, Gu B. Exploiting Quantum Light-Matter Interaction for Probing and Controlling Molecules. J Phys Chem Lett 2025; 16:2608-2613. [PMID: 40032611 DOI: 10.1021/acs.jpclett.4c03152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Quantum mechanical properties of light, such as time-energy entanglement, quadrature squeezing, and non-Poisson statistics, can be exploited to develop novel spectroscopic signals that enhance the signal strength and spectrotemporal resolution. Moreover, quantum light also provides nonclassical control knobs for controlling the outcome of a chemical reaction. Here, we provide a perspective on how quantum light-matter interaction can be exploited to probe and control molecular events.
Collapse
Affiliation(s)
- Yujuan Xie
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Bing Gu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
3
|
Scholes GD, Olaya-Castro A, Mukamel S, Kirrander A, Ni KK, Hedley GJ, Frank NL. The Quantum Information Science Challenge for Chemistry. J Phys Chem Lett 2025; 16:1376-1396. [PMID: 39879081 PMCID: PMC11808782 DOI: 10.1021/acs.jpclett.4c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
We discuss the goals and the need for quantum information science (QIS) in chemistry. It is important to identify concretely how QIS matters to chemistry, and we articulate some of the most pressing and interesting research questions at the interface between chemistry and QIS, that is, "chemistry-centric" research questions relevant to QIS. We propose in what ways and in what new directions the field should innovate, in particular where a chemical perspective is essential. Examples of recent research in chemistry that inspire scrutiny from a QIS perspective are provided, and we conclude with a wish list of open research problems.
Collapse
Affiliation(s)
- Gregory D. Scholes
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Alexandra Olaya-Castro
- Department
of Physics and Astronomy, University College
London, Gower Street, London WC1E
6BT, United Kingdom
| | - Shaul Mukamel
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United
States
| | - Adam Kirrander
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Kang-Kuen Ni
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Gordon J. Hedley
- School of
Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, United Kingdom
| | - Natia L. Frank
- Department
of Chemistry, College of Science, University
of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
4
|
Liu D, Wang B, Wu Y, Vasenko AS, Prezhdo OV. Breaking the size limitation of nonadiabatic molecular dynamics in condensed matter systems with local descriptor machine learning. Proc Natl Acad Sci U S A 2024; 121:e2403497121. [PMID: 39213179 PMCID: PMC11388379 DOI: 10.1073/pnas.2403497121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Nonadiabatic molecular dynamics (NA-MD) is a powerful tool to model far-from-equilibrium processes, such as photochemical reactions and charge transport. NA-MD application to condensed phase has drawn tremendous attention recently for development of next-generation energy and optoelectronic materials. Studies of condensed matter allow one to employ efficient computational tools, such as density functional theory (DFT) and classical path approximation (CPA). Still, system size and simulation timescale are strongly limited by costly ab initio calculations of electronic energies, forces, and NA couplings. We resolve the limitations by developing a fully machine learning (ML) approach in which all the above properties are obtained using neural networks based on local descriptors. The ML models correlate the target properties for NA-MD, implemented with DFT and CPA, directly to the system structure. Trained on small systems, the neural networks are applied to large systems and long timescales, extending NA-MD capabilities by orders of magnitude. We demonstrate the approach with dependence of charge trapping and recombination on defect concentration in MoS2. Defects provide the main mechanism of charge losses, resulting in performance degradation. Charge trapping slows with decreasing defect concentration; however, recombination exhibits complex dependence, conditional on whether it occurs between free or trapped charges, and relative concentrations of carriers and defects. Delocalized shallow traps can become localized with increasing temperature, changing trapping and recombination behavior. Completely based on ML, the approach bridges the gap between theoretical models and realistic experimental conditions and enables NA-MD on thousand-atom systems and many nanoseconds.
Collapse
Affiliation(s)
- Dongyu Liu
- School of Electronic Engineering, HSE University, Moscow Institute of Electronics and Mathematics (MIEM), Moscow123458, Russia
| | - Bipeng Wang
- Department of Chemical Engineering, University of Southern California, Los Angeles, CA90089
| | - Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, CA90089
| | - Andrey S. Vasenko
- School of Electronic Engineering, HSE University, Moscow Institute of Electronics and Mathematics (MIEM), Moscow123458, Russia
- Donostia International Physics Center, San Sebastián-Donostia, Euskadi20018, Spain
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA90089
- Department of Physics, University of Southern California, Los Angeles, CA90089
- Department of Astronomy, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
5
|
Sun S, Gu B, Hu H, Lu L, Tang D, Chernyak VY, Li X, Mukamel S. Direct Probe of Conical Intersection Photochemistry by Time-Resolved X-ray Magnetic Circular Dichroism. J Am Chem Soc 2024; 146:19863-19873. [PMID: 38989850 DOI: 10.1021/jacs.4c03033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The direct probing of photochemical dynamics by detecting the electronic coherence generated during passage through conical intersections is an intriguing challenge. The weak coherence signal and the difficulty in preparing purely excited wave packets that exclude coherence from other sources make it experimentally challenging. We propose to use time-resolved X-ray magnetic circular dichroism to probe the wave packet dynamics around the conical intersection. The magnetic field amplifies the relative strength of the electronic coherence signal compared to populations through the magnetic field response anisotropy. More importantly, since the excited state relaxation through conical intersections involves a change of parity, the magnetic coupling matches the symmetry of the response function with the electronic coherence, making the coherence signal only sensitive to the conical intersection induced coherence and excludes the pump pulse induced coherence between the ground state and excited state. In this theoretical study, we apply this technique to the photodissociation dynamics of a pyrrole molecule and demonstrate its capability of probing electronic coherence at a conical intersection as well as population transfer. We demonstrate that a magnetic field can be effectively used to extract novel information about electron and nuclear molecular dynamics.
Collapse
Affiliation(s)
- Shichao Sun
- Department of Chemistry, University of California, Irvine, California 92697, United states
- Departmnet of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Bing Gu
- Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hang Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lixin Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Diandong Tang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Department of Mathematics, Wayne State University, 656 West Kirby, Detroit, Michigan 48202, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697, United states
- Departmnet of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
6
|
Gu Y, Yong H, Gu B, Mukamel S. Chemical bond reorganization in intramolecular proton transfer revealed by ultrafast X-ray photoelectron spectroscopy. Proc Natl Acad Sci U S A 2024; 121:e2321343121. [PMID: 38635639 PMCID: PMC11046627 DOI: 10.1073/pnas.2321343121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Time-resolved X-ray photoelectron spectroscopy (TR-XPS) is used in a simulation study to monitor the excited state intramolecular proton transfer between oxygen and nitrogen atoms in 2-(iminomethyl)phenol. Real-time monitoring of the chemical bond breaking and forming processes is obtained through the time evolution of excited-state chemical shifts. By employing individual atomic probes of the proton donor and acceptor atoms, we predict distinct signals with opposite chemical shifts of the donor and acceptor groups during proton transfer. Details of the ultrafast bond breaking and forming dynamics are revealed by extending the classical electron spectroscopy chemical analysis to real time. Through a comparison with simulated time-resolved photoelectron spectroscopy at the valence level, the distinct advantage of TR-XPS is demonstrated thanks to its atom specificity.
Collapse
Affiliation(s)
- Yonghao Gu
- Department of Chemistry, University of California, Irvine, CA92697-2025
- Department of Physics and Astronomy, University of California, Irvine, CA92697-2025
| | - Haiwang Yong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093
| | - Bing Gu
- Department of Chemistry, Westlake University, Hangzhou, Zhejiang310030, China
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, CA92697-2025
- Department of Physics and Astronomy, University of California, Irvine, CA92697-2025
| |
Collapse
|
7
|
Fujihashi Y, Ishizaki A, Shimizu R. Pathway selectivity in time-resolved spectroscopy using two-photon coincidence counting with quantum entangled photons. J Chem Phys 2024; 160:104201. [PMID: 38456524 DOI: 10.1063/5.0189134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Ultrafast optical spectroscopy is a powerful technique for studying the dynamic processes of molecular systems in condensed phases. However, in molecular systems containing many dye molecules, the spectra can become crowded and difficult to interpret owing to the presence of multiple nonlinear optical contributions. In this work, we theoretically propose time-resolved spectroscopy based on the coincidence counting of two entangled photons generated via parametric down-conversion with a monochromatic laser. We demonstrate that the use of two-photon counting detection of entangled photon pairs enables the selective elimination of the excited-state absorption signal. This selective elimination cannot be realized with classical coherent light. We anticipate that the proposed spectroscopy will help simplify the spectral interpretation of complex molecular and material systems comprising multiple molecules.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Ryosuke Shimizu
- Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Japan
- Institute for Advanced Science, The University of Electro-Communications, Chofu 182-8585, Japan
| |
Collapse
|
8
|
Fujihashi Y, Miwa K, Higashi M, Ishizaki A. Probing exciton dynamics with spectral selectivity through the use of quantum entangled photons. J Chem Phys 2023; 159:114201. [PMID: 37712788 DOI: 10.1063/5.0169768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Quantum light is increasingly recognized as a promising resource for developing optical measurement techniques. Particular attention has been paid to enhancing the precision of the measurements beyond classical techniques by using nonclassical correlations between quantum entangled photons. Recent advances in the quantum optics technology have made it possible to manipulate spectral and temporal properties of entangled photons, and photon correlations can facilitate the extraction of matter information with relatively simple optical systems compared to conventional schemes. In these respects, the applications of entangled photons to time-resolved spectroscopy can open new avenues for unambiguously extracting information on dynamical processes in complex molecular and materials systems. Here, we propose time-resolved spectroscopy in which specific signal contributions are selectively enhanced by harnessing nonclassical correlations of entangled photons. The entanglement time characterizes the mutual delay between an entangled twin and determines the spectral distribution of photon correlations. The entanglement time plays a dual role as the knob for controlling the accessible time region of dynamical processes and the degrees of spectral selectivity. In this sense, the role of the entanglement time is substantially equivalent to the temporal width of the classical laser pulse. The results demonstrate that the application of quantum entangled photons to time-resolved spectroscopy leads to monitoring dynamical processes in complex molecular and materials systems by selectively extracting desired signal contributions from congested spectra. We anticipate that more elaborately engineered photon states would broaden the availability of quantum light spectroscopy.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Kuniyuki Miwa
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| |
Collapse
|
9
|
Gu Y, Gu B, Sun S, Yong H, Chernyak VY, Mukamel S. Manipulating Attosecond Charge Migration in Molecules by Optical Cavities. J Am Chem Soc 2023. [PMID: 37390450 DOI: 10.1021/jacs.3c03821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The ultrafast electronic charge dynamics in molecules upon photoionization while the nuclear motions are frozen is known as charge migration. In a theoretical study of the quantum dynamics of photoionized 5-bromo-1-pentene, we show that the charge migration process can be induced and enhanced by placing the molecule in an optical cavity, and can be monitored by time-resolved photoelectron spectroscopy. The collective nature of the polaritonic charge migration process is investigated. We find that, unlike spectroscopy, molecular charge dynamics in a cavity is local and does not show many-molecule collective effects. The same conclusion applies to cavity polaritonic chemistry.
Collapse
Affiliation(s)
| | - Bing Gu
- Department of Chemistry, Westlake University, Hangzhou 310030, Zhejiang, China
| | | | | | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Mathematics, Wayne State University, Detroit, Michigan 48202, United States
| | | |
Collapse
|